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Spherical Demons: Fast Diffeomorphic
Landmark-Free Surface Registration

B.T. Thomas Yed Mert R. Sabuncti Tom Vercauteren
Nicholas Ayache Bruce Fischl Polina Golland

Abstract—We present the Spherical Demons algorithm for [50], [59], [60], [64], [67]. Warping the spherical coordite
registering two spherical images. By exploiting sphericalvector gystem establishes correspondences across the susitivest
spline interpolation theory, we show that a large class of rgulari- actually deforming the surfaces in 3D.

zors for the modified Demons objective function can be efficrgly Def tion Model. Th is f f dfori "
approximated on the sphere using iterative smoothing. Baske etormation Model. ere 1s irequently a need for invert-

on one parameter subgroups of diffeomorphisms, the resutig ible deformations that preserve the topology of structaral
registration is diffeomorphic and fast. The Spherical Demas functional regions across subjects. Unfortunately, tlaigses

algorithm can also be modified to register a given spherical many spherical warping algorithms to be computationally
image to a probabilistic atlas. We demonstrate two variantsof expensive. Previously demonstrated methods for cortiegd r

the algorithm corresponding to warping the atlas or warpin . . N .
the suglj)ject. Registra%on ofga corticapl s%rface mesh to anpmg istration [27], [60], [67] rely on soft regularization cdraints

mesh, both with more than 160k nodes requires less than 5 0 encourage invertibility. These require unfolding thestme
minutes when warping the atlas and less than 3 minutes when triangles, or limit the size of optimization steps to acleiev
warping the subject on a Xeon 3.2GHz single processor machén invertibility [27], [67]. Elegant regularization penadt that
This is comparable to the fastest non-diffeomorphic landmek- guarantee invertibility exist [5], [46] but they expligitirely

free surface registration algorithms. Furthermore, the acuracy . - : -
of our method compares favorably to the popular FreeSurfer on special properties of the Euclidean image space that tlo no

registration algorithm. We validate the technique in two different hold for the sphere.
applications that use registration to transfer segmentatn labels An alternative approach to achieving invertibility is to ko

onto a new image: (1) parcellation of in-vivo cortical surfa&es jn the group of diffeomorphisms [4], [7], [9], [22], [31], B},
and (2) Brodmann area localization in ex-vivo cortical surfces. [66]. In this case, the underlying theory of flows of vector
Index Terms—Surface Registration, Spherical Registration, fields can be extended to manifolds [11], [44], [47]. The learg
Cortical Registration, Vector Field Interpolation, Demons, Dif- Deformation Diffeomorphic Metric Mapping (LDDMM) [7],
feomorphism [9], [22], [31], [43] is a popular framework that seeks a
time-varying velocity field representation of a diffeombigm.
. INTRODUCTION Because LDDMM optimizes over the entire path of the

OTIVATED by many successful applications of the‘olif'feor_norphism, the resulting method is slow and memory
M spherical representation of the cerebral cortex, thidl€nsive. By contrast, Ashburner [4] and Hernanefeal. [33]
paper addresses the problem of registering two spheri€gfsider diffeomorphic transformations parameterizedaby
images. Cortical folding patterns have been shown to ccindle stationary velocity field. While restricting the spa
relate with both cytoarchitectural [25], [68] and functin of solutions reduces the memory needs relative to LDDMM,

regions [64], [27]. In group studies of cortical structureda these algorithms still have to consider the entire trajgca

function, determining corresponding folds across subjést (€ deformation induced by the velocity field when computing
therefore important. There has been much effort focused Bif 9radients of the objective function, leading to a long
registering cortical surfaces in 3D [22], [23], [30], [5&ince " time. We note that recent algorlthmlc_ advances [34],
cortical areas — both structure and function — are arranged-$3] Promise to improve the speed and relieve the memory

a mosaic across the cortical surface, an alternative approéequwements of both LDDMM and the stationary velocity

is to model the surface as a 2D closed manifold in 3BPProach.

and to warp the underlying spherical coordinate system, [ZB In this work, we adopt the approach of the Diffeomorphic
emons algorithm [66], demonstrated in the Euclidean image
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LDDMM [7], [9], [22], [31] and its simplifications [4], [33]. the advantage of allowing for a fully automatic processing
A drawback is that the path of deformation is no longer and analysis of medical images. Unfortunately, landmagke-f
geodesic in the group of diffeomorphisms. registration is also more challenging, because no infdonat

Image Similarity vs. Regularization Tradeoffs. Another about correspondences are provided. The difficulty is exac-
challenge in registration is the tradeoff between the insige  erbated for the cerebral cortex since different sulci and gy
ilarity measure and the regularization in the objectivection. appear locally similar. Nevertheless, we demonstrate dbat
Since most types of regularization favor smooth defornmatio algorithm is accurate in both cortical parcellation andoeyt
the gradient computation is complicated by the need to ta&echitectonic localization applications.
into account the deformation in neighboring regions. For The Spherical Demons algorithm for registering cortical
Euclidean images, the popular Demons algorithm [57] caurfaces presented here does not take into account thecmetri
be interpreted as optimizing an objective function with tweroperties of the original cortical surface. FreeSurféi [2ses
regularization terms [14], [66]. The special form of the oba regularization that penalizes deformation of the sphéric
jective function facilitates a fast two-step optimizatishere coordinate system based on the distortion computed on the
the second step handles the warp regularization via a singhginal cortical surface. Thompsoet al. [59] suggest the
convolution with a smoothing filter. use of Christoffel symbols [39] to correct for the metric

Using spherical vector spline interpolation theory [31Handistortion of the initial spherical coordinate system dgrthe
other differential geometric tools, we show that the twagst registration process. However, it is unclear whether atirrg
optimization procedure of Demons can be efficiently approfer the metric properties of the cortex is important in piegt
imated on the sphere. We note that the problem is not trivislhce we demonstrate that the accuracy of the Spherical
since tangent vectors at different points on the sphere are Demons algorithm compares favorably to that of FreeSurfer.
directly comparable. We also emphasize that this decogipliA possible reason is that we initialize the registrationhwit
of the image similarity and the warp regularization coulsbal a spherical parametrization that minimizes metric digtart
be accomplished with a different space of admissible wargstween the spherical representation and the originaicebrt
e.g., spherical thin plate splines [72]. surface [27].

Interpolation. Yet another reason why spherical image This paper is organized as follows. In the next section, we
registration is slow is because of the difficulty in perfongi discuss the classical Demons algorithm [57] and its diffeem
interpolation on a spherical grid, unlike a regular Eudide phic variant [66]. In Section I1l, we present the extensidthe
grid. In this paper, we use existing methods for interpolati Diffeomorphic Demons algorithm to the sphere. We conclude
requiring about one second to interpolate data from a sgdieriwith experiments in Section IV and further discussion in-Sec
mesh of 160k vertices onto another spherical mesh of 16fn V. The appendices provide technical and implememntatio
vertices. Recent work on using different coordinate chafts details of the Spherical Demons algorithm and the extertsion
the sphere [63] promises to further speed up our implemengaebabilistic atlases. This paper extends a previouslygned
tion of the Spherical Demons algorithm. conference article [69] and contains detailed derivatiand

While most discussion in this paper concentrates on padtiscussions that were left out in the conference version. We
wise registration of spherical images, the proposed Sphaote that our Spherical Demons code is freely avaifalile
ical Demons algorithm can be modified to incorporate summarize,
probabilistic atlas. We derive and implement two variants 1) we demonstrate that the Demons algorithm can be
of the algorithm for registration to an atlas corresponding  efficiently extended to the sphere.
to whether we warp the atlas or the subject. On a Xeon) we demonstrate that the use of a limited class of
3.2GHz single processor machine, registration of a cdrtica ~ gjiffeomorphisms combined with the Demons algorithm
surface mesh to an atlas mesh, both with more than 160k yie|ds a speed gain of more than an order of magnitude

nodes, requires less than 5 minutes when warping the atths an  compared with other landmark-free invertible spherical
less than 3 minutes when warping the subject. Note that the registration methods, such as [27], [67].
registration runtime reported includes registration cormgnts 3) We validate our algorithm by demonstrating an ac-

dealing with rotation, which takes up one quarter of the curacy comparable to that of the popular FreeSurfer
total runtime. The total runtime is comparable to other non- algorithm [27] in two different applications.

linear landmark-free cortical surface registration aions
whose runtime ranges from minutes [23], [60] to more than
an hour [27], [67]. However, the other fast algorithms suffe
from folding spherical triangles [60] and intersectingumjles ~ We choose to work with the modified Demons objective
in 3D [23] since only soft constraints are used. No runtimeinction [14], [66]. LetF be the fixed image)/ be the moving
comparison can be made with spherical registration alyorit image andl’ be the desired transformation that deforms the
of the LDDMM type because to the best of our knowledge, nmoving imageM/ to match the fixed imagé". Throughout
landmark-free LDDMM spherical registration algorithm thathis paper, we assume thaAtand M are scalar images, even
handles cortical surfaces has been developed yet.

Unlike landmark-based methods for surface registratic])n [8 1There are two versions of the code (matlab and ITK) available
at http://sites.google.com/site/yeoyeo02/softwartedsigaldemonsrelease. The

[22]* [31]' [50]1 [58]’ [64]- we do not assume the eXiStenCﬁ\aﬂab code is used in the experiments of this paper. Thénpnelry ITK
of corresponding landmarks. Landmark-free methods hastgle [35], [36], [37] can also be found at http:/hdl.hamuk#/10380/3117.

