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Abstract— We show that image registration using conventional 

interpolation and summation approximations of continuous 

integrals can generally fail due to resampling artifacts. These 

artifacts negatively affect the accuracy of registration by 

producing local optima, altering the gradient, shifting the global 

optimum, and making rigid registration asymmetric. In this 

work, after an extensive literature review, we demonstrate the 

causes of the artifacts by comparing inclusion and avoidance of 

resampling analytically. We show the sum-of-squared-differences 

cost function formulated as an integral to be more accurate 

compared to its traditional sum form in a simple case of image 

registration. We then discuss aliasing that occurs in rotation, 

which is due to the fact that an image represented in the 

Cartesian grid is sampled with different rates in different 

directions, and propose the use of oscillatory isotropic 

interpolation kernels that allow better recovery of true global 

optima by overcoming this type of aliasing. Through our 

experiments on brain, fingerprint, and white noise images, we 

illustrate the superior performance of the integral registration 

cost function in both Cartesian and spherical coordinates, and 
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also validate the introduced radial interpolation kernel by 

demonstrating the improvement in registration. 

 
Index Terms— Image registration, interpolation artifacts, 

aliasing, image resampling. (EDICS: TEC-ISR) 

I. INTRODUCTION 

mage resampling is indispensable in many image processing 
applications. Given that digital images are represented as 

discrete values on a regular grid, virtually any image 
transformation, such as translation, rotation, zooming, or 
nonlinear warping, requires mapping of the grid points (pixels) 
to a new set of coordinate points that do not generally 
correspond to the original grid. To present the transformed 
image on the same regular grid, it is thus necessary to 
estimate, i.e. interpolate, the image values between the grid 
points where no sampled data are available. 

Accurately speaking, interpolation is fitting a continuous 
function passing through the image pixels or voxels (see [1-3] 
for reviews). Interpolation is required in advance of 
resampling this continuous function on the desired points [4]. 
In practice, these two processes are commonly combined, 
sometimes simply referred to as resampling. It has been 
known that both interpolation and resampling can produce 
artifacts in the resulting image (see Sec.  II for a literature 
review). Interpolation with non-ideal kernels not only blurs 
the image, but also creates artificial high-frequency 
components. In addition, aliasing distortions can appear during 
resampling of such a non-ideally interpolated image (and even 
an ideally interpolated one, if rotation is involved). 

In addition to helping to represent transformed images on a 
regular grid, interpolation and resampling are used in other 
procedures, such as image alignment or registration, as 
discussed in this paper. Registration provides a transformation 
maximizing a similarity measure between the transformed 
version of an image and a second reference image (see [5-8] 
for reviews). Interpolation and resampling are commonly used 
in the transformation step of the sub-pixel registration, and in 
turn produce the aforementioned artifacts – notably patterns of 
local extrema in the similarity measure – making the 
optimization challenging. The artifacts may in some cases 
cause the registration to fail completely, for example by 
lowering the signal-to-noise ratio of the image gradient 
leading the algorithm to wrong optima, by shifting the global 
optimum significantly, or by making a false stronger global 
optimum appear in another region of the image. Additionally, 
resampling generally breaks the inherent symmetry (inverse-
consistency [9]) of rigid image registration [10], since the 
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artifacts alter only one of the images. The fact that the 
transformed image is merely used to compute the similarity 
measure raises the following question: Are interpolation and 
resampling both necessary in registration, or would 
interpolation alone be sufficient? As we will see in Sec.  III, 
the latter is true, in which case aliasing artifacts due to 
resampling can be avoided by using an integral in the 
registration cost function instead of a sum, without resorting to 
costlier closer-to-ideal interpolation kernels. Another question 
addressed in this paper is whether using ideal interpolants can 
eliminate resampling artifacts and make the two cases of 
including and avoiding the resampling stage equivalent. 

