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Abstract. We present a nonparametric, probabilistic mixture model for
the supervised parcellation of images. The proposed model yields seg-
mentation algorithms conceptually similar to the recently developed la-
bel fusion methods, which register a new image with each training image
separately. Segmentation is achieved via the fusion of transferred man-
ual labels. We show that in our framework various settings of a model
parameter yield algorithms that use image intensity information differ-
ently in determining the weight of a training subject during fusion. One
particular setting computes a single, global weight per training subject,
whereas another setting uses locally varying weights when fusing the
training data. The proposed nonparametric parcellation approach capi-
talizes on recently developed fast and robust pairwise image alignment
tools. The use of multiple registrations allows the algorithm to be robust
to occasional registration failures. We report experiments on 39 volu-
metric brain MRI scans with expert manual labels for the white matter,
cerebral cortex, ventricles and subcortical structures. The results demon-
strate that the proposed nonparametric segmentation framework yields
significantly better segmentation than state-of-the-art algorithms.

1 Introduction

Supervised image parcellation (segmentation) tools traditionally use atlases,
which are parametric models that summarize the training data in a single coordi-
nate system [1–9]. Yet, recent work has shown that more accurate segmentation
can be achieved by utilizing the entire training data [10–16], by mapping each
training subject into the coordinates of the new image via a pairwise registration
algorithm. The transferred manual labels are then fused to generate a segmen-
tation of the new subject. There are at least two advantages of this approach:
(1) across-subject anatomical variability is better captured than in a parametric
model, and (2) multiple registrations improve robustness against occasional reg-
istration failures. The main drawback of the label fusion (multi-atlas) approach
is the computational burden introduced by the multiple registrations and the
manipulation of the entire training data.
Early label fusion methods proposed to transfer the manual labels to the

test image via nearest neighbor interpolation after pairwise registration [12, 14].
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Segmentation labels of the test image were then estimated via majority voting.
Empirical results suggested that errors in the manual labeling and in registra-
tion are averaged out during label fusion, resulting in accurate segmentation.
More recent work has shown that a weighted averaging strategy can be used to
improve segmentation quality [11]. The basic idea is that training subjects more
similar to the test subject should carry more weight during label fusion. The
practical advantages of various strategies based on this idea have lately been
demonstrated [11, 13, 16]. Some of these strategies use the whole image to deter-
mine a single, global weight for each training subject [11, 15, 16], whereas others
use local image intensities for locally adapting the weights [11, 13].

This paper presents a novel unified probabilistic model that enables local and
global weighting strategies within a label fusion-like segmentation framework.We
formulate segmentation using MAP, where a nonparametric approach is used to
estimate the joint density on the image intensities and segmentation labels of the
new subject. The proposed framework generalizes a model we recently presented
at MICCAI 2009 [16], which is based on the assumption that the test subject
is generated from a single, unknown training subject. That specific model leads
to a segmentation algorithm that assigns greater importance to the training
subjects that are globally more similar to the test subject and can be viewed as a
particular instantiation of the more general approach presented in this paper. In
addition, the proposed approach further enables two possible variants within the
same framework. First, we present a local mixture model that assumes each voxel
in the test image is generated from some training subject with a uniform prior,
independently of other voxels. This local model yields a pixel-wise weighting
strategy in segmentation. Second, we develop a semi-local mixture model that
relaxes the independence assumption of the local model with a Markov Random
Field prior. This model leads to a weighting strategy where intensity information
in a local neighborhood is pooled in a principled manner.

In related literature, soft weighting of training subjects was recently used
for shape regression [17], where the weights depended on the subjects’ age. The
proposed nonparametric parcellation framework is also parallel to STAPLE [18],
which fuses multiple segmentations of a single subject. In contrast, our frame-
work handles multiple subjects and accounts for inter-subject variability through
registration.

The paper is organized as follows. The next section presents the non-parametric
generative model for image segmentation. In section 3, we discuss three instan-
tiations of the framework. In section 4, we present inference algorithms for these
instantiations. We conclude with experiments in section 5. We report experi-
ments on 39 brain MRI scans that have corresponding manual labels, including
the cerebral cortex, white matter, and sub-cortical structures. Experimental re-
sults suggest that the proposed nonparametric parcellation framework achieves
better segmentation than the existing state-of-the-art algorithms.
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Fig. 1. Generative model for (L(x), I(x)) given
M(x) = i and (Li, Ii, Φi). Φi is the mapping from
the image coordinates to the template coordinates.
Squares indicate non-random parameters, while cir-
cles indicate random variables. Shaded variables are
assumed to be observed.

