












cerebellum mapped to cerebral association cortex in an approx-
imately homotopic manner: the largest cerebral networks were
associated with the most extensive representations in the cer-
ebellum. When the full cerebellar topography was examined
comprehensively, an unexpected observation emerged that in-
cluded both the somatomotor and association representations.
The cerebellum possesses three distinct maps of the cerebral
cortex. The primary map begins with an inverted somatomotor
representation in the anterior lobe and then progresses poste-
riorly with sequential representations of distinct premotor and
association networks. The topography inverts near Crus I/II,
forming a mirror-image secondary map of the full cerebrum in
the posterior lobe. A final inversion occurs, yielding a tentative
tertiary map in the most posterior zone near lobule IX. We
discuss these findings in relation to prior studies of cerebellar
organization, as well as caveats and ambiguities associated
with using functional connectivity as a mapping tool.

Somatomotor Representation in the Human Cerebellum

Using functional connectivity, the primary and secondary
somatomotor representations were detected in the anterior and
posterior lobes of the cerebellum (Fig. 5). The locations were
consistent with expectations based on monkey (Adrian 1943)
and cat physiology (Snider and Stowell 1944) and prior task-
based estimates of cerebellar somatomotor topography in the
human (e.g., Grodd et al. 2001; Wiestler et al. 2011). The

anterior representation was inverted, progressing from foot to
hand to tongue, forming an upside down “’homunculus.” The
posterior representation revealed a mirror-image, upright rep-
resentation. The symmetry of functional connectivity was not
uniform across the topographic representation. The hand rep-
resentation was significantly more lateralized than either the
foot or tongue representations (Fig. 6), paralleling the obser-
vation of Yeo et al. (2011) that the hand representation shows
the weakest functional coupling with the opposite hemisphere.
One possibility is that intrinsic functional coupling reflects the
functional independence of the right and left hands. Anatom-
ical studies in the monkey have observed variation in the
projection patterns for different topographic zones of M1, with
the hand and foot representations absent interhemispheric pro-
jections (Pandya and Vignolo 1971).

Two further observations are notable. First, the primary
somatomotor representation in the anterior lobe extends just
beyond the primary fissure and then stops. The regions of
the cerebellum posterior to the primary somatomotor repre-
sentation near HVI are associated with a cerebral network
including premotor regions that do not possess a discernable
motor topography by our analyses. Schlerf et al. (2010)
recently hypothesized a somatomotor representation in this
region that supports complex motor movements. Our data
suggest that such a representation, if it exists, is not topo-
graphically coupled to the topography of primary motor

Fig. 13. Cerebrocerebellar circuits involved in
somatomotor networks demonstrate topo-
graphic specificity. A: left cerebral cortex
connectivity maps are shown for right seed
regions within the estimated foot, hand, and
tongue representations of the anterior lobe of
the cerebellum. The surface maps show the
entirety of the functional connectivity pattern
(threshold r � 0.1). The dark lines on the
cortical surface represent the boundaries of
the 7 cortical networks, plotted for reference.
The locations of the cerebellar seed regions
are shown below each map. B: left cerebral
regions are displayed that were used for quan-
titative assessment of specificity. Right cere-
bral regions obtained from reflecting left ce-
rebral regions across the midline are not
shown. PrCv, ventral precentral cortex; FEF,
frontal eye field. Subscripts H, F, and T indi-
cate hand, foot, and tongue representations in
M1 and S1 cortex. C: quantitative measures
of functional connectivity strength are plotted
in polar form for cerebellar anterior lobe seed
regions linked to the foot (green line), hand
(red line), and tongue (blue line) representa-
tions. Functional connectivity strengths were
computed between contralateral cerebral and
cerebellar regions and averaged across the
hemispheres. The polar scale ranges from r �
�0.05 (center) to r � 0.25 (outer boundary)
in 0.1-step increments.
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cortex. In our data, the cerebellar region examined by
Schlerf et al. is functionally coupled to cerebral regions that
participate in motor control (premotor regions) as well as
response selection (see Yeo et al. 2011 for discussion). It
will thus be interesting in the future to examine the topog-
raphy of these premotor structures using complex motor
movements such as sequences of extension and flexion
across digits. Second, the secondary motor representation in
the posterior lobe was located at or near lobule VIII. It did not
continue into the most posterior extent of the cerebellum including
lobule IX. Thus, in addition to needing a functional account of the
organization of the extensive intermediate portion of the cerebel-
lum between the somatomotor representations including Crus I
and II, the somatomotor maps also leave unexplained the most
posterior region near IX.