In this work, we first review the literature extensively and 
provide a comprehensive list of references where resampling 
artifacts have been observed in image registration, and also 
point out several studies in which an integral cost function has 
been used to avoid resampling. Although these artifacts have 
been explored in a number of papers and there are instances in 
the literature where they are mostly prevented by avoiding 
resampling, to the best of our knowledge, the two cases of 
keeping and avoiding the resampling step have not been 
analytically compared and contrasted. We (a) juxtapose 
inclusion and avoidance of resampling by showing the 
resulting cost functions side by side in a simple case of 
registration, and compare their corresponding errors 
analytically. In particular, we show that the resampling errors 
are asymmetric, resulting in the inverse-inconsistency of 
registration, and that by avoiding resampling the rigid image 
registration is kept symmetric. Next, we recall that contrary to 
the popular belief that employing the ideal (sinc) interpolator 
would eliminate the artifacts in rigid registration, aliasing still 
occurs when rotation is involved, and show that using multiple 
ideal low-pass filters to avert it biases the registration. We 
then (b) propose to use alternative interpolation kernels 
corresponding to disk/ball-shaped anti-aliasing filters that 
preserve as much signal energy as possible without biasing the 
registration, while preventing aliasing. With this approach 
such filters are implicitly incorporated in the already existing 
step of interpolation in image registration. We show 
experimental results on several images, including examples of 
triangular-mesh image representation on the sphere, while 
taking two different analytical and stochastic implementation 
approaches to compute the integral similarity measure. We 
demonstrate the improvement in registration accuracy 
achieved by both eschewing resampling and employing the 
new interpolation kernel, and in registration symmetry in the 
former case. 

We continue by reviewing the relevant prior work in Sec.  II. 
Section  III compares the two cases of including and avoiding 
the resampling step, and Sec.  IV demonstrates rotation-
induced aliasing while introducing an unbiased kernel to 
prevent it. Practical considerations are mentioned in Sec.  V, 
and experimental results are provided in Sec  VI. Section  VII 
concludes the paper with a few final remarks. 

II. LITERATURE REVIEW 

We review four categories of the related prior work here, 
presenting them mostly in a chronological order in each 
subsection. 

A. General Interpolation and Resampling Artifacts 

Artifacts arising from signal interpolation and resampling 
have been initially studied outside the context of registration 
[3, 4, 11, 12], and further exploited in exposing digital 
forgeries [13]. Ref. [4] clearly distinguishes resampling from 
interpolation, and is the first paper that we are aware of to 
mention that resampling aliases the higher frequencies of the 
non-ideal interpolant into the lower frequencies (see Sec.  III), 
a concept which was subsequently restated by the authors of 
[14, 15]. We will see in Sec.  III why this is the major cause of 
the artifacts in image registration. 

B. Instances of Artifacts in Sub-Pixel Registration 

Sub-pixel image registration artifacts appear mostly as 
scalloping patterns with the period of one pixel in the rigid 
registration objective function. One of the first attempts to 
alleviate this issue was to remove the periodic elements with 
such a frequency, and was applied in realignment of functional 
magnetic resonance imaging (fMRI) time series [16]. These 
artifacts were primarily noticed in the entropy-based mutual 
information (MI, [17-19]) methods. In [20], the authors 
studied the MI metric and noticed sudden changes in the 
metric for grid-aligning transformations. It was shown that the 
two commonly used linear and partial-volume [21] 
interpolation methods produced dissimilar patterns of artifact, 
and that a slight resampling of one of the images might make 
these patterns smoother. Furthermore, they combined gradient 
information in the match metric to compensate for the artifacts 
[22]. Random resampling and inclusion of the prior joint 
probability were shown in [23] to reduce such artifacts. The 
authors of [24] presented a generalized partial volume 
estimation that by properly choosing the kernel function, 
reduces the artifacts in MI-based registration. Various 
interpolators for MI were compared in [25] and several 
strategies to reduce the artifacts were proposed. Ref. [26] 
presented an estimation error cancel method which reduces the 
peak estimation error when the sum of squared differences 
(SSD) or the cross-correlation (CC) is computed discretely 
and then interpolated. The extent and the nature of artifactual 
displacements produced by non-rigid SSD-based registration 
techniques for different interpolators were compared in [27]. 
In [28], it was shown that quasi-random sampling based on 
Halton sequences alleviates the grid effect in MI registration. 
The authors of [29] observed reduced interpolation artifacts 
when using a full-image mutual histogram as compared to 
only a sub-volume one. In [30], the noise reduction filtering 
that occurs when image samples are interpolated was 
hypothesized to be the reason behind the artifacts, and a 
constant-variance filter for linear interpolation was presented 
to remove them in CC- and MI-based registration. The authors 
of [31] proposed the use of Euclidean distance in partial 
volume interpolation to improve the artifacts in MI-based 
registration. Refs. [7, 19, 32] further report observing these 
artifacts in registration. 