2 Theory

Let {Ii} be N training images with corresponding label maps {Li}, i = 1, . . . , N .
We assume the label maps take discrete values from 1 to L that indicate the label
identity at each spatial location. We treat these training images as spatially
continuous functions on R

3 by assuming a suitable interpolator. Let I : Ω �→ R

denote a new, previously unseen test image defined on a discrete gridΩ ⊂ R
3. Let

Φi : Ω �→ R
3 denote the spatial mapping (warp) from the test image coordinates

to the coordinates of the training image i. We assume that {Φi} have been pre-
computed using a pairwise registration procedure, such as the one described in
Section 4.1.
Our objective is to estimate the label map L̂ associated with the test image I.

One common formulation to compute L̂ is via MAP:

L̂ = argmax
L

p(L|I, {Li, Ii, Φi}) = argmax
L

p(L, I|{Li, Ii, Φi}), (1)

where p(L, I|{Li, Ii, Φi}) denotes the joint probability of the label map L and
image I given the training data.
Rather than using a parametric model for p(L, I|{Li, Ii, Φi}), we employ a

non-parametric estimator, which is an explicit function of the entire training
data, not a summary of it. LetM : Ω �→ {1, . . .N} denote an unknown (hidden)
random field that, for each voxel in test image I, specifies the training image Ii
that generated that voxel. GivenM , the training data, and warps, and assuming
the factorization depicted in the graphical model of Fig. 1, we can construct the
conditional probability of generating the test image and label map:

p (L, I|M, {Li, Ii, Φi})
=
∏
x∈Ω

p (L (x) , I (x) |M (x) , {Li, Ii, Φi}) (2)

=
∏
x∈Ω

pM(x)

(
L (x) , I (x) |LM(x), IM(x), ΦM(x) (x)

)
(3)

=
∏
x∈Ω

pM(x)

(
L (x) |LM(x), ΦM(x) (x)

)
pM(x)

(
I (x) |IM(x), ΦM(x) (x)

)
, (4)

where pM(x)(L(x), I(x)|LM(x), IM(x), ΦM(x)(x)) is the conditional probability of
(L(x), I(x)) given that voxel x ∈ Ω of the test subject was generated from train-
ing subject M(x). Note that Eq. (4) assumes that (L(x), I(x)) are conditionally
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independent given the membership M(x), corresponding warp ΦM(x) and train-
ing data. Given a prior on M , we can view p(L, I|{Li, Ii, Φi}) as a mixture:

p(L, I|{Li, Ii, Φi}) =
∑
M

p(M)p (L, I|M, {Li, Ii, Φi}) , (5)

where
∑
M denotes the marginalization over the unknown random field M .

Substituting Eq. (4) into Eq. (5) yields:

L̂ = argmax
L

∑
M
p (M)

∏
x∈Ω

pM(x)

(
L (x) |LM(x), ΦM(x) (x)

)

× pM(x)

(
I (x) |IM(x), ΦM(x) (x)

)
. (6)

In the next section, we present instantiations of the individual terms in Eq. (6).

3 Model Instantiation

3.1 Image Likelihood

We adopt a Gaussian distribution with a stationary variance σ2 as the image
likelihood:

pi(I(x)|Ii, Φi(x)) = 1√
2πσ2

exp

[
− 1

2σ2
(I (x)− Ii (Φi (x)))2

]
. (7)

3.2 Label Likelihood

We use the distance transform representation to encode the label prior informa-
tion, cf. [19]. Let Dli denote the signed distance transform of label l in training
subject i, assumed to be positive inside the structure of interest. We define the
label likelihood as:

pi(L(x) = l|Li, Φi(x)) ∝ exp(ρDl
i(Φi(x))), (8)

where ρ > 0 is the slope constant and
∑L
l=1 pi(L(x) = l|Li, Φi(x)) = 1, where L

is the total number of labels including a background label. pi(L(x) = l|Li, Φi(x))
encodes the conditional probability of observing label l at voxel x ∈ Ω of the
test image, given that it was generated from training image i.