Representation of Cerebral Association Cortex in the
Human Cerebellum

The majority of the human cerebellum is functionally cou-
pled to cerebral association areas. Of particular interest are

cerebral networks associated with cognitive control (the orange
network in Fig. 8) and the default network (the red network in
Fig. 8). Almost one-half of the human cerebellum targets these
two cerebral networks, including all of Crus I and II. These
networks have been extensively studied in the human literature
for their potential role in higher level cognition, including
remembering and planning. Prior fcMRI studies have noted
functional coupling of these cerebral networks to the cerebel-
lum (Habas et al. 2009; Krienen and Buckner 2009; O’Reilly et
al. 2010). The present results provide a more complete map.

By comprehensively mapping the cerebral cortex and also
the cerebellum, we were able to quantitatively explore the
relation between the extent of the cerebral representation of
a network and its volume in the cerebellum (Fig. 11). A
roughly linear relation emerged, but exceptions were noted.
In general, the extent of the cerebellum dedicated to a
network was predicted by the size of the network in the
cerebral cortex. If anything, there was an overrepresentation
of association networks in the cerebellum. However, the
exact details of the relation may be biased, because some
regions of the cerebral cortex had poor SNR, including the

Fig. 14. Evidence for specificity of cerebro-
cerebellar circuits involving association cor-
tex. The strategy for exploring and quantify-
ing the specificity of somatomotor circuits in
Fig. 13 is generalized to distributed regions of
association cortex. A–D each display the
whole brain cerebral surface connectivity pat-
tern for a specific set of bilateral cerebellar
seed regions (shown below each map). Cor-
tical maps are displayed based on functional
connectivity with contralateral cerebellar re-
gions. Note that separate regions of the cere-
bellum are selectively correlated with distinct
cerebral association networks, including
those linked to higher level cognition.
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inferior temporal cortex and orbital frontal cortex (see Fig.
3 of Yeo et al. 2011). Cerebellar regions that are function-
ally correlated to these regions may be underestimated.

One inconsistency with prior findings concerns the char-
acterization of the cerebellar regions that couple to the
default network. Replicating the findings of Krienen and
Buckner (2009) but different from those of Habas et al.
(2009), we observed that the major region of the cerebellum
coupled to the default network is within Crus I/II (the red
network in Fig. 8). This region is surrounded by a represen-
tation of the frontoparietal control network (the orange
network in Fig. 8) and is distinct from the region mapped to
IX. Several analyses confirmed this topography. Examining
the cerebral map generated from examining functional con-
nectivity for a small seed region placed within Crus I
revealed a near-complete map of the default network (Fig.
14A). Quantitative analysis demonstrated that coupling to
the default network is selective (Fig. 15B) and distinct from
the frontoparietal control network (Fig. 15C). Thus we are
confident that the large region in Crus I/II is the major
cerebellar region coupled to the default network. The ob-
servation that this cerebellar region is surrounded by a
distinct association network on both its anterior and poste-
rior borders may have led to the difficulty in detecting its
presence in some prior analyses. In the next section, a
hypothesis is offered that may account for this peculiar
organizational feature.

Cerebellar Topography Consists of Multiple, Inverted
Representations of the Cerebrum

The cerebellum, like the cerebral cortex, is a two-dimen-
sional sheet of cortex (Van Essen 2002). Unlike the cerebral
cortex, the cerebellum’s histology is essentially invariant
throughout cortex and has no discernable areal boundaries (Ito
1984). The well-established maps of body space in the anterior
and posterior lobes suggest that the cerebellum has multiple,
orderly topographic representations that presumably arise from
anatomical connectivity patterns. The historical puzzle has
been to account for the remaining regions of the cerebellum
between the established somatomotor maps (Manni and
Petrosini 2004). The present results suggest a parsimonious
explanation that links both the known topography of the
somatomotor representations and the newer results that map
the intervening regions to multiple cerebral association net-
works.

The seemingly complex organization of the cerebellum
can be accounted for by the hypothesis that the cerebellum
possesses a complete map of the cerebral cortex that begins
in the anterior lobe and extends into Crus I/II, and then a
second mirror-image map that begins in Crus I/II and ex-
tends through the posterior lobe. Figure 16 presents sagittal
sections from the left cerebellum that best illustrate this
organization. The two cerebellar maps do not represent only
the somatomotor cerebral cortex, but rather map an orderly