Virtually all of the above references propose alterations in 
the registration algorithm that lessen the artifacts, or at least 
make them less noticeable by reducing their regularity. Next, 
we mention a rather different category in the literature, 
analyzing the artifacts from the resampling view point. 
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C. Avoiding the Culprit: Resampling 

Formulating the registration cost function using an integral 
over the continuous interpolated images – instead of a sum 
over discrete resampled values – eliminates the resampling 
step (see Sec.  III). The integral SSD has been employed 
outside the registration framework to assess interpolation, for 
instance when there is a jump in the original signal at a non-
grid location [11], or in parameter optimization for cubic 
convolution interpolation [33]. Conversely, the resampling 
error when using the discrete SSD has been shown to depend 
on the lattice location [12]. 

As for sub-pixel registration, omitting the resampling step 
was first suggested yet again in MI maximization [34], where 
computing the joint histogram from continuous interpolated 
images was argued to be, in principal, better than doing so 
from resampled images, because it is free of sampling effects. 
The authors also showed that the partial volume interpolator 
[21] is a special case of the continuous evaluation of the MI 
from interpolated images, when a boxcar kernel is used. The 
continuous approximation of MI was performed by computing 
the MI discretely from oversampled images. Alternative 
implementations of this method were later provided via 
nonparametric windows [35], auto-correlated kernels [36], and 
numerical approximation of the entropy [28, 37]. 

Similarly to [12], it was demonstrated in [38] that 
resampling the image using finite-length interpolants, such as 
linear and cubic convolution, acts as a low-pass filter which 
affects the registration differently depending on the grid 
location. In [39], the authors defined the CC similarity 
measure as the integral of the product of the interpolated 
images and computed it analytically in translation-only 
registration, thereby circumventing resampling. Later, they 
pointed out in [40] that the energy of the resampled image 
appearing in registration objective functions (SSD, CC, or MI) 
can have local optima, and quantified the oscillation artifacts 
similarly to [12]. They showed that these artifacts disappear if 
the resampling step is skipped, which they proposed to do in 
rigid registration by computing the objective function using 
stochastic integration (instead of summation) [40]. 

Thorough mathematical analysis of the resampling artifacts 
in MI-based registration would be a complex task, especially 
because the computation of the image histogram is involved. 
Concerning the SSD- and CC-based registration algorithms, 
noteworthy investigation has been conducted in the above 
references. Nonetheless, we have not encountered a clear 
analytical comparison between the errors introduced in the 
two cases of performing resampling (using the sum cost 
function) and leaving it out (using the integral cost function), 
which we aim to provide in Sec.  III. We also discuss the 
implementation of the more accurate resampling-free 
registration in sections  V and  VI.A. 

D. Rotation Artifacts 

As we will explain in Sec.  IV, aliasing occurs in resampling 
of a rotated image, even when the ideal interpolant is 
employed. To our knowledge, this was originally 
demonstrated in [41], and afterwards mentioned again in [42-
44]. Low-pass filtering the image has been suggested to 
eliminate the resampling artifacts [41, 44] (outside the 
registration context), and similar ideas have been employed in 

the steerable pyramids framework [45-47] as well. Multi-pass 
rotation algorithms, such as those decomposing the rotation 
into sequences of 1D translations through shearing [15, 48-
54], have been shown to introduce even further aliasing in the 
image [42-44] (although negligible [43]). 