3.3 Membership Prior

The latent random field M : Ω �→ {1, . . . , N} encodes the local association be-
tween the test image and training data. We place a Markov Random Field (MRF)
prior on M :

p(M) =
1

Zβ

∏
x∈Ω
exp

⎛
⎝β ∑

y∈Nx

δ(M(x),M(y))

⎞
⎠ , (9)
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Nonparametric Mixture Models for Supervised Image Parcellation 5

where β ≥ 0 is a scalar parameter, Nx is a spatial neighborhood of voxel x,
Zβ is the partition function that only depends on β, and δ(M(x),M(y)) = 1,
if M(x) = M(y) and zero otherwise. In our implementation, Nx includes the
immediate 8 neighbors of each voxel. Similar models have been used in the seg-
mentation literature, e.g. [5, 9], mainly as priors on label maps to encourage
spatially contiguous segmentations. In contrast, we use the MRF prior to pool
local intensity information in determining the association between the test sub-
ject and training data.
The parameter β influences the average size of the local patches of the test

subject that are generated from a particular training subject. In this work, we
consider three settings of the parameter β. For β = 0, the model effectively
assumes that each test image voxel is independently generated from a training
subject, drawn with a uniform prior. β → +∞ forces the membership of all
voxels to be the same and corresponds to assuming that the whole test subject
is generated from a single unknown training subject, drawn from a uniform prior.
A positive, finite β favors local patches of voxels to have the same membership.
The β → +∞ case reduces to a model similar to the one we presented

in [16], except now we make the simplifying assumption that the training data
is apriori mapped to the test subject’s coordinate frame as a preprocessing step.
Due to this simplification, the warp cost in registration plays no role in the
segmentation algorithms we present in this paper. Without this simplification,
however, inference for finite values of β becomes intractable. As demonstrated
in the next section, the resulting inference algorithms allow us to determine
the association between the training data and test subject using local intensity
information.

4 Algorithms

4.1 Efficient Pairwise Registration

To perform pairwise registration, we employ an efficient algorithm [20, 21] that
uses a one-parameter subgroup of diffeomorphisms, where a warp Φ is parame-
terized with a smooth, stationary velocity field v : R

3 �→ R
3 via an ODE [22]:

∂Φ(x,t)
∂t = v(Φ(x, t)) and initial condition Φ(x, 0) = x. The warp Φ(x) = exp(v)(x)

can be computed efficiently using scaling and squaring and inverted by using the
negative of the velocity field: Φ−1 = exp(−v) [22].
We impose an elastic-like regularization on the stationary velocity field:

p(Φ = exp(v)) =
1

Zλ
exp

⎡
⎣−λ∑

y∈Ω

∑
j,k=1,2,3

( ∂2
∂x2j

vk(x)
∣∣∣
x=y

)2⎤⎦ , (10)

where λ > 0 is the warp stiffness parameter, Zλ is a partition function that de-
pends only on λ, and xj and vk denote the j’th and k’th component (dimension)
of position x and velocity v, respectively. A higher warp stiffness parameter λ
yields more rigid warps.
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6 M.R. Sabuncu et al.

To derive the registration objective function, we assume a simple additive
Gaussian noise model, consistent with the image likelihood term described in
Section 3.1. This model leads to the following optimization problem for register-
ing the i-th training image to the test subject:

v̂i = argmin
v

∑
y∈Ω

⎡
⎣(I(y)− Ii(exp(v)(y)))2 + 2λσ2

∑
j,k=1,2,3

(
∂2

∂x2j
vk(x)

∣∣∣
x=y

)2

⎤
⎦ , (11)

where σ2 is the stationary image noise variance, and Φi � exp(v̂i). To solve
Eq. (11), we use the bidirectional log-domain Demons framework [20], which de-
couples the optimization of the first and second terms by introducing an auxil-
iary transformation. The update warp is first computed using the Gauss-Newton
method. The regularization is achieved by smoothing the updated warp field. It
can be shown that the smoothing kernel corresponding to Eq. (10) can be ap-
proximated with a Gaussian; K(x) ∝ exp(−α∑i=1,2,3 x

2
i ), where α =

γ
8λσ2 and

γ > 0 controls the size of the Gauss-Newton step.