II. BACKGROUND - DEMONS ALGORITHM
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Data: A fixed imageF and moving image\/.

Result Transformation” so thatM o T" is “close” to F.
SetT? = identity transformation (or some a-priori transformatierg., from a previous registration)
repeat

Step 1.Given T,

Minimize the first two terms of Eq. (3)

1
oz

uY) = argmin HE_l (F —~Mo{Y®o U}) H2 + —dist (T(t), {r®o U}) 5 (1)

wherew is any admissible transformation. Compiité) = T®) o ¢(*),

Step 2.GivenT'(®),
Minimize the last two terms of Eq. (3):

1 . 1
T = argmin —-dist(Y, 1) + —-Reg T). 2)
T 0z or

until convergence

Algorithm 1. Demons Algorithm

though it is easy to extend the results to vector images [7@].solution at time 1, i.e3(1) = exp(¥)(z(0)) € R3. In this

We introduce a hidden transformati@hand seek case,exp(?¥)(x(0)) maps pointz(0) to pointz(1).
Y . o ) The Demons algorithm and its variants are fast because
(T*,T%) = ar§1?1n|\2 (F=MoI)| () for certain forms of digfr,T') and RegY), Step 1 reduces

1 1 to a non-linear least-squares problem that can be effigientl
+ —dist(Y,I') + —-RedY). minimized via Gauss-Newton optimization and Step 2 can

Tz T be solved by a single convolution of the displacement field
In this case, the fixed imagg€ and warped moving imagk/ o I' with a smoothing kernel. The proof of the reduction of
I are treated a®V x 1 vectors. Typically, digfr,T') = |T — Step 2 to a smoothing operation is illuminating and holds for
T'||2, encouraging the resulting transformatibnto be close dist(Y,T) = [T — I'|* and any Sobolev norm R¢f) =
to the hidden transformatioi and RedY) = ||V(T —Id)||2, >_; oal| V(Y — 1d)||* [14], [45]. In practice, a Gaussian filter
i.e., the regularization penalizes the gradient magnibfdbe is used without consideration of the actual induced nornj, [14
displacement fieldl — Id of the hidden transformatiof’. [66]. The proof uses Fourier transforms and is therefore
0. and or provide a tradeoff among the different terms o$pecific to the Euclidean domain. Due to differences between
the objective functionX: is typically a diagonal matrix that the geometry of the sphere and Euclidean spaces, we will see
models the variability of a feature at a particular voxekanh in Section 1lI-D that the reduction of Step 2 to a smoothing
be set manually or estimated during the construction of @peration is only an approximation on the sphere.
atlas.

This formulation facilitates a two-step optimization peec IIl. SPHERICAL DEMONS
dure that alternately optimizes the first two (first and segon this section, we demonstrate suitable choices of

and Iast_ty\{o (gecond and th|rd)0 terms of Eq.(3). S,tart"}ﬂst(T,F) and RedY) that lead to efficient optimization of
from an initial displacement field™, the Demons algorithm o o ified Demons objective function in Eq. (3) on the unit
iteratively seeks an update transformation to be compo#éd YphereS2. We construct updates as diffeomorphisms from
the current estimate, as summarized in Algorithm 1. 52 to S2 parameterized by a stationary velocity fiafd We

In the original Demons algorithm [57], the space of admissé‘mphasize that unlike Diffeomorphic Demons [66],is a
ble warps includes all 3D displacement fields, and the COMNGhgent vector field on the sphere and not an arbitrary 3D

sition operator corresponds to the addition of displacemenfgcior field. A glossary of common terms used throughout the
fields. The resulting transformation might therefore be nBtaper is found in Table I.

invertible. In the Diffeormorphic Demons algorithm [66het

updateu is a diffeormorphism fronRR3 to R? parameterized ) )

by a stationary velocity field’. Note that7 is a function that A- Choice of disfr’, T')

associates a tangent vector with each poinRi Under cer-  Suppose the transformatiodsand T map a pointz, €
tain mild smoothness conditions, a stationary velocityfitls S? to two different points'(z,) € S? and T(x,) €
related to a diffeomorphism through the exponential magpirs? respectively. An intuitive notion of distance between
u = exp(¥). In this case, the stationary OD&x(t)/0t = T'(z,) and Y(z,) would be the geodesic distance between
#(z(t)) with the initial conditionz(0) € R3 yieldsexp(¥) as I'(z,) and Y(z,). Therefore, we could define diat, ') =
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TABLE |
GLOSSARY OF TERMS USED THROUGHOUT THE PAPER

F,M Fixed imageF, moving imageM.

b Typically a diagonal matrix that models variability of faet values at a particular vertex.

Oy, 0T Parameters of Demons cost function in Eq. (3).

T,T Transformations fromS? to SZ. T is the transformation we are seekir§.is the smooth hidden
transformation close td'.

C2{T,.}, T2 {Y,.)} Discrete tangent vector representation of the deformsti@ee Fig.1 and Eq. (5)). For example,
given the tangent vectdr,, at z, € S2, one can comput& (x,,).

T2 {tn} We parameterize diffeomorphic transformations fréfh to S2 by a composition of diffeomor-
phisms, each parameterized by a stationary velocity field,, is the velocity vector at,,.

u(’) £ exp(7) (") The diffeomorphism parameterized by the stationary veldigld ¢ is the solution of a stationar
ODE at timel.

E, £ [en &2 el andén? are orthonormal vectors tangent to the sphere.at

v, Coordinate chart defined in Eq. (10}, (z') = % U, is a diffeomorphism betweeR?2
and a hemisphere centeredagt € S2.

Zn Z, is an arbitrary tangent vector at the origin R%. At x.,,, the velocity vectors,, = E,Z, via
the coordinate chanl’,, (see Eq. (14)).

G,I'(z,). Then on a unit sphere, we obtain
Ty = —an X (2n X T(an)) = —G2D(2). (5)

. A more intuitive choice for the length of might be
s 5| the geodesic distance betweep andI'(z,,). If we restrict
I, to be at most lengthr, there is a one-to-one mapping
between this choice of the tangent vediorand the resulting
transformationI'(x,,). Indeed, such a choice of a tangent

vector corresponds to an exp0n2ential map.S3f [39]. The

resulting expression fof',, = ﬁf;i&(f;“‘)sinfl Don)—2n

is feasible, but more complicateH than Eq. (5). In this paper

for simplicity, we follow the definition in Eq. (5).

Fig. 1. Tangent vector representation of transformatioisee text for more ~ Given N vertices{x,,}»_,, the set of transformed points

details. {T'(x,,)}Y_, — or equivalently the tangent vectof,,}_, —
together with a choice of an interpolation function define th
transformation everywhere onS2. Similarly, we can define

27]:[:1 geodesi€Y (z,,),I'(x,)). For reasons that will becomethe transformatiol’ or the equivalent tangent vector field

clear in Section I1I-D, we prefer to define didt, I') in terms through a set ofV tangent vector§ Y, }"_,. We emphasize

of a tangent vector representation of the transformafibasd that these tangent vector fields are simply a convenienerepr

T, illustrated in Fig. 1, where the length of the tangent vectsentation of the transformatiori andI" and should not be

encodes the amount of deformation. confused with the stationary velocity fieldthat will be used

Let T,, S? be the tangent space at,. We definel’,, € later on. We now set

T, S? to be the tangent vector af, pointing along the great

circle connecting:,, to I'(x,, ). In this work, we set the length

of fn to be equal to the sine of the angle betwegnand

I'(x,). With this particular choice of length, there is a one-

to-one correspondence betweEfr,,) and fn, assuming the o ) ) R o

angle betweenr, andI'(z,) is less thanr/2, which is a which is well-defined since both,, andY,, belong toT,, 5>

reasonable assumption even for relatively large defoomati for eachn =1,.-- N.

The choice of this length leads to a compact representafion o

fn via vector products. We defing,, to be the3 x 3 skew-

symmetric matrix representing the cross-productcgfwith B. Spherical Demons Step 1

N
dist(",1) = Y [|T — Tull?, 6)
n=1

any vector:
In this section, we show that the update for Step 1 of the
0 —2,(3)  z,(2) : ) .
G, = Zn(3) 0 — (1) (4) Spherical Demons algorithm can be computed independently
—en(2) (1) 0 ’ for each vertex. With our choice of di&,T"), step 1 of the

algorithm becomes a minimization with respect to the véjoci
wherez,, (i) is thei-th coordinate ofc,,. Thus,z,, x I'(x,,) = field ¥ £ {#,, € T,,,S?}_,. By substitutingu = exp(%) and
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dist(Y,T") = 27]:[:1 |, — |2 into Eq. (1), we obtain note that for a tangent vector at an arbitrary pointHA,
1) ) . the expression for the corresponding tangent vector on the
v = arg;nmf(”) ) sphere is more complicated. This motivates our definitioa of

2 separate chart for each mesh vertex, to simplify the déonat
= argmin HE_l (F —Mo{r®o exp(ﬁ)}) H (8)
v 1 Gauss-Newton Step of Spherical Demondzrom Eq. (14),
+ —dist (T(”, {r®o exp(ﬁ)}) we obtainexp(?) = exp({#,}) = exp({E.Z,}) and rewrite
T Eqg. (9) as an unconstrained optimization problem:

N 5
= argmin y (F(zn)—Mo{T(t)oexp(ﬁ)}(xn)) (20}

52
U n=1 Un N 1 5
N oL 2 = argmin — (F(xp) = Mo {Y® oexp({Enzn Tn
+ iz DY + @YD o exp(@)} ()| {Za} n; 5 ( o) { Bz ))
g
T p=1 N
1 . . 2
©) " U_g% Z HTS) + Gi{T(t) oexp({Enzn})}(@n)||
wherec? is then-th diagonal entry of2 ando denotes warp n=1 (15)
composition.