Regarding the image registration application, aliasing in the 
image (as opposed to the common frequency) domain due to 
rotation was discussed in [55] for phase-correlation methods. 
In a similar context, the authors of [56] addressed the issue of 
ringing artifacts in rigid registration of fMRI datasets by post-
registration filtering. In Sec.  IV, we will propose the use of 
specific interpolation kernels in image registration to avoid 
aliasing in the frequency domain. 

III. INTEGRAL VS. SUM COST FUNCTION 

In this section, we consider the sum of squared differences 
(SSD) as the registration metric to analyze the effect of 
resampling in the simple case of translation-only registration. 
For the mutual information (MI) metric, we refer the 
interested reader to [34-37]. 

Let �, �: ℝ� → ℝ be two continuous d-dimensional images, 
the axes of which can be aligned via translating one of them, �, to minimize the following SSD cost function: 
 Δ	
� ≔ argmin� � ���� − Δ� − ��������ℝ� . (1) 

The subscript id in the optimal shift Δ	
� stands for ideal, 
meaning that we consider the registration results of the 
original unsampled images as the ground truth. This is 
justified by the fact that acquiring higher-resolution images is 
expected to increase the precision of the registration, and at 
the limit, the original continuous version of the image (with 
infinite resolution) produces the ideal solution that can be 
considered as the ground truth while comparing the two 
approximate (integral and sum) cost functions. 

By expanding the integral in Eq. (1) and taking into account 
that the integral of the shifted ���∙� over the entire space is 
independent of the shift, the equation can be simplified to: 
 Δ	
� = argmin� � ���� − Δ���ℝ� + � �������ℝ�

− 2 � ��� − Δ�������ℝ�  
= argmax� � ��� − Δ�������ℝ� , 

(2) 

which is equivalent to maximizing the cross correlation (CC) 
of the two images. Using Parseval’s theorem and the shift 

property of the Fourier transform, ��� − Δ� ℱ↔ �&�'�()
�*+.�, 
this can also be written as: 
 Δ	
� = argmax� � �&∗�'��-�'�(
�*+.��'ℝ�  

= argmax� � �&∗�'��-�'�(
�*+.��'.)½,½0� , (3) 

with * being the complex conjugate, and �& and �- the Fourier 
transforms of � and �, which for the reasons that we will see 
below are assumed to be nonzero only in .−½, ½0�. 
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A. Integral Cost Function  

Now, suppose that the two images have been sampled on 
discrete points with the rate of one sample per unit length in 
each spatial direction. We try to approximate the same integral 
cost function as (1) by interpolating the two sampled images, 
i.e. convolving them with the kernel ℎ. Note that the 
polynomial (e.g. cubic) spline interpolation is also applicable 
here, since it is equivalent to a convolution with the 
corresponding cardinal spline function [57]. 

Sampling a continuous function 2��� (1D for simplicity), in 
mathematical terms, is multiplying 2 by the impulse train 
(Dirac comb), ∑ 4�� − 5�6∈ℤ . This multiplication can be 
viewed in the frequency domain as the convolution of 2̂ (Fig. 
1a)  with the Fourier transform of the impulse train, also an 
impulse train, resulting in replicas of 2̂ placed at the 
frequencies 5 ∈ ℤ, as in ∑ 2̂�' − 5�6∈ℤ  (Fig. 1b). According to 
the sampling theorem [58], if 2 is bandlimited, i.e., 2̂�'� = 0 
for |'| > ½ (as in Fig. 1a), it can be reconstructed exactly 
from its sampled points using the ideal low-pass filter (Fig. 1b, 
red dashed line), i.e. by interpolation with the sinc function. 
Otherwise, the aliasing effects  make it impossible to recover 
the original signal [58], negatively impacting the accuracy of 
the alignment [59, 60]. For simplicity, here we assume � and � to be bandlimited, meaning that they only have frequency 
components in .−½, ½0�. 