Fig. 15. Quantitative evaluation of the specificity of cerebrocerebellar circuits involving association cortex. A: reference regions used for quantitative analysis
of association cortex. PCC, posterior cingulate cortex; PFC, prefrontal cortex; STS, superior temporal sulcus. B–D: polar plots of functional connectivity strength
for each of the seed regions from Fig. 14. Note that each polar plot has a distinct connectivity profile. The red lines display functional connectivity strength
between the left cerebellar seed regions and right cerebral cortex seed regions, and the blue lines display the contralateral pairings. The similarity between the
red and blue lines shows that the coupling profiles are reliable between the hemispheres. For B and C, the polar scale ranges from r � �0.2 (center) to r � 0.3
(outer boundary) in 0.1-step increments. For D and E, the polar scale ranges from r � �0.15 (center) to r � 0.2 (outer boundary) in 0.05-step increments.
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progression from somatomotor cortex to premotor cortex to
association cortex. On the basis of quantitative analysis
presented in Fig. 11, we can further hypothesize that the
topographic mapping between the cerebrum and cerebellum
is roughly homotopic, with the few exceptions discussed
earlier and also the meager representation of the green
network in the anterior lobe. Within this hypothesis, the
established somatomotor maps are the end points of a much
larger representation of the entire cerebral cortex.

There is also tentative evidence for a third map, as illustrated
in Fig. 16. The tertiary map is mirrored relative to the adjacent
secondary map, meaning its topography is inverted like that of
the primary map beginning in the anterior lobe. We are not as
confident about this tertiary map, because clear evidence for a
tertiary somatomotor representation could not be detected
(noted by the question mark in Fig. 16). However, the possi-
bility of a tertiary representation may help to explain the robust
representation of association cortex near lobule IX (e.g., Fig. 8,
x � �8), in particular, association cortex coupled to the default
network (Habas et al. 2009; Krienen and Buckner 2009). The
large association region of the cerebellum near Crus I and II
may represent the intersection of the primary and secondary
maps; the cerebellar region near lobule IX may represent the
association portion of the tertiary map. The hypothesized
tertiary map may also explain a critical detail of prior anatom-
ical work. In addition to extensive labeling of Crus II, Kelly
and Strick (2003) also noted a small group of labeled neurons
in IX/X in the monkey following anterograde transneuronal
tracing of efferents from prefrontal area 46. This distinct region
of labeled neurons is predicted by the hypothesis that the
cerebellum possesses three topographic maps of the cerebral
cortex. The neurons labeled in IX/X fall within the tertiary
map.

Caveats and Limitations

In considering the possibility that the cerebellum has
multiple, complete maps of the cerebral cortex, we must
discuss several caveats and limitations. In particular, func-
tional connectivity measures do not only reflect direct anat-
omy (Fox and Raichle 2007; Moeller et al. 2009; Buckner et
al. 2010; Cole et al. 2010). Functional connectivity is based
on correlated functional signals and thus cannot disambig-
uate whether a correlation reflects a direct coupling or an
indirect effect of coupling among polysynaptically con-
nected regions. This creates a specific ambiguity when pro-
posing that the cerebellum has multiple maps of the cerebral
cortex. A plausible alternative explanation is that one of the
cerebellar maps represents coupling with frontal cortex and
the other with parietal cortex, or some other combination of
distributed cerebral areas. This ambiguity arises because
each cerebral network has strongly coupled regions in both
frontal and parietal cortices, including the somatomotor
networks that span precentral (motor) and postcentral (so-
matosensory) gyrus. The functional connectivity data thus
do not disambiguate whether the separate cerebellar maps
arise from distinct cerebral areas or whether each map is
interconnected with a distributed cerebral network. Further
adding to this uncertainty, functional connectivity measures

Fig. 16. The cerebellum possesses multiple representations of the cerebral
cortex. The topographic orderings of the cerebral networks are illustrated for
2 sagittal sections of the left cerebellum (x � �24 and x � �12). The
parcellation is derived from the full data sample (n � 1,000). Letters are
displayed to aid visualization of the representation ordering. F, foot; H, hand;
T, tongue; P, purple network; G, green network; O, orange network; R, red
network. The colored networks refer to the 7-network parcellation (Fig. 8), and
the somatomotor topography refers to the ordering as estimated in Fig. 5. G*
refers to the minimal green network in the x � �24 section, which is better
illustrated in Fig. 8 (x ��8). G� is highlighted because it does not follow the
expected topographic pattern but rather may be an erroneous mapping, because
it is located on the border between the cerebellum and cerebral cortex within
a region of uncertain mapping (see Fig. 10). The white lines demarcate
estimated boundaries between the maps and do not have significance in
relation to sulcal boundaries. Three distinct representations are observed,
labeled the primary, secondary, and tertiary representations. Each is a mirror-
image ordering of the adjacent map. The question mark in the tertiary
representation indicates the uncertain beginning point, if it does exist, of a third
somatomotor representation. R* refers to the red network, which can be seen
in the x � �12 section but not the x � �24 section. What appears initially as
a complex pattern may be parsimoniously explained by the hypothesis that the
major portion of the cerebellum contains a double, inverted representation of
the entire cerebral cortex and then a potential tertiary representation in its most
posterior extent. The classic observation of primary and secondary somatomo-
tor representation in the anterior and posterior lobes may be the beginning and
end points of much larger maps.
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also presently cannot disambiguate efferents from affer-
ents.2