N N
A . Ty 1 2
Defining Coordinate Charts on the Sphere.The cost _ar{gggmzl Ef"(z)+§z_:1”g”” (2) (16)

function in EqQ.(9) is a mapping from the tangent bundle } ’ o ]
TS2 to the real number®. We can think of each tangentTh'S non-linear least-squares form can be optimized effilyie
vector @, as a3 x 1 vector in R? tangent to the sphereWith the Gauss-Newton method, which requires finding the
at z,,. Thereforew, has 2 degrees of freedom and Eq.(9yradient of both terms with respect {a, } at {Z, = 0} and
represents a constrained optimization problem. Instead $#ving a ILnTearlzed least-squares problem.
dealing with the constraints, we employ coordinate charts\We et m,, be the(t} x 3 spatial gradient 9; the warped
that are diffeomorphisms (smooth and invertible mapping8)Ving imageM o YtV (.) atz,, and note th%m.n IS tangent
between open sets iR? and open sets ofi%. The differential 10 the sphere at,,. The computation ofr,, is discussed
of the coordinate chart establishes correspondences éetw Appendix A-A. Defining u, = exp({EnZn})(zn), we
the tangent bundle§’R? and 7'S? [39], [44], so we can differentiate the first term of the cost functign(2) in Eq. (15)
reparameterize the constrained optimization problem @mto USing the chain rule, resulting in thex 2 vector:
unconstrained one in terms @fR? (see Fig. 2). 0
- L . . — (t) 7

It is a well-known fact in differential geometry that covegi 5z, [F(%) Mo{TWo exp({Enzn})}(xn)} Y

52 requires at least two coordinate charts. Since the tools of 9

differential geometry are coordinate-free [39], [44], oesults ~ _3—5]6]\/[ o {T® o exp({EnZn})}(xn) L 17)
are independent of the choice of the coordinate chartsz"tet OM 0 {T® 0 exp({Epza))}(n)
€"? be any two orthonormal x 1 vectors tangent to the sphere= — —— = (18)
o ) ; : Oexp({Enzn})(xn)
atz,,, where orthonormality is defined via the usual Euclidean 9 .
inner product in3D. In this work, for each mesh vertex,, % { eXp({E’f”})(x”)}
we define a local coordinate chabt, : R? — 52, 0% 7=0
v 4+ B o _ _OMo T® (uy,) 0exp({Enzn})(xn) OERZ
U, (') = T where E,, = [¢*' ¢*?].  (10) Oy _ OF 7 GE I
As illustrated in Fig.2,¥,,(0) = =,. Let 7, be a2 x 1 _ _ 3T Eb (k) (20)

tangent vector at the origin dR?. With the choice of the
coordinate chart above, the corresponding tangent vettgy a whered(k,n) = 1 if k = n and0 otherwise. Eq. (20) uses the
is given by the differential of the mappinB¥,,(-) evaluated fact that the differential oéxp(¥) atv = 0 is the identity [47],
atz’ =0: i.e, [Dexp(0)] ¥ = v. In other words, a change in velocity,

at vertexxzy, does not affecexp(v)(x,,) for n # k up to the

Un = D (0)2, (11) " first order derivatives.
 Isus — \Ifn(O)\IIS(O)E E (12) Similarly, we defineS! to be the3 x 3 Jacobian ofr ®)(.)
B 10, (0)] e at z,,. The computation of!" is discussed in Appendix A-B.
Isys — xpal Differentiating the second term of the cost functign%) in
= [Zn]] Enzy (13) Eq. (15) using the chain rule, we get thex 2 matrix:
_ - _ [(=nl -n21> -
The above equation defines the mapping of a tangent vector — 25T E,8(k,n), (21)

Z, at the origin of R? to the tangent vectof, at x, via
the differential of the coordinate chal¥,, at 2’ = 0. We whereG,, is the skew-symmetric matrix defined in Eq. (4).
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' € R?

Fig. 2. Coordinate chart of the sphef#. The chart allows a reparameterization of the constraingtiinization problemf in step 1 of the Spherical
Demons algorithm into an unconstrained one.

Once the derivatives are known, we can compute the coregruares equation yields an update rule Fpr
sponding gradients based on our choice of the metric of vecto

fields onS2. In this work, we assume ah inner product, so () _ F(zn) = Mo T (x,) ET [im mLy (25)
that the inner product of vector fields is equal to the sum ef th' on Moz

inner products of the individual vectors. The inner produfct -1
individual vectors is in turn specified by the choice of the + %Sn(Gi)TG%SZ] En> ETm, .
Riemannian metric onS2. Assuming the canonical metric, o

so that the inner product of two tangent vectors is the usq_aér each vertex, we only need to perform matrix-vector

inner product in the Euclidean space [39], the gradients "Hﬁjltiplication of up to3 x 3 matrices and matrix inversion
equal to the transpose of the derivatives Egs. (20), (28 ( 2 » 2 matrices. This implies the update rule fa:
Appendix A-C). We can then rewrite Eq. (15) as a linearize

least-squares objective function: 70 = B, 70 (26)
F(x,) — M oYW (x, 1
_ Flon) =M o T (@) . <E§f [Tmnm%
Un Un
{1 ) -1
N ) + =S, (GG ST E, | Elm, .
. 1 . 3 0.2 n n~n n
A2 argmin Z — (fn(z =0)+Vy, fnz) (22) x
% ] In (27)
1 o _lI? In practice, we use the Levenberg-Marquardt modification of
+ o2 Z:l ‘ gn(Z=0) + Vi, 907 ’ Gauss-Newton optimization [49] to ensure matrix invelitii
N — (t)
. 1 B N2 o Flan) = MoT(x,) 1 - _r
=angnin 3~ 2 (Plan) = Mo TOe) =it ) = T | i+
i 1 & 1 o
o2 .
+ 5 D lGRSTEA| (29) + ;Sn(Gi)TGiSf] En + €I2x2> By i, .
T n=1 T
28
. UL (F(xn) — Mo T(t)(xn)) 24 (28)
= af{g}rimZ ! 0 (24) where ¢ is a regularization constant. We note that in
Zn n=1

the classical Euclidean Demons [57], [14], the term
ELS,(G2)TG2STE, turns out to be the identity, so it can

 also be seen as utilizing Levenberg-Marquardt optimiratio
Once again, we emphasize that a different choice of the
coordinate charts will lead to the same update.

Given {ﬁﬁf)},]f:l, we use “scaling and squaring” to com-
Because of the delta functiof(k,n) in the derivatives in puteexp(7®) [3], which is then composed with the current
Egs. (20), (21),Z, only appears in thei-th term of the cost transformation estimat®® to form T') = T® o exp (7).
function Eq. (24). The solution of Eq.(24) can therefore ba&ppendix D discusses implementation details of extendieg t
computed independently for eagh. Solving this linear least- “scaling and squaring” procedure in Euclidean spaceS%o

2

+< o )E 7,
1 A2 T nZn
ZGnSn
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C. Choice of Red() of the global optimum and the form of solution in Eq.(32)

We now define the Ré@) term using the correspondinngHOW fr(_)m the fact that the Hilbert_spadé is a re_prqducing
tangent vector field representatidh. Following the work Keémel hilbert space (RKHS), allowing the exploitation bét
of [31], [61], we letH be the Hilbert space of square integrabl&i€sz representation theorem [31]. This offers a wide range
vector fields on the sphere defined by the inner product; ©f choices of regularization depending on the choice of the
energetic norm and the corresponding RKHS.
(i, T2 1 :/ (it (2), W (z)) g dS? | (29) In [31], the spherical vector spline interpolation problem
52 was applied to landmark matching a$f, resulting in a
wherei,, i, € H and (-,-)p refers to the canonical metric.'easonable sized linear system of equations. Solving ttiexma
Because vector fields front/ are not necessarily smoothinversion shown in Eq.(32) is unfortunately prohibitiver fo
we restrict the deformatioff to belong to the Hilbert spacecortical surfaces with more tham00,000 vertices. If one
V C H of vector fields obtained by the closure of the spacdooses a relatively wide kernglz;,z;), the system is not
of smooth vector fields or$? via a choice of the so-called Even sparse.

energetic inner product denoted by Inspired by the convolution method of optimizing Step 2
o . in the Demons algorithm [14], [57], [66] and the convolution
(4, 0)y = (LU, V)u , (30) Dbased fast fluid registration in the Euclidean space [12], we
where L could for example be the Laplacian operator oRropose an iterative smoothing approximation to the smfuti
smooth vector fields 052 [31], [61]. of the spherical vector spline interpolation problem.