The infinite impulse response (IIR) of the sinc function 
makes the ideal low-pass filter difficult to implement 
(although some IIR filters can be efficiently evaluated using, 
e.g., recursive filtering), and the use of finite impulse response 
(FIR) interpolants (e.g. linear interpolation; the green dotted 
curve in Fig. 1b) more attractive. Nevertheless, in contrast to 
their low computational cost, such non-ideal kernels have two 
undesirable properties: attenuation of low-frequency 
components which are supposed to remain intact ('= in Fig. 

1c), and leaving behind some high-frequency components 
which are supposed to be removed ('� in Fig. 1c). The latter is 
the major cause of the resampling artifacts in general, as 
explained here and in [4, 14, 15]. 

Let ℎ be the kernel that we use to interpolate the two 
sampled images. Convolving the sampled versions of images � and � with ℎ results in continuous images that we use in 
place of � and � in the cost function of Eq. (1). As in the 
previous case, the integrals of such continuous functions in the 
entire space are independent of the shift [40], and therefore 
SSD minimization reduces again to CC maximization 
(similarly to Eqs. (2,3)). Convolution of � with ℎ can be seen 
in the frequency domain as multiplication of the replicas of �& 
by the frequency response of the kernel, ℎ>, resulting in ℎ>�'� ∑ �&�' − 5�6∈ℤ� . The CC in this case becomes the 
following integral, which we simplify by dividing it into 
finite-length segments (see also [39]): 

� ?ℎ>∗�'� @ �&∗�' − 5�
6∈ℤ�

A ?ℎ>�'� @ �-�' − B�
C∈ℤ�

A (
�*+.��'ℝ�  

= � @ �&∗�' − 5��-�' − B�
C,6∈ℤ�

(
�*+.�Dℎ>�'�D��'ℝ�  

= @ � @ �&∗�' + E − 5��-�' + E …
C,6∈ℤ�.)½,½0�G∈ℤ�

− B� (
�*�+HG�.�Dℎ>�' + E�D��' 

= @ � �&∗�'��-�'�(
�*�+HG�.�Dℎ>�' + E�D��'.)½,½0�G∈ℤ�
 

= � �&∗�'��-�'�(
�*+.� @ Dℎ>�' + E�D�(
�*G.�
G∈ℤ�

�'.)½,½0� , 

(4) 

where we used the bandlimitedness of � and � to reach line 4 
from line 3 of this equation. Thus, the optimum shift using the 
integral cost function, Δ	I, becomes: 

Δ	I ≔ argmax� � �&∗�'��-�'�(
�*+.� @ Dℎ>�' …
G∈ℤ�.)½,½0�

+ E�D�(
�*G.� �'. 
(5) 

 
By comparing Eqs. (3) and (5), it becomes apparent that the 

error factor J+̂�Δ� ≔ ∑ Dℎ>�' + E�D�(
�*G.�G∈ℤ�  for ' ∈.−½, ½0�, which is periodic with the period of 1 pixel in 
every dimension, is introduced as a result of non-ideal 
interpolation. J+̂�Δ� can be seen as the discrete-time Fourier 

transform (DTFT) of ℎ+.E0 ≔ Dℎ>�' − E�D�
. The error-free 

case corresponds to J+̂KL�Δ� = 1, meaning that ℎ+KL.E0 =DTFT)=�1� = 4G, or: 
 Dℎ>KL�' − E�D = Q1 E = 00 E ≠ 0 , ' ∈ .−½, ½0� , 

Dℎ>KL�'�D = S1 ' ∈ .−½, ½0�
0 o. w. , (6) 

which is the ideal low-pass filter. Note that there is no 
restriction on the phase of ℎ>KL�'�, since the filter is applied to 
both images and the phase is cancelled in the CC. The intrinsic 
symmetry of rigid registration also becomes apparent when 
images are treated as continuous, i.e. in Eqs. (3) and (5), 
meaning that swapping � and � and negating Δ does not 
change the cost function. 