The transneuronal tracing data provide some insight. Injec-
tions of anterograde viral tracers in monkey M1 label distinct
regions in the anterior and posterior lobes, suggesting that the
individual frontal areas possess efferents to both the primary
and secondary somatomotor representations within the cere-
bellum (see Fig. 8 of Kelly and Strick 2003). Similarly, area 46
efferents demonstrate dense labeling in Crus II and also a
distinct second region in lobule IX/X. The presence of multiple
cerebellar targets for each cerebral area is consistent with the
possibility that multiple cerebellar maps form circuits with the
same cerebral areas.

It will be important to assess in the future whether distrib-
uted cerebral areas converge on the same cerebellar regions.
For example, parietal association cortex near 7a/opt is expected
to project to the same cerebellar region as the prefrontal areas
linked to the default network. Convergence of this form is seen
for the thalamus. Double-labeling techniques reveal that mul-
tiple distributed cortical association areas—that are intercon-
nected with each other—also receive convergent projections
from the medial pulvinar (Goldman-Rakic 1988). We suspect
that the cerebellum will possess a similar form of orderly
topography.

The question of whether distributed cerebral areas within the
same network converge on the same cerebellar regions is
particularly critical, because the functional connectivity results
do not directly tell us that prefrontal areas project to the
cerebellum. The present results demonstrate that correlated
networks of prefrontal and parietal association regions are
coupled to the cerebellum. It seems unlikely, but remains a
possibility, that the coupling is entirely driven by the parietal or
other nonfrontal association areas. That is, the strong prefrontal
coupling may be fully mediated through indirect correlations
with posterior cerebral areas. The transneuronal tracing find-
ings of Strick and colleagues (Middleton and Strick 1994,
2001; Kelly and Strick 2003) and the anterograde tracing
studies of Schmahmann and Pandya (1997b), discussed earlier,
suggest the presence of anatomical connections with prefrontal
cortex. Nonetheless, anatomical studies of the distributed ce-
rebral networks are required to determine which association
areas directly form circuits with the cerebellum and which
components of cerebral networks only interact indirectly with
the cerebellum. Certain prefrontal regions that have shown
lower densities of cerebellar projections (e.g., ventral area 46;
Glickstein et al. 1985) may show functional coupling in our
analyses via polysynaptic corticocortical connections.

A further open issue arises because we detected minimal
evidence for medial to lateral organization within the cerebel-

lum, as might be expected given the extensive evidence for
longitudinal zones (see Ito 1984 for review). In this regard, it
is important to note that the present work is cortical centric.
The cerebellar cortex, particularly the intermediate zone, is the
target of substantial ascending pathways that originate in the
spinal cord. Our analyses did not explore these pathways, and
important features of cerebellar organization may have been
missed. The topographic maps estimated at present may also be
of low resolution relative to other features of cerebellar orga-
nization such as those suggested by the observation of frac-
tured somatotopy (Shambes et al. 1978; Manni and Petrosini
2004) and examination of topography in relation to the deep
cerebellar nuclei. Similarly, assuming that some level of inter-
digitation of cerebral projection regions exists in the cerebel-
lum, as in the striatum (Eblen and Graybiel 1995; Selemon and
Goldman-Rakic 1985), our methods will obscure these details
of the topography and assign the cerebellar regions to their
most dominant principal cerebral targets. The specificity of the
results in Figs. 13 and 15 suggests that the topography is
unlikely to contain large amounts of overlap between distinct
principal target regions. However, the low resolution of the
technique may miss important features of cerebellar topogra-
phy and the results should be interpreted accordingly.

Conclusions

Our results reveal that regions of the cerebellum are func-
tionally coupled to specific cerebral networks. The results
further suggest that a relatively simple principle might explain
the global topographic organization of the cerebellum. The
complete cerebral cortex (including somatomotor, premotor,
and association cortices) may project to a homotopic map in
the cerebellum that begins in the anterior lobe somatomotor
representation and ends near Crus I/II. A mirror-image second-
ary map may then begin in Crus I/II and end with the second
somatomotor representation near HVIII. Provisional evidence
is also provided for a tertiary map at the farthest extent of the
posterior lobe.
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