We define Regr) 2 HTHV- With a proper choice of In each smoothiqg itera_tion, for each vertey tangent
the energetic inner product (e.g., Laplacian), a smalléueva vectors pf ne|ghbor|n_g vertu_:esj are parallel transported to
of |F|lv corresponds to a smoother vector field and thdg @nd linearly combined with the tangent vectorsat The
smoother transformatioh. As we will see later in this section, Weights for the linear combination are set Mz;, ;) =

: : . . . (-3) . .
_the exact chome of the inner product is unimportant in o +|N1‘|;‘p(‘ﬂ) and \(z;, z;) = #}qy_%) fo_r i # g,
implementation. where |N;| is the number of neighboring vertices af;.
Therefore, larger number of iterations and values ofy

D. Optimizing Step 2 of Spherical Demons results in greater amount of smoothing.

, . . . . We note that the iterative smoothing approximation to plin
. With our choice of d's(.tT’.F) n S_ectlon ll-A and Regr). ipterpolation is not exact because parallel transport i no
in Section III-C, the optimization in Step 2 of the Spher'ca}ransitive onS? due to the non-flat curvature &2 (unlike
Demons algorithm in Euclidean space), i.e., parallel transporting a tangeotor
i 1 N R B from point a to b to ¢ results in a vector different from
Y+ = argmin = SOt T + —2 [ Tllv (31) the result of parallel transporting a tangent vector frorto
r ¥ n=1 T c. Furthermore, the approximation accuracy degrades as the
seeks a smooth vector fielf ¢ V that approximates the distribution of points becomes less uniform. In Appendix B,

tangent vectors{fﬁf)}ﬁzl. This problem corresponds to theV€ provide a theoretical bound on the approximation error

inexact vector spline interpolation problem solved in [31fNd demonstrate empirically that iterative smoothing jaies

motivating our use of tangent vectors in the definition ot 900d approximation of spherical vector spline interpofat

dist(Y, I') in Section I1I-A, instead of the more intuitive choice!0f @ relatively uniform distribution of points correspang to

of geodesic distance. those of the subdivided icosahedron meshes used in this work
We can express the tangent vectBysand Y, asE,I',, and
E, T, respectively. Essentially, this represehtsand,, in E. Remarks

terms of the tangent space basis at z,,, wherel',, and T, The Spherical Demons algorithm is summarized in Algo-
are the components of the tangent vectors with respectgo thihm 2.

basis.I' andY be2N x 1 vectors corresponding to stackiig ~ We run the Spherical Demons algorithm in a multi-scale

andY,, respectively. The particular optimization formulated ifashion on a subdivided icosahedral mesh. We begin from a
Eq. (31) has a unique optimum [31], given by subdivided icosahedral mesh (ic4) that contains 2,562cesrt

X o7 -1 and work up to a subdivided icosahedral mesh (ic7) that

T=K (%IQNX2N+K) T, (32) contains 163,842 vertices, which is roughly equal to the

T number of vertices in the cortical meshes we work with. We

where K is a 2N x 2N matrix consisting of N x N perform 15 iterations of Step 1 and Step 2 at each level.
blocks of 2 x 2 matrices: the(i,j) block corresponds to Because of the fast convergence rate of the Gauss-Newton
k(xi,x;)Ty, ;. The 2 x 2 linear transformationT,, . (-) method, we find that 15 iterations are more than sufficient for
parallel transports a tangent vector along the great cfrole  our purposes. We also perform a rotational registratiomat t
T,,5% to T,,S* k(z;,z;) is a non-negative scalar functionbeginning of each multi-scale level via a sectioned seafch o
uniquely determined by the choice of the energetic norrthe three Euler angles.

Typically, k(x;, z;) monotonically decreases as a function of Empirically, we find the computation time of the Spher-
the distance between; andx;. The proof of the uniquenessical Demons algorithm is roughly divided equally among
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Data: A fixed spherical imagd’ and moving spherical imag&/.
Result DiffeomorphismI’ so thatM oI is “close” to F.
SetT? = identity transformation (or some a-priori transformatierg., from a previous registration)
repeat
Step 1.Given T,
foreach vertexn do
| Computeﬁff) using Eg. (28).
end
Computel'™® = exp(#) using “scaling and squaring”.

Step 2.GivenT'(®),
foreach vertexn do

| Computeﬂf) using Eg. (48) implemented via iterative smoothing.
end

until convergence

Algorithm 2. Spherical Demons Algorithm

the four components: registration by rotation, computing t algorithm. In the experiments that follow, we seto? =

Gauss-Newton update, performing “scaling and squaring” aand set their values such that the largest vector of the apdat

smoothing the vector field. velocity field is roughly two times the edge lengths of the
In practice, we work with spheres that are normalized tmesh. The number of iterations and the weighbxp(—%)

be of radius 100, because we find that at ic7, the averadgtermine the degree of smoothing. We-get 1 and explore a

edge length ol mm corresponds to that of the original corticatange of smoothing iterations in the following experiments.

surface meshes. This allows for meaningful interpretatibn

distances on the sphere. This requires slight modification 8. Parcellation of In-Vivo Cortical Surfaces

the equations presented previously to keep track of theisadi

of_r_r;]e ssph;:‘re_. D loorith dh ._cortical parcellation. Automatic labeling of cortical bra
e sSpherical Demons algorithm presented nere registg[pe, oq js important for identifying regions of interefis

Sa:c_rs (zjfgpherical images. Todincorpocrjatz?jpr_ob_abil@sﬂlhisa clinical, functional and structural studies [20], [52]. deat
efined by a mean image and a standard deviation Image, g, 1< have ranged from the identification of sulcal/gyidge

modify the Demons objective function in Eq. (3), as explx—iineIineS [56], [62] to the segmentation of sulcal/gyral bagj,

in Appe_ndix C. This requi_res a chpice of wqrping the subjeﬁB]’ [38], [41], [42], [51], [52], [67]. Similar to these for
or warping the atlas. We find that interpolating the atlaseg'vstudies, we are interested in parcellation of the entiréiaair

slightly better results, compared with interpolating thejsct. surface meshes, where each vertex is assigned a label.

However, interpolating the subject results in a runtimerafer We consider a set 089 left and right cortical surface

3 minutes, Wh”e the runtime for m'_terpolatmg the atlas ig,qe|s extracted from in-vivo MRI [19]. Each surface is
less than 5 minutes. In the next section, we report resutts

: . herically parameterized and represented as a spheniagéi
interpolating the atlas. with geometric features at each vertex: mean curvature of
the cortical surfaces, mean curvature of the inflated artic
IV. EXPERIMENTS surfaces and average convexity of the cortical surface&hwh
We use two sets of experiments to evaluate the performamoeaghly corresponds to sulcal depth [26]. These features
of the Spherical Demons algorithm by comparing it to thare intrinsic and thus independent of the parameterization
widely used and freely available FreeSurfer [27] softwaref the surface. The tools used for segmentation [19] and
The FreeSurfer registration algorithm uses the same sityila spherical parameterization [26] are freely available [Bijth
measure as Demons, but explicitly penalizes for metric ah@mispheres of each subject were manually parcellated by a
areal distortion. As we will show, even though the Sphericakuroanatomist into 35 labels, corresponding to the mdai su
Demons algorithm does not specifically take into accouahd gyri, enumerated in Table II.
the original metric properties of the cortical surface, it s We co-register all 39 spherical images of cortical geometry
achieve comparable if not better registration accuracy thaith Spherical Demons by iteratively building an atlas and
FreeSurfer. Furthermore, FreeSurfer runtime is more thman r@egistering the surfaces to the atlas. The atlas consists of
hour while Spherical Demons runtime is less than 5 minutdhe mean and variance of cortical geometry represented by
There are four parameters in the algorithino2 and e the surface features described above. We then performd4-fol
appear in Eq.(28). Larger values bfo2 ande decrease the cross-validation of the parcellation of the co-registesedtical
size of the update taken in Step 1 of the Spherical Demosisifaces. In each iteration of cross-validation, we leaue o

We validate Spherical Demons in the context of automatic
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TABLE I
LIST OF PARCELLATION STRUCTURES

1. Sylvian Fissure / Unknown 2. Bank of the Superior Temp&ualcus 3. Caudal Anterior Cingulate
4. Caudal Middle Frontal Gyrus 5. Corpus Callosum 6. Cuneus

7. Entorhinal 8. Fusiform Gyrus 9. Inferior Parietal Comple|
10. Inferior Temporal Gyrus 11. Isthmus Cingulate 12. Laltéccipital

13. Lateral Orbito Frontal 14. Lingual 15. Medial Orbito Rtal

16. Middle Temporal Gyrus 17. Parahippocampal 18. Pareadent

19. Parsopercularis 20. Parsorbitalis 21. Parstrianigular

22. Peri-calcarine 23. Post-central Gyrus 24. Posteriog@ate

25. Pre-central Gyrus 26. Pre-cuneus 27. Rostral Anteringulate
28. Rostral Middle Frontal 29. Superior Frontal Gyrus 30p&ior Parietal Complex|
31. Superior Temporal Gyrus 32. Supramarginal 33. Froné P

34. Temporal Pole 35. Transverse Temporal

ten subjects and use the remainder of the subjects to trai
classifier [20], [28] that predicts the labels based on iocat
and geometric features. We then apply the classifier to t
hold-out set of ten subjects. We perform each iteration wi
a different hold-out set, i.e., subjects 1-10, 11-20, 21a86
31-39.

As mentioned previously, increasing the number of itera- (a) Lateral View
tions of smoothing results in smoother warps. As discussgs
in [67], the choice of the tradeoff between the similarityane
sure and regularization is important for segmentation iaayu
Estimating the optimal registration regularization trafflés
an active area of research [1], [18], [48], [65], [67], [68]t
we do not deal with in this paper. Here, we simply repei
the above experiments usinf, 8,10,12,14} iterations of (b) Medial View
smoothing. For brevity, we will focus the discussion on gsin_. o

0 iterations of smoothina and comment on results obtaingﬁ; 3. Percentage Improvement over FreeSurft_er. Yelloworegindicate
1 - ! 9 ] ctures scoring better than FreeSurfer. Blue regionggpond to decrease
with the other levels of smoothing. in accuracy. Note that none of these blue regions are #tatigtsignificant.