-1 0 1

ν

(a)

-1 0 1

ν

(b)

-1 0 1

ν

(c)

← ν
1

←
 ν 2

-1 0 1

ν

(d)

Fig. 1.  a) A continuous bandlimited signal in the frequency domain.  b) The 
signal after being sampled. The red dashed and the green dotted filters are the 
ideal and the non-ideal (linear interpolation) low-pass filters.  c) The signal 
after linear interpolation. Some frequency components (VW) are attenuated and 
some components (VX) have been artificially created.  d) Aliasing as a result 
of resampling the non-ideally interpolated signal. 
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B. Sum Cost Function 

It is common in image registration to compute the SSD 
merely on the grid points, while interpolating and resampling 
only one of the images, �, as needed: 
 Δ	Y ≔ argmin� @ ���.Z0 − �.Z0��

[∈ℤ�
, (7) 

where ��.∙0 is the image � after being sampled, interpolated, 
shifted with Δ, and resampled on the original grid, and �.∙0 is 
the image � sampled on the reference grid. The optimum shift 
of the above sum cost function, Δ	Y, can be expanded as: 
 Δ	Y = argmax� @ ��.Z0�.Z0

[∈ℤ�
− 12 @ ���.Z0

[∈ℤ�
. (8) 

 
Contrary to the previous case, we cannot trivially remove 

the energy of the resampled image, since as also demonstrated 
in [12, 40], ∑ ���.Z0[∈ℤ�  depends on the position of the 
transformed image relative to the grid, and therefore on Δ. The 
discrete case of Parseval’s theorem states that the inner 
product of two discrete signals can be computed in the 
frequency domain as the inner product of their DTFTs in .−½, ½0�. Image � is bandlimited and not interpolated, 
therefore according to the sampling theorem, DTFT��.Z0� =�-�'� for ' ∈ .−½, ½0�. Regarding ��.∙0, we saw in Sec.  III.A 
that the Fourier transform of � after being sampled, 
interpolated, and shifted, is ℎ>�'� ∑ �&�' − 5�6∈ℤ� ()
�*+.� (Fig. 
1c). Resampling, results in replicas of this function at E ∈ ℤ� 
(Fig. 1d), i.e., 

DTFT���.Z0� = @ ℎ>�' + E� @ �&�' + E − 5�
6∈ℤ�

()
�*�+HG�.�
G∈ℤ�

 

= �&�'�()
�*+.� @ ℎ>�' + E�()
�*G.�
G∈ℤ�

, (9) 

for ' ∈ .−½, ½0�, where the bandlimitedness of � was once 
again exploited. Finally, using the DTFTs of �.∙0 and �.∙0 and 
applying Parseval’s theorem to Eq. (8) leads to: 
 Δ	Y = argmax� � �&∗�'��-�'�(
�*+.� @ ℎ>∗�' …

G∈ℤ�.)½,½0�
+ E�(
�*G.� �' 

(10) 

− 12 � D�&�'�D� \ @ ℎ>�' + E�()
�*G.�
G∈ℤ�

\
�

�'.)½,½0� . 
 