4.2 Segmentation Algorithms

Here, we present algorithms to solve the optimization problem of Eq. (6) for the
three cases of β in the model presented in Section 3.

4.3 Global Mixture

First, we consider β → +∞, which is equivalent to a global mixture model, where
the test subject is assumed to be generated from a single, unknown training
subject. In this case, the segmentation problem in Eq. (6) reduces to

L̂ = argmax
L

N∑
i=1

∏
x∈Ω

pi(L(x)|Li, Φi(x))pi(I(x)|Ii, Φi(x)). (12)

Eq. (12) cannot be solved in closed form. However, an efficient solution to this
MAP formulation can be obtained via Expectation Maximization (EM). Here,
we present a summary.
The E-step updates the posterior of the membership associated with each

training image:

m
(n)
i ∝

∏
x∈Ω

pi(I(x)|Ii, Φi(x))pi(L̂(n−1)(x)|Li, Φi(x)), (13)

where L̂(n−1)(x) is the segmentation estimate of the test image from the previous
iteration and

∑
im

(n)
i = 1. The M-step updates the segmentation estimate:

L̂(n)(x) = argmax
l∈{1,...,L}

N∑
i=1

m
(n)
i log (pi(L(x) = l|Li, Φi(x))) . (14)
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Nonparametric Mixture Models for Supervised Image Parcellation 7

The E-step in Eq. (13) determines a single membership index for the entire
training image, based on all the voxels. The M-step in Eq. (14) performs an
independent optimization at each voxel x ∈ Ω; it determines the mode of a
length-L vector, where L is the number of labels. The EM algorithm is initialized
with m

(1)
i ∝ ∏x∈Ω pi(I(x)|Ii, Φi(x)) and iterates between Equations (14) and

(13), until convergence.

4.4 Local Mixture: Independent Prior

The second case we consider is β = 0, which corresponds to assuming a voxel-
wise independent mixture model with a uniform prior on M :

p(M) =
1

N |Ω| , (15)

where |Ω| is the cardinality of the image domain, i.e., the number of voxels. It
is easy to show that the segmentation problem reduces to

L̂(x) = argmax
l∈{1,...,L}

N∑
i=1

pi(L(x) = l|Li, Φi(x))pi(I(x)|Ii, Φi(x)), (16)

where the image and label likelihood terms in the summation can be computed
using Eqs. (7) and (8). The optimization problem can be solved by simply com-
paring L numbers at each voxel.

4.5 Semi-local mixture: MRF Prior

Finally, we consider a finite, positive β. This leads to an MRF prior, which
couples neighboring voxels and thus the exact marginalization of Eq. (6) becomes
computationally intractable. An efficient approximate solution can be obtained
using variational mean field [23]. The main idea of variational mean field is to
approximate the posterior distribution of the membership p(M |I, L, {Ii, Li, Φi}),
with a simple distribution q that is fully factorized:

q(M) =
∏
x∈Ω

qx(M(x)). (17)

The objective function of Eq. (6) can then be approximated by an easier-to-
optimize lower bound, which is a function of q. This approximate problem can
be solved via coordinate-ascent, where the segmentation L and approximate
posterior q are updated sequentially, by solving the optimization for each variable
while fixing the other. One particular formulation leads to a straightforward
update rule for L:

L̂(n)(x) = argmax
l∈{1,...L}

N∑
i=1

q(n−1)x (M(x) = i) log pi(L(x) = l|Li, Φi(x)), (18)
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where q(n−1) is an estimate of the posterior at the (n− 1)’th iteration. Eq. (18)
is independent for each voxel and entails determining the mode of a length-L
vector. For a fixed segmentation estimate L̂(n)(x) the optimal q is the solution
of the following fixed-point equation:

q(n)x (M(x)) ∝ pM(x)(I(x)|IM(x), ΦM(x)(x))

× pM(x)(L̂
(n)(x)|LM(x), ΦM(x)(x)) exp

⎛
⎝β ∑

y∈Nx

q(n)y (M(x))

⎞
⎠ , (19)

and
∑
i q

(n)
x (M(x) = i) = 1. We solve Eq. (19) iteratively. The variational mean

field algorithm alternates between Eqs. (19) and (18), until convergence.