We repeat the above procedure of performing co-registratiBhe boundaries between parcellation regions are set toistetddown to

. . ) . A Improve visualization of the regions.
and cross-validation with the FreeSurfer registrationoalg
rithm [27] using the default FreeSurfer settings. Once ragai

we use the same features a}nd parcellation algorithm [2_8], [2of smoothing is usedp(= 0.06). All results we report in the
As before, the atlas consists of the mean and variance r@hainder of this section use 10 iterations of smoothing.
cortical geometry. We analyze the segmentation accuracy separately for each

To compare the cortical parcellation results, we compue tBtructure. To compare Spherical Demons with FreeSurfer, we
average Dice measure, defined as the ratio of cortical ®irfagferform a one-sided paired-sampled t-test treating edujesu
area with correct labels to the total surface area averaggglan independent sample and correct for multiple compeziso
over the test set. Because the average Dice can be misleaq,igligg a False Discovery Rate (FDR) @b5 [10]. On the left
by suppressing small structures, we also compute the DigRyht) hemisphere, the segmentations of 16 (8) structares
measure for each structure. statistically significantly improved by Spherical Demonishw

On the left hemisphere, FreeSurfer achieves an average Digspect to FreeSurfer, while no structure is significantyse.
of 88.9, while Spherical Demons achieves an average Dice ofFig.3 shows the percentage improvement of individual
89.6 with 10 iterations of smoothing. While the improvemengtructures over FreeSurfer. Fig. 4 displays the average [pac
is not big, the difference is statistically significant fooae- structure for FreeSurfer and Spherical Demolt iferations
sided t-test with the Dice measure of each subject treatad assf smoothing) for the left and right hemispheres. Standard
independent samplg & 2 x 10~°). Furthermore, the overall errors of the mean are displayed as red bars. The numbering
Dice is statistically significantly better than FreeSufiarall  of the structures correspond to Table 1. Parcellation inpr
levels of smoothing we considered, with the best overal diggents suggest that our registration is at least as accusate a
achieved with 12 iterations of smoothing. FreeSurfer.

On the right hemisphere, FreeSurfer obtains a Dice of The structures with the worst Dice are the frontal pole and
88.8 and Spherical Demons achievg®.1 with 10 iterations entorhinal cortex. These structures are small and relgtive
of smoothing. Here, the improvement is smaller, but stifjoorly defined by the underlying cortical geometry. For ex-
statistically significantf = 0.01). Furthermore, the overall ample, the entorhinal cortex is partially defined by the ahin
dice is statistically significantly better than FreeSuffarall sulcus, a tiny sulcus that is only visible on the pial surface
levels of smoothing we considered, except when 6 iteratiombe frontal pole is defined by the surrounding structurdbgra

I{)OI\)-PO
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Fig. 4. (a) Dice measure for each structure in the left hengisp (b) Dice measure for each structure in the right hemigp Black columns correspond to
FreeSurfer. White columns correspond to Spherical Dentomglicates structures where Spherical Demons shows titatlg significant improvement over
FreeSurfer (FDR = 0.05). No structure exhibit significantrdase in accuracy.

than by the underlying cortical geometry. Brodmann labels mapped to the corresponding MRI volume.
Specifically, we work with postmortem histological images

ten brains created using the techniques described in [54]

B. Brodmann Area Localization on Ex-vivo Cortical Surface f _ . ; :
i _ _ 1]. The histological sections were aligned to postmortem
Brodmann areas are cyto-architectonically defined pacel\ R \ith nonlinear warps to build a 3D histological volume.

tions of the cerebral cortex [13]. They can be observed §iouThese volumes were segmented to separate white matter from
histology and more recently, through ex-vivo high resoluti oher tissue classes, and the segmentation was used to gen-
MRI [6]. Unfortunately, much of the cytoarchitectonics 6@ ¢4t topologically correct and geometrically accuratdese

be observed with current in-vivo imaging. Neverthelesssimogpresentations of the cerebral cortex using FreeSur@ [1
studies today report their functional findings with respegtye eight manually labeled Brodmann area maps (areas 2,
to Brodmann areas, usually estimated by visual comparisgg, 4p, 6, 44, 45, 17 and 18) were sampled onto the surface
of cortical folds with Brodmann’s original drawings withibu representations of each hemisphere, and errors in thislismmp
quantitative analysis of local accuracy. By combiningdisy \ere manually corrected (e.g., when a label was erroneously
and MRI, recent methods for creating probabilistic Brodman,ssigned to both banks of a sulcus). A morphological close
area maps in the Talairach and Colin27 normalized spaggs then performed on each label to remove small holes. We

promise a more principled approach [2], [24], [54], [SSILI7  note that Brodmann areas 4a, 4p and 6 were mapped in only
In this experiment, we consider a data set that contains
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Fig. 5. Brodmann areas 17 (V1), 18 (V2), 2, 4a, 4p, 6, 44 andhve on inflated cortical surfaces of two subjects. Notioe vhriability of BA44 and
BA45 with respect to the underlying folding pattern.

use either Spherical Demons or FreeSurfer for registration
We refer to the co-registration using Spherical Demons and
FreeSurfer as SD10 and FS10 respectively (10 refers to the
number of subjects in the study, not the number of smoothing
iterations).

The second strategy involves registering the 10 ex-vivo
surfaces to the in-vivo “Buckner4Q” atlas, constructedrfro
In-vivo Surface Ex-vivo Surface 40 in-vivo subjects, that is distributed with the FreeSurfe

Fig. 6. Left: example in-vivo surface used in the parcedlatstudy. Right: software. Once agaln,’ We, use either Spherlcal Demons or

example ex-vivo surface used in the Brodmann area study. FreeSurfer for the reg|strat|0n. We refer to the CO—regtEIn
using Spherical Demons and FreeSurfer as SD40 and FS40
respectively.

) ) ) ) To measure the quality of alignment of the Brodmann areas
eight of the ten subjects. Fig.5 shows these eight Brodmagfier cortical registration, we use an adaptation of theifiesti
areas on the resulting cortical representations for twgestdh 5 sdorff distance [21]. For each pair of registered subjec
Finally, we map the folding patterns and the Brodmann argg project each Brodmann area from the first subject onto the
labels onto a spherical coordinate system [27]. second subject and compute the mean distance between the

It has been shown that nonlinear surface registration géundaries, measured on the original cortical surface ef th
cortical folds can significantly improve Brodmann area tMer second subject. We obtain a second measurement by prgjectin
across different subjects [25], [68] compared with volumeet each Brodmann area from the second subject onto the first
registration. Registering the ex-vivo surfaces is moréalit  subject. Since we have 10 surfaces, we get 90 ordered pairs
than in-vivo surfaces because the reconstructed volunes ahd 90 alignment errors for each Brodmann area.
extremely noisy due to the distortions introduced by the Table IIl reports the mean alignment errors for each Brod-
histology, resulting in noisy geometric features, as sh@wn mann area and for each method. The lowest errors for each
Fig. 6. Brodmann area are shown bold. We see that for almost

We consider two strategies for aligning Brodmann areasll Brodmann areas, the best alignment come from SD10 or
For both strategies, we will use 10 iterations of smoothir§D40. Similarly, Fig. 7 shows the median alignment error for
for Spherical Demons as it proved reasonable in the previoesch Brodmann area. The error bars indicate the lower and
set of experiments. The first strategy involves co-registier upper quartile alignment errors.
the 10 ex-vivo surfaces using cortical geometry by repdated We use permutation testing to evaluate statistical signifi-
building an atlas and registering the surfaces to the atlagnce of the results. We cannot use the t-test because the 90
similar to the previous experiment on cortical parcellatd/e alignment errors are correlated - since the subjects are co-
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TABLE Il
MEAN ALIGNMENT ERRORS OFBRODMANN AREAS IN mm FOR THE FOUR REGISTRATION METHODSLOWEST ERRORS ARE SHOWN IOLD. SD
REFERS TOSPHERICALDEMONS; FSREFERS TOFREESURFER.

Right Hemisphere Left Hemisphere
V1 | BAda | BAdp | BA2 | V2 | BA6 | BA44 | BA45 V1 | BAda | BAdp | BA2 | V2 | BA6 | BA44 | BA45
FS10 | 3.8 4.4 3.8 6.3 4.6 7.0 7.4 6.8 3.8 3.8 3.1 59 | 40 6.5 115 9.9
FS40| 29| 3.8 3.6 56 | 42| 7.1 7.6 6.9 27| 3.6 2.9 57 | 36| 6.3 105 9.2
SD10 | 3.1| 33 3.3 54 | 37| 6.4 7.7 6.4 32| 34 2.8 55 | 35| 6.4 10.4 8.6
SD40 | 3.0 3.4 3.2 55 3.8 6.4 6.8 6.3 2.8 3.8 3.7 5.6 3.4 6.6 10.7 9.0

ElFs10 ElFs10
I Fs40 I Fs40
[sbiq [sbiq
121 sp4g 121Jsb4g

Modified Hausdorff Distance
Modified Hausdorff Distance

V1# BAda#* BAdp BA2  V2# BAG# BA44* BA4SH V1# BAda#* BAdp BA2 V2  BAG# BA44 BA4SH
(a) Right Hemisphere (b) Left Hemisphere