The CC (first) integral of the above equation is similar to 

that of the previous case, Eq. (5), with the exception that ℎ>∗, as 

opposed to Dℎ>D�
, appears in the periodic error term, meaning 

that for a given interpolation kernel, the CC after resampling 
has more aliasing artifacts, but less smoothing effects. This is 

because the larger magnitude of ℎ>∗ (compared to Dℎ>D�
) results 

in larger unwanted aliased frequency components ('� in Fig. 
1c), but at the same time prevents too much attenuation of the 
desired frequencies ('= in Fig. 1c). However, as shown in [12, 
40], the second integral of Eq. (10) is an additional periodic 
error term that makes the sum cost function (Eq. (10)) deviate 
from the ground truth (Eq. (3)) even further.1 This error in the 
energy of the resampled image, which for instance breaks the 
symmetry inherent to rigid image registration, does not appear 
when resampling is avoided (Eq. (5)). Note that the aliased 
frequencies ('� in Fig. 1c) are results of using a non-ideal 
interpolant; aliasing happens even though the original images 
are assumed bandlimited. 

 
1 This error term is however constant for shiftable transforms [46]. 

Fig. 3.  (Left) Rotation in the Cartesian grid results in high-frequency 
components in the corners of the frequency domain (identified by green 
dashed lines) to be aliased into the low-frequency regions.  (Right) A disk-
shaped filter removes the frequency components that can potentially be 
aliased during rotation. 

Fig. 4.  Area of the aliasing regions in the frequency domain with respect to 
the rotation angle. 
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With similar analysis as in Sec.  III.A, both sources of error 
in Eq. (10) can be seen to disappear (become independent of Δ) if the ideal interpolant (sinc) is used. This raises the 
question of whether employing ideal (or more feasibly, close 
to ideal) kernels generally eliminates the resampling artifacts 
in image registration. Although we just proved this to be true 
in translation-only registration, we will see in the next section 
that this is in general not the case in image registration, when 
rotation is involved. We will adopt a rather intuitive analysis, 
as rigorous comparison of the integral and the sum cost 
functions with non-ideal interpolation in the presence of 
rotation would be tedious and outside the scope of this paper. 

IV. ALIASING DUE TO ROTATION 

Images are often represented on radially non-symmetric 
Cartesian grids. An instance of such asymmetry, as illustrated 
in Fig. 2 (see also [61]), would be the fact that a d-dimensional 
Cartesian grid provides a resolution √� times higher in the 
diagonal directions than in the axis directions, which can also 
be perceived as higher frequency components in the corners of 
the DTFT domain. Rotation of an interpolated image may 
align its high-resolution diagonal features with the axes of the 
grid, which do not have the capacity of representing such 
high-frequency components. Thus, if the rotated image is 
resampled on the original grid, aliasing will inherently occur 
(Fig. 3, left), even if the ideal interpolation has been used [41-
44]. 

This problem can be particularly serious in image 
registration, where the dependence of the aliasing error in the 
(sum) cost function on the rotation angle may bias the 
registration. The area of the aliased regions in the frequency 
domain (dashed triangles on Fig. 3, left) for a rotation of angle ^ can be calculated geometrically and shown to be _�^� =�sec ^ − 1��csc ^ − 1�, plotted in Fig. 4 for ^ ∈ .0°, 90°0. 
Although _�^� in this interval is maximal at ^ = 45°, we 
cannot simply deduce that the bias is worst at this angle (and 
at 135°, 225°, etc.), since the minimum, and not the zeros, of 
the cost function is searched for. This minimum happens at a 
zero of the derivative of the cost function, in which the error 
would depend on both _�^� and _′�^�, with the magnitude of 
the latter being largest when the grids are aligned, i.e. at ^ = 0°, ±90°, 180°. 

Note again that computing the integral cost function instead 
of the sum eliminates the resampling step and consequently 
the resulting aliasing artifacts. Nonetheless, with rotation 
involved, such an analytical computation becomes much more 
complicated than the translation-only case of Sec.  III.A, as 
various overlap configurations for the two meshes will have to 
be considered. Monte-Carlo methods may be employed to 
approximate the integral, yet a good such approximation 
requires oversampling the image, thereby increasing the 
computational cost. (An experimental comparison can be seen 
in [40, Fig. 12] for small rotation angles, although the authors 
do not mention the type of aliasing discussed here). Two 
alternatives to using the integral cost function to avoid aliasing 
would be: 1) applying the ideal low-pass filter a second time 
on the rotated interpolated image to clip off the corners [44], 
or 2) upsampling the d-dimensional images √� times in each 
direction, thus increasing the total number of sample points by 