5 Experiments

We validate the proposed framework on 39 T1-weighted brain MRI scans of di-
mensions 256 × 256 × 256, 1mm isotropic. Each MRI volume is an average of
3-4 scans and was gain-field corrected and skull-stripped. These volumes were
then manually delineated by an expert anatomist into left and right White Mat-
ter (WM), Cerebral Cortex (CT), Lateral Ventricle (LV), Hippocampus (HP),
Thalamus (TH), Caudate (CA), Putamen (PU), Pallidum (PA) and Amygdala
(AM). We use volume overlap with manual labels, as measured by the Dice
score [24], to quantify segmentation quality. The Dice score ranges from 0 to 1,
with higher values indicating improved segmentation.

5.1 Setting Parameters Through Training

The proposed nonparametric parcellation framework has two stages with several
input parameters. The registration stage has two independent parameters: γ that
controls the step size in the Gauss-Newton optimization and α that determines
the smoothness of the final warp. The segmentation stage has two additional
input parameters: σ2, which is the intensity variance of the image likelihood in
Eq. (7) and the slope ρ of the distance transform uses to compute the label prior
in Eq. (8). Furthermore, the semi-local model of Section 4.5 has a non-zero, finite
β parameter.
Nine subjects were used to determine the optimal values of these parameters.

First, 20 random pairs of these nine subjects were registered for a range of values
of γ and α. Registration quality was assessed by the amount of pairwise label
overlap and used to select the optimal (γ∗, α∗) pair.
We used the optimal (γ∗, α∗) pair to register all 72 ordered pairs of the nine

training subjects. We performed nine leave-one-out segmentations using both
the global and local models to determine the corresponding optimal pairs of σ2

and ρ. The optimal pair for the local model was then used to determine the
optimal value for β in the semi-local model. The optimal parameter values were
finally used to segment the remaining 30 subjects.
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Fig. 2. A typical segmentation obtained with the local mixture model.

5.2 Benchmarks

The first benchmark we consider is the whole-brain parcellation tool available
in the Freesurfer software package [25]. The Freesurfer parcellation tool uses a
unified registration-segmentation procedure that models across-scanner intensity
variation [2, 3]. We consider this as a state-of-the-art benchmark, since numerous
imaging studies across multiple centers have shown Freesurfer’s a robustness and
accuracy as a segmentation tool.
As a second benchmark, we use our implementation of the Label Fusion

algorithm [12, 14]. We employ the pairwise registrations obtained with (γ∗, α∗)
to transfer the labels of the training subjects via the trilinear interpolation of the
probability maps, obtained by assigning 1 to entries corresponding to the manual
labels and zero elsewhere. Segmentation is then computed through majority
voting at each voxel. We use trilinear interpolation instead of nearest neighbor
interpolation because we find that trilinear interpolation yields better results.

5.3 Results

We report test results for the 30 subjects not included in the group used for
setting the algorithm parameters γ, α, σ2, ρ, and β. For each test subject, we
treated the remaining subjects as training data in a cross-validation evaluation.
Fig. 2 illustrates a typical automatic segmentation result obtained with the

local mixture model and overlaid on the MRI volume. Fig. 3 shows box-plots
of Dice scores for the two benchmarks and the proposed non-parametric par-
cellation algorithms. Table 1 provides the mean Dice scores averaged over all
subjects and both hemispheres. Fig. 4 provides an overall comparison between
the average dice scores achieved by the algorithms.
On average, the local and semi-local mixture models yield better segmenta-

tions than the global mixture model, mainly due to the large improvement in the
white matter, cerebral cortex and lateral ventricles, the segmentation of which
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Fig. 3. Boxplots of Dice scores for Freesurfer (red), Label Fusion (yellow), the global
mixture model (green), the local mixture model (blue) and the semi-local mixture
model (purple). Top row is left hemisphere. Bottom row is right hemisphere. Medians
are indicated by horizontal bars. Boxes indicate the lower and upper quartiles and
vertical lines extend to 1.5 inter-quartile spacing. ‘+’s indicate outliers.
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Fig. 4. Average Dice scores for each algorithm (FS:
Freesurfer, LF: Label Fusion, Global: Global Mix-
ture, Local: Local Mixture, and Semi-Local: MRF-
based model). Error bars show standard error. Each
subject and ROI was treated as an independent sam-
ple with an equal weight.

clearly benefits from the additional use of local intensity information. A paired
t-test between the local and semi-local models reveals that a statistically signif-
icant improvement is achieved with the MRF model that pools local intensity
information. Yet, this improvement is overall quite modest: about 1% per ROI.