Fig. 7. Median alignment errors of Brodmann areasrim for the four registration methods. The error bars indichte upper and lower quartile alignment
errors. “#” indicates that the median errors of SD10 ardssizdlly lower than those of FS10 (FDR = 0.05). “*" indicat&D40 outperforms FS40. For no
Brodmann area does FreeSurfer outperform Spherical Demons

registered together, good alignment between subjects 1 drte resulting algorithm is very similar to the fast imple-
2 and between subjects 2 and 3 necessarily implies a highentation [12] of Christensen’s well-known fluid regisioat
likelihood of good alignment between subjects 1 and 3.  algorithm [16], except that Christensen’s algorithm does n
The tests show that SD10 is better than FS10 and SDamploy a higher-order update method like Gauss-Newon. The
is slightly better than FS40. SD10 and SD40 are comparabfgherical Demons algorithm can similarly incorporate edflui
Compared with FS10, SD10 improves the median alignmeprior by smoothing the velocity field® in Eq.(28) before
errors of 5 (4) Brodmann areas on the right (left) hemisphegcemputing the exponential map to obtain the displacement
(FDR = 0.05) and no structure gets worse. Compared withpdatesexp(7(*)).
FS40, SD40 statistically improves the alignment of 2 (1) An alternative interpretation of the smoothing implementa
Brodmann areas on the right (left) hemisphere (FDR.G5)  tion of Christensen’s algorithm comes from choosing a diffe
with no structure getting worse. Permutation tests on thet metric for computing the gradient from the derivativels [
mean alignment errors show similar results, except thaOFS#he choice of the metric also arises in our problem when
performs better than SD40 for BA4p on the left hemispheg@mputing the gradient as discussed in Appendix A-C. This
when using the mean statistic. These results suggest thg§gests that the Spherical Demons algorithm can incorpo-
the Spherical Demons algorithm is at least as accurate [age a fluid prior by modifying the Gauss-Newton update
FreeSurfer in aligning cortical folds and Brodmann areas. step Eq. (28). Unfortunately, this process introduces togp
among the vertices resulting in the loss of the speed-up ad-
vantage of Spherical Demons (see for example the derivation
of [34]). The exploration of the performance of the differen

The Demons algorithms [57], [66] discussed in Section fluid prior implementations is outside the scope of this pape
and the Spherical Demons algorithm proposed in this papeBecause the tools of differential geometry are general, the
use a regularization term that modulates the final deform@pherical Demons algorithm can be in principle extended to
tion. Motivated by [12], [14], the Diffeomorphic Demonsarbitrary manifolds, besides the sphere. One challengesais t
algorithm [66] admits a fluid prior on the velocity fields.the definition of coordinate charts for an arbitrary mardfol
This involves smoothing the velocity field updatesfore is more difficult than that for the sphere. Approaches of
computing the exponential map to obtain the displacemautilizing the embedding space [15] or the intrinsic projssrt
field updates to be composed with the current transformatiaf manifolds [40] are promising avenues of future work.

V. DISCUSSION
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VI. CONCLUSION the Jacobian of the deformatioh(*). We also compute the

In this paper, we presented the fast Spherical Demogkadients of the demons cost function using the derivatives
algorithm for registering spherical images. We showed thg@mputed in Eq.(20) and Eq.(21), assuming theinner
the two-step optimization of the Demons algorithm can algyoduct space for vector fields and the canonical metric.
be applied on the sphere. By utilizing the one parameter
subgroups of diffeomorphims, the resulting deformation i&. Computing Spatial Gradient g/ o T(*)

invertible. We tested the algorithm extensively in two eliéint In this appendix, we discuss the computationnef, the

applications and showed that the accuracy of the aIgoritngatim gradient of the warped moving imagéo T® at the

compares favorably with the widely used FreeSurfer regiﬁbint 2,,. We can think ofM o Y(-) as an imageVl, 2 M o

tration a_lgorithm [27] while offering more than one ordeR defined on the mesh verticds:,, }. This image is made

of magnitude speedup. Both matlab and ITK versions of theyyinyous by the choice of an interpolation method. In this

Spherical Demons algorithm are publicly availdble __ work, we assume that we are working with a triangular mesh.
A clear future challenge is to take into account the origingi, evaluateM, at a pointz € S2, we first find the triangle

metric properties of the cortical surface in the registmti \ha; contains the intersection between the vector reptiegen
process, as demonstrated in previously proposed re@stragne noints (i.e., the vector between the center and the point

methods [27], [59]. . _ x of the sphere) and the mesh. The image value & then
We note that while fast algorithms are useful for deployingjyen by the barycentric interpolation of the image values a

the developed tool on large datasets, they can further allgy intersection point. Mathematically, we can write
for complex applications that were previously computaditn

intractable. For example, we have incorporated the ideas M;(z) = I(p(x)), (33)
behind Spherical Demons into a meta-registration framkw%
that learns registration cost functions which are optinual f
specific applications [68].

herep(x) is the intersection point anH-) is the barycentric
interpolation. Letp, ps, p3 denote the vertices of the triangle
containingp(z) and# denote the3 x 1 normal vector to the
triangle. Sincep(x) = ax for somea and{(p(z) —p1,7) =0,
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is the derivative of the triangle ared;. For
example,V,A;(p) is a1 x 3 vector in the plane of the
triangle ppops, perpendicular and pointing to the edgeps,
APPENDIXA with magnitude half the length gf,ps. Combining Eq. (36)
STEP 1 GRADIENT DERIVATION and Eq. (37) gives the spatial gradient of the warped moving
In this appendix, we provide details on the computation dhage.
the spatial gradient of the warped moving image> T and A complication arises when: corresponds to one of the
mesh vertices, since the spatial gradient is not defined in

The matlab code was used for this paper. Thghis case. The same problem arises in Euclidean space with
ITK code is still preliminary. Please check website

http://sites.google.com/site/yeoyeo02/software/spaklemonsrelease for ”nea_r ?nterpolation. and the spgtial gradient is typicaleir!ed
updates. via finite central difference. It is unclear what the equavsl
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definition on a mesh is. Here, for a mesh vertex we of metric. Since the derivative of,,(Z) with respect toz} is

compute the spatial gradient for each of the surroundiagl x 2 vector —ml E,é(k,n) (Eq.(20)), we get

triangles and linearly combine the spatial gradients using o T

weights corresponding to the areas of the triangles. dfn(Z) = — 1ty B 2. (43)
Recall that the gradier¥,, f,, of f,,(Z) is defined to be a

B. Computing the Jacobian of Deformatiaf®) tangent vector field such thay,(z) = (Vi fn,Z), for any

Z = {Z;}. The gradient is therefordependenbn the choice

In this appendix, we discuss the computationf, the of the inner product. From Eq. (42) and Eg. (43), we can write

Jacobian of the deformatich® at z,,. We can think off ()

as a vector function o5 that maps each mesh vertéx,, } — L EnZ, = dfn(2) (44)
to a new point on the sphere. This vector image is made = (Vi fn, 2, (45)
continuous by the choice of an interpolation method. We use N 2

the same interpolation as in Appendix A-A, except we need to _ Z (Vi fu(20): Z) g - (46)

normalize the barycentric interpolation so that the intéafed
point is constrained to be on the sphere:

k=1

Therefore, the gradienv,, f,, can be written as &N x 1
T (z) = I(p(x)) (38) vector consisting ofV blocks of2 x 1 vectors, where all the
blocks are zeros, except theth block is equal to- ELi,,.

Similarly, we denote the gradient gf,(2) asV;,g,(j) for
AL (P) Y@ (py) + Ax(p) YD (po) + As(p) Y@ (ps) j = 1,2,3 corresponding to the 3 output componentgofz).
23 The derivative ofVg, with respect toz; is a 3 x 2 matrix

(39) GZSIE.6(k,n) £ [@in Gon dsn)"6(k,n) (EQ.(21)), where
al &6(k,n) is al x 2 vector corresponding to the derivative

n

The Jacobian is computed via chain rule, just like in thgf the j-th component ofg,, with respect toz;,. Using the

wherep(x) is the same as in the previous section and

I(p) = AL ()Y (p1) + Aa(p) Y@ (ps) + As(p) T O

previous section. same derivation as before, we can show f¥atg,,(j) can be
written as a2/N x 1 vector consisting ofV blocks of2 x 1
C. Computing the Gradients from the Derivatives vectors, where all the blocks are zeros, exceptrtith block

In this appendix, we seek to compute the gradients &equal tod;p.
fn(2) & F(z,) — M o {Y® o exp({E,Z,})}(z,) and
gn(2) 2 T+ G2{TO 0 exp({E,2,})}(zn), assuming a APPENDIXB
Iy inner product for vector fields and the canonical meRic APPROXIMATING SPLINE INTERPOLATION WITH I TERATIVE

for S2. These assumptions imply that the inner product of two SMOOTHING
vector fieldsz! = {z}} and 22 = {22} are given by In this appendix, we demonstrate empirically that iteeativ
o » Y smoothing provides a good approximation of spherical wecto
(25,201, = {EkZc ) {ErZi i (40) spline interpolation for a relatively uniform distributioof
N points corresponding to those of the subdivided icosahlredro
= (ExZ, BxZ)r (41) meshes used in this work. Once again, we work with spheres

k=1 that are normalized to be of radius 100.
N P Recall that we seekY,} = {E,Y,}, which is a smooth
- Z<Zk’ Zk) Ry (42)  approximation of the input vector fiell’,} = {E.I'n}. The
k=1 solution of the spherical vector spline interpolation peob is
where given in Eq.(32) as
« Eq.(40) follows from the equivalence of the tangent T -1
bundlesTR? and 7'S? induced by the coordinate charts T=K (U_gijw + K) I, (47)
{Wn}. T

» EQ.(41) is the result of thé, assumption that the innerwhereK is a2N x 2N matrix consisting ofV x N blocks of
product of vector fields is given by the sum of the inne2 x 2 matrices: the(i, j) block corresponds té(z;, )T, 4,
products of individual vectors. T, =, is the parallel transport operator fromto z;. k(z;, z;)

» Because we assume the canonical metric, each termisra non-negative scalar function uniquely determined lgy th
the inner product in Eq.(41) is simply the usual innethoice of the energetic norm that monotonically decreases a
product between x 1 vectorsE;z} and B Z7. Since the a function of the distance between andz;.
columns ofE}, are orthonormal with respect to the usual In constrast, the iterative smoothing approximation we pro
inner product and using linearity of the inner producpose can be formalized as follows:

Eqg. (41) implies Eq. (42), i.e., the inner prodyet, 72),,

o nme
can be computed by the sum of the usual inner product T=(K)"T (48)
between2 x 1 tangent vectors), and 2. wherem is a positive integer anfl”’ is a2 /N x 2N matrix con-

Let df,,(Z) be the directional derivative of,, for any Z = sisting of N x V blocks 0f2 x 2 matrices: th€, j) block corre-

{Z,}. The directional derivative isndependenbf the choice sponds to\(z;, z;)T;, ., if x; andz; are neighboring vertices
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and is a zero matrix otherwise\(z;,z;) = L

THNTexp (=) where|| - ||2 is the I matrix operator norm. The difference

metric Eq. (52) measures tmaximumi, difference between
smoothed vector fields obtained from iterative smoothing an
spherical vector spline interpolation f@any possible input
vector field {T',} of unit Iy norm, i.e., Y, [T,]% = 1. We

A. Reverse Engineering the Kernel note thatlfc(xi, x;) can be in principle estimated by minimizing

We now demonstrate empirically that for a range of valudzd- (52) instead of the proposed 2-stage process. Howéneer, t
of , iterationsm and the relatively uniform distribution of OPtimization is difficult since evaluating the cost functitself
points corresponding to those of the subdivided icosatredrgquires finding the largest singular value of a large, rarse
mesh, there exist kernelgz;, =;) that are well approximated matrix. _ _ _ .
by iterative smoothing. Technically, the resultiigz;,z;)  Fig-9 displays the difference metric we obtained with
might not correspond to a true choice of the energetic norfifferent values ofy and iterationsn for meshes ic2, ic3, ic4
However, in practice, this does not appear to be a problem@nd ic5. Each of the meshes is obtained from recursively sub-

More specifically, given a configuration of mesh pointgividing a lower resolutiop .m_esh: ic? indicates that the Imgs
iterations m and value ofy, we seekk(z;,z;), such that Was obtained from subdividing an icosahedron mesh twice.
The number of vertices quadruples with each subdivision, so
that ic5 corresponds to 10,242 vertices.

We conclude from the figure that the differences between
the two smoothing methods are relatively small and increase

exp(— o
and A(z;,z;) = ﬁxpﬁ%) for i # j, where

number of neighboring vertices af;.

N;| is the

T -1
K (Z—;IQNXQN + K) is “close” to (K’)™. We propose a
T ~
two-stage estimation of(z;, ;):
1) In the first stage, we seek*(x;,z;) that is not con-

strained to be a function of the distance betwegand
x;, such that

with mesh resolution. As discussed in the next section, we ru
Spherical Demons on different mesh resolutions, includiiig
Unfortunately, because of the large non-sparse matricesave

-1
K (ﬁ]mxm + K) —(K")™ ~0 (49) dealing with, we were only able to compute the differences up
o7 to ic5. Computing the difference metric for ic5 took an emtir
Rearranging the terms, we get week on a machine with 128GB of RAM. However, the plots
9 in Fig. 9 indicate that the differences appear to have camagr
(Inson — (K™ (K" 22 ~ K (50) by ic5.
or To better understand the incurred differences, Fig.10 il-
To make the %" concrete, we optimize for lustrates the outputs and differences of the two smoothing
52 Mmethods for different inputs on ic4. The first row illustsite
k* = argmin || K — (Ianxan — (K’)m)*l (K’)mo_g an input vector field which is zero everywhere except for
k 9Tllr a single tangent vector of unit norm. The results of spline

(51) interpolation and iterative smoothing correspond to otu-in

where|| - || is the Frobenius norm. ition that smoothing a single tangent vector propagategaiain
The cost function Eq. (51) can be optimized componenectors of smaller magnitudes to the surronding areas.Wbe t
twise, i.e., we can solve fok*(z;,z;) for each pair methods also produce almost identical results as showneby th
x;,x;. Fory = 1, m = 10 and a subdivided icosahedrorclean difference image in the fourth column.
mesh with 642 vertices, we plot the resultihty(z;, =) The second row of Fig.10 demonstrates the worst unit
as a function of the geodesic distance betweermnd norm input vector field as measured by the difference metric
x; in Fig. 8. Eq. (52). This worst unit norm input vector field corresponds
In the second stage, we perform a least-squares téit the largest eigenvector in Eq.(52). The pattern of large
of a b-spline function to the estimateld (z;,z;) to differences correspond to the original 12 vertices of the
obtain the final estimate oﬁ‘:(a:i,:z:j). Fig. 8 illustrates uniform icosahedron mesh. These original 12 vertices ae th
an example kerneﬁ:(xi,xj) we obtain (c.f., the kernel only vertices in the subdivided icosahedron meshes with five
illustrated in [31]). We note that an alternative to binstead of six neighbors, as shown by the pentagon pattern.
spline interpolation is to fit the coefficients of the generdihe fact that these 12 vertices are local maxima of diffeesnc
kernel function suggested in Appendix A of [31]. Thissuggest that these vertices are treated differently by wioe t
will guarantee that the estimated kernel corresponds $§100thing techniques.
an energetic norm. We leave exploring this direction to The last row of Fig. 10 demonstrates an input vector field
future work. that represents the deformation of an actual registrateEm p
formed in Section IV. The norm of the input vector field is
700 times that in the first two rows, but the discrepancies
between spline interpolation and iterative smoothing ass |
than expected. The differences 60% of the vectors are
less tharD.2mm, with larger differences in the neighborhoods
of the 12 vertices identified previously. Since we conclude
(52) previously that the difference metric appears to have agae
2 after ic4, the discrepancies are likely to be acceptable?t i

2)

B. Evaluating Approximation

We now investigate the quality of the estimzii(eci,xj) by
computing:
2

UT -t
HK <—§I2Nx2zv + K) — (K™
o1
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0.4
03 &
x 0.2

0.1

0 108ist (Xi’ %(J(;O 300

Fig. 8. Approximating the kernel functiok(z;, ;). The scattered points corresponds to the estimatidef 0f;, =) via Eq. (51). The red curve corresponds
to fitting the scattered points so thefz;, x;) is strictly a function of the geodesic distance betwegrand«;.

008! \—-—ic2—-—ic3—-—ic4 icS\ 0.08
5 0.06¥ 5 0.06/
5 G \\\_
0.04} 0.04¢
‘\\~ \/’.——n———“—“—“—"
) ‘ ‘ ; 0.02 ; ‘
0.02 10 15 20 0 1 2
iterations m Y

Fig. 9. Difference metric as a function of the number of itieres m and value ofy.

whose mesh resultion ismm. a probabilistic atlas, we now reformulate the objectivecfun
We should emphasize that the discrepancies between sptioa. Consider the following Maximum-A-Posteriori objaet

interpolation and iterative smoothing do not necessanigly function:

registration errors. The differences only indicate theiatgns (T*,1%)

of the deformations from true local optima of the Demons reg- ’

istration cost function Eq. (3) assuming the estimated éern = al"%HI{aXIOgP(Fa T|F, M) (53)

Approximating smoothing kernels by iterative smoothingis '

active area of research in medical imaging [17], [32]. Feitur ar%?aXIng(F’M|F’T)p(F|T)p(T) (54)

work would involve understanding the interaction between 7

. . ) = I F,MoT|l")+1 ) +1 T).
the number of smoothing iterations and the choice of the ar%flf%ax ogp(F, M o T|L) +log p(I'|Y) + log p(T)

WeightSeXp(—%) on the quality of the spherical registration. (55)
APPENDIXC Assuming a Gaussian noise model, we define
ATLAS-BASED SPHERICAL DEMONS p(F,MoT)
In this section, we demonstrate how an atlas consisting of N 1 (F(2n) — M o T(z,))?
a mean image and a standard deviation image can be incor- = —— < xXpP|— = = )
g g 11 V2r (T, 2n)) p( (V3o (T, 2n))? )

porated into the Spherical Demons algorithm. The standard  n=1
deviation image replace¥ in Eq.(3). We first discuss a (56)
probabilistic interpretation of the Demons objective fiioe 1 1 M. .

and its relationship to atlases. We then discuss the opitiniz ~~ 1ogP(I'|T) = Z(07) &P <—; ST, - Fn||2> , (57)
of the resulting probabilistic objective function. * 7 n=1

1 1
T)= ——— ——RegT) |, 58
A. Probabilistic Demons Objective Function p(Y) Z(o%) P ( o2, g )) (58)

The Demons objective function reviewed in Section Il isvhere RedY) is defined via the energetic norm as discussed
defined for the pairwise registration of images. To incogp@r in Section IlI-C and for reasons that will soon be clear, we
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xle-3

single input vector

worst vector field

e
\\&\\\\\\\“

real vector field

(a) Input (b) Spline Interpolation (c) Iterative Smoothing (d) Difference (e)l2 norm