As discussed earlier, the global mixture model is similar to that of [16], except
that [16] incorporates registration into the model. Despite this, we find that both
algorithms achieve similar segmentation accuracy (results not shown).

A paired sample t-test implies that the difference in accuracy between the
proposed semi-local mixture model and Freesurfer is statistically significant (p <
0.05, Bonferroni corrected) for all ROIs, except the cerebral cortex and right
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Nonparametric Mixture Models for Supervised Image Parcellation 11

Table 1. Comparison of average dice scores. Boldface font indicates best scores for
each structure. As a reference, the last row lists approximate average volumes.

WM CT LV HP TH CA PU PA AM

Freesurfer 0.92 0.85 0.87 0.84 0.88 0.85 0.85 0.80 0.75
Label Fusion 0.85 0.66 0.84 0.77 0.86 0.80 0.86 0.81 0.75
Global Mixture 0.88 0.77 0.87 0.83 0.90 0.84 0.89 0.83 0.81
Local Mixture 0.93 0.84 0.90 0.86 0.90 0.86 0.88 0.82 0.82

Semi-local Mixture 0.93 0.86 0.91 0.87 0.91 0.87 0.89 0.83 0.82

Volumes (×103mm3) 450 448 25 7 14 7 10 3 3

Table 2. Approximate average run-time to segment one test subject (in CPU hours).

Freesurfer Label Fusion Global Mixture Local Mixture Semi-local Mixture

10 24 32 24 40

Caudate, where the two methods yield comparable results. The same results are
obtained when comparing the local mixture model and Freesurfer.
Compared to the Label Fusion benchmark, the nonparametric parcellation

algorithms (global, local and semi-local) yield significantly better segmentation
(paired sample t-test, p < 0.05, Bonferroni corrected) in all regions, except
Pallidum and Putamen, where the improvement over Label Fusion does not
reach statistical significance. We note, however, that the results we report for our
Label Fusion implementation are lower than the ones reported in [12]. This might
be due to differences in the data and/or registration algorithm. Specifically,
normalized mutual information (NMI) was used as the registration cost function
in [12]. Entropy-based measures such as NMI are known to yield more robust
alignment results. We leave a careful analysis of this issue to future work.
Table 2 lists the average run-times for all five algorithms. The parametric

atlas-based Freesurfer algorithm is the fastest, mainly because it needs to com-
pute only a single registration. The remaining algorithms take up more than 20
hours of CPU time on a modern machine, most of which is dedicated to the
many registrations performed with the training data. The two iterative algo-
rithms that solve the global mixture and semi-local mixture models (EM and
variational mean field, respectively) require significantly longer run-times. The
local-mixture model, on the other hand, requires minimal computation time once
the registrations are complete, since it simply performs a voxelwise weighted av-
eraging. Its run-time is similar to that required by Label Fusion.

6 Conclusion

This paper presents a novel, nonparametric mixture model of images and label
maps, that yields accurate image segmentation algorithms. The resulting algo-
rithms are conceptually similar to recent label fusion (or multi-atlas) methods
that utilize the entire training data, rather than a summary of it, and register the
test subject to each training subject separately. Segmentation is then achieved
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12 M.R. Sabuncu et al.

by fusing the transferred manual labels. In the proposed framework, similarities
between the test image and training data determine how the transferred labels
are weighed during fusion. As we discuss in this paper, different settings of a
model parameter yields various weighting strategies. Our experiments suggests
that a semi-local strategy that is derived from an MRF model that encourages lo-
cal image patches to be associated with the same training data provides the best
segmentation results. We also show that a computationally less expensive local
strategy that treats each voxel independently leads to accurate segmentations
that are better than the current state-of-the-art.
We leave an investigation of various registration algorithms within the pro-

posed framework to future work. It is clear that alternative strategies can be
used to improve the alignment between the training data and test subject. For
example, one could use a richer representation of diffeomorphic warps, cf. [4],
or a more sophisticated registration cost function, cf. [12]. Since any multi-atlas
segmentation algorithm will be robust against occasional registration failures,
whether a better alignment algorithm will lead to more accurate segmentation
remains an open question.
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