Fig. 10. Comparison of spline interpolation and iterativeosthing (n = 10, = 1). (a) Input vector field (b) Spline Interpolation Output (trative
Smoothing Output (d) Difference between the second and totumns (e)2 norm of the difference. The first row uses an input vector fighdch is zero
everywhere except for a single tangent vector of unit norato8d row illustrates the worst unit norm input as measusethb difference metric Eq. (52).
This worst unit norm input vector field corresponds to thegédat eigenvector in Eq. (52). The third row uses a vector fieloh an actual warped image from
the experimental section. Note that the input vector fielthafirst two rows are scaled down for the purpose of displéne Vector fields in the entire third
row are of the same scale, but are scaled down relative torstevio rows, since the vector field from the warped image ss&ntially larger in magnitude
than the unit norm inputs of the first two rows. This explaihe substantially larger difference metric on the third row.

are being purposefully agnostic about the formogt’, z,, ). However, recent work [1], [53] suggests that treating the
The obijective function in Eq. (55) becomes atlas as a moving image might be more correct theoretically.
This involves setting the moving imagk/ to be the mean
2n) = MoT(z,))? image. In this caseg(T',z,) = o(I'(x,)) is a function of
(V20(T, z,,))? I' and we must includéog(c(I'(z,))) in the optimization.
A . 1 N We performed experiments for both choices and found the
+ = Z |, —Tnll> + = RegY) + Z logo(T',z,) , results from interpolating the atlas, i.e., treating it as@ving
9z 21 or n=1 image, to be only slightly better than interpolating thejeab
(59)  However, interpolating the subject results in a faster @ilym,
which is the instantiation of the Demons objective functiowhose computational time is less than 3 minutes. We repert th
Eq. (3), except for the extra terﬁfj: log (T, z,,). Note that results of interpolating the atlas in the experimentalisect
we have omitted the partition functiod&(c2) and Z(c%.) be-
causer, andor are constant with respect to the deformations
I" and Y. In this probabilistic interpretation, the two regular-
ization termsp(T'|T) andp(Y) act as a hierarchical prior on
T", with the hidden transformatioif as a hyperparameter.
As beforegs (T, z,,) is the standard deviation of the intensity
at vertexn. Given a set of co-registered images, we can create
an atlas by computing the mean intensity and standard devia-
tion at each vertex. To incorporate the atlas, we need to make =~ = i
the choice of treating the atlas as the fixed or moving image: OPtimization of Atlas-Based Spherical Demons
If we treat the atlas as the fixed image, then werséb be the
mean image and to be the standard deviation. In this case,
we do not need to interpolate the mean or standard deviation
image. Consequently,(T', z,,) = o(x,,) andlogo(T', z,) can We now discuss the optimization in Eq. (59). Note that the
be omitted from the optimization. The registration becomastroduction of the new terr’rj:fj:1 logo(T, x,) only affects
identical to the Spherical Demons algorithm for two imagesStep 1 of the Spherical Demons algorithm. By parameterizing

N
: (F(
T*,I'") = argmin
(17, I") = axgm ;
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'Y =T® oexp({E,Z,}), we get to log is negative, which can introduce instability in the Gauss-
{q(t)} Newton update. Consequently, we drop the last term, rasulti
Zn in:
N -
= argminz (E(n) = Mo {X 0 exp({EnZ})}(xn))” >f ~ 2 <8f"1)2 2 <8f"2)2 . (66)
% (V20 0 {Y®) o exp({Enzn}) }(zn))” oy 0% 0%

Note that the resulting update Eg. (62) is always in the direc
tion of descent since the estimated second derivative igysw
positive. Theoretically, it is necessary to do a line seaflong

the Gauss-Newton update direction to ensure convergemce. |

n=1

1 2

—2 T + G2{YD 0 exp({Enzn})} (@)
N

+ Z 0go o {TW o exp({Enz,})}H(wn) (60) practice, we find that the objective function decreasealbli
n=1
N

for each full Newton’s step.

[21(2) + [22(2) + log fas(2). (61) APPENDIX D
n=1 NUMERICS OFDIFFEOMORPHISM

The second term is the same as before, while the first termVhile v and @, () = exp(v)(z) are technically defined
has become more complicated. Using the product rule af@ the entire continuous image domain, in practicend u

the techniques described in Appendix A, we can find tide represented by vector fields defined on a discrete set of
first derivatives of the first and second terms and estimdi€ints in the image, such as at each pixel [57], [66] or cdntro
their second derivatives using the Gauss-Newton meth®®ints [4], [9] or in our case, vertices of a spherical mesh.
The difficulty lies in the third term, which is not quadratid-rom the theories of ODEs [11], we know that the integral
and is even strictly concave, so we have to make furthgirves or trajectories(t) = ®;,(-) of a velocity fieldv(z, ?)
approximations. exist and are unique if(z, t) is Lipschitz continuous in: and

Consider the problem of optimizing a one-dimension&Pntinuous int. This is true in both Euclidean spaces and on
function f (). Let the current estimate of be o. Newton’s mann‘olds Uniqueness meansthat the traJectones do pesgr

A .
= argmin
Zn

know from the theories of ODEs that@ continuous velocity
Az = —(f") " xo) f (20), (62) field v produces &' continuous deformation field. Therefore,

a sufficiently smooth velocity field results in a diffeomoiph

wheref’(z¢) and f”(x() are the gradient and the Hessianfof transformation.
evaluated atr, respectively. Whery” is negative (positive),  Since the velocity fieldv is stationary in the case of the
the updateAz increases (decreases) the objective functioBpne parameter subgroup of diffeomorphismsis clearly
regardless of whether one is attempting to increase or dserecontinuous (and in fagE>) in ¢. A smooth interpolation of
the objective function! The Gauss-Newton approximation @ continuous in the spatial domain and is Lipschitz cortimsi
the Hessian for minimizing non-linear quadratic functiong we consider a compact domain, which holds since we only
actually stabilizes the Newton's method by ensuring the egonsider images that are closed and bounded.
timated Hessian is positive. To compute the final deformation of an image, we have to

To optimize Eq.(61) with Newton's method, we nee@stimateexp(v) at least at the set of image grid points. We
to compute the gradient and the Hessian. Because we &s& computexp(v) by numerically integrating the smoothly
using thel, inner product and the canonical metric (sefterpolated velocity field with Euler integration. In this case,
Appendix A-C), the gradient and the Hessian correspond fige estimate becomes arbitrarily close to the trug(v) as the
the first and second derivatives. The first derivative or @r@d number of integration time steps increases. With a suffilsien
corresponds to large number of integration steps, we expect the estimate to
invertible and the resulting transformation to be diffeaptoc.

g_f =2fn1(2) %ffl + 2fn2(5) 8f"2 +— ! %ffg (63) The parameterization of diffeomorphisms by a stationary
%k fns velocity field is popular due to the “scaling and squaring”
and the second derivative corresponds to approach [3] for computingxp(v). Instead of Euler integra-
) ) tion, the “scaling and squaring” approach iteratively cosgs
’f _ 9 0 fm1 +2fm(2) & fm Lo O fn2 L displacement fields. Because we are working on the sptere
6”2 0%y "1 ov,2 0%y the “scaling and squaring” procedure discussed in [3] has to
L D%fno O fns 2 1 32fn3 be slightly modified:
+2f”2(2) 817;2 - 07, fn3 avk [0 = )\ E L 67
(64) 2%@(55) = n n2_Kv (zn) et N (67)
2 2
(9fn1 + 2 afo - aff3 . (65) @ZKLU(?U) = @%KU (‘I’%Kv (50))

Newton method. Not surprisingly, the third term corresgogd () = @

v

=

where the last approximation was made using the Gauss- : (
)

2 (@) (68)
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whereV,, is the local coordinate chart defined in Eq. (10), sudhi]
that,,(0) = z,,. Eq. (67) differs from “scaling and squaring”
in Euclidean spaceEngiKv (z,,) is the velocity vector at the
origin of R? corresponding to the velocity vect%ﬂfv ()
at z,,. For large enoughk, we can approximate a particle[13]
at the origin to move to positiorEnQLKv (z,,) via the flow [14]
of En%v(:cn). Finally, the coordinate char¥,, maps the
point EnQLKv (z,,) back to the sphere. The correctness of thjs
process follows from the fact that the solution trajecterid
the ODEs of a vector field can be consistently transformed via
the coordinate charts. (16]
While “scaling and squaring” converges to the true answer
as K approachesc in the continuous case, in the discretgi7]
case, composition of the displacement fields requirespnoter
lation of displacement fields, introducing errors in theqass.
In particular, suppos®;,, (x) and®,;,,(z) are the true trajec-
tories found by performing an accurate Euler integratiotiaup
time ¢ty and2t, respectively. Then, there does not exist a trivial
interpolation scheme, so thadty;,,(z) = Piyy (Peyu(z)). In

[12]

(18]

practice however, it is widely reported that & and R3, [19]
“scaling and squaring” tends to preserve invertibility evéth
rather large deformations [4], [66]. [20]

As discussed in Appendix A-B, we employ barycentric
interpolation, followed by normalization to ensure the gvar
stays on the unit sphere. In practice, we find that the resulti
transformation is indeed diffeomorphic. Technically dpeg, [21]
since we use linear interpolation for the displacement field
the transformation is only homeomorphic rather than diffeqe2]
morphic. This is because the transformation is continuous,
but not differentiable across mesh edges. However, wewvfollo
the convention of [3], [4], [66] who call their transformati  [23]
diffeomorphic even though they are homeomorphic.
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