a factor of �� �⁄ . Besides the additional computational cost 
imposed by these approaches to avoid aliasing, one can see 
that the cost function would still be biased, since the 
intersection area of the two registered images (in the 
frequency domain), which is their non-aliased overlapping 
regions, 1 − _�^�, still depends on the rotation angle. 
Normalizing the cost function by this area would not in 
general be helpful, either, since the frequency components are 
not necessarily distributed uniformly. 

It has been suggested in [41] (outside the registration 
context) to filter an image with a circular disk (Fig. 3, right) 
before rotation is applied, to avoid resampling-induced 
aliasing for any arbitrary angle. Additionally, the corners 
outside of such a disk have been ignored in phase-correlation 

registration in [55], which would be theoretically equivalent to 
applying such a filter. The authors of [56] have also used this 
filter, however as a post-processing step to remove “ringing 
artifacts” (as opposed to aliasing). 

In this work, we propose to make use of the disk-shaped 
filter in rigid image registration by incorporating it in the 
interpolation step. We start by identifying the interpolation 

kernel ℎ with the Fourier transform ℎ>�'� = Q1 ‖'‖ ≤ ½0 n. o. . 

Such functions have been computed in [62, 63] for different 
dimensions; in 2D and 3D spaces they are: 
 ℎ�p�q� = r=�sq�sq , 

ℎtp�q� = 12sq� usin�sq�sq − cos�sq�v, (11) 

with q ≔ ‖�‖, and r= the first order Bessel function. Such 
oscillatory interpolation kernels have been considered in [63] 
as radial basis functions for interpolation, however, neither for 
convolution-based interpolation, nor in the registration 
framework. 

Interpolating the image with the IIR kernels in (11) – 
instead of with the ideal interpolant (sinc) – filters the image 
with the disk/ball-shaped kernel of a diameter equal to the 
sampling rate. Such a filter keeps the maximal frequency 
components in the image, while preventing the occurrence of 
aliasing at every arbitrary rotation in an unbiased fashion, 
meaning that the same amount of information is preserved for 
all the possible rotations. Therefore, with no aliasing coming 
from resampling, the two sum and integral cost functions 
theoretically produce the same results. 

Nevertheless, for the same practical considerations as 
mentioned in Sec.  III.A, the use of radial windows such as the 
radial Hanning window becomes indispensable to make FIR 
filters out of kernels (11). The radial Hanning window, for 

instance, is defined as o�5w , 5x , 5y� ≔ 0.5 z1 +
cos �*6

{)=| 1z6}~��� |, where N is the diameter of the window, 1 

the characteristic function, and 5 ≔ �5w� + 5x� + 5y� the 
distance from the center of the window. The use of the 
window function, however, makes the kernels non-ideal which 
may consequently cause aliasing artifacts again as described in 
Sec.  III, making the sum and integral cost functions in practice 
dissimilar for smaller windows. This is a general disadvantage 
of the FIR filters; the fact that they cannot exactly produce an 
arbitrary desired (especially bandlimited) frequency response. 
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V. PRACTICAL CONSIDERATIONS 

Analytical computation of the integral cost function requires 
solving definite integrals in irregular d-dimensional regions 
defined by the intersections of the pixels (or voxels) of the two 
meshes. This can be complicated particularly when rotation is 
involved, however, a simple Monte-Carlo approximation of 
the integral cost function is achieved by oversampling the 
image on random [40] or quasi-random [28] sample points. 

Nevertheless, the particular case of translation-only 
registration with the integral cost function discussed in 
Sec.  III.A (Eq. (5)) can be shown to be equivalent to 
maximizing the CC after interpolating its discrete version with 
the self-convolution of the kernel, ℎ ∗ ℎ (see also [39]). This 
can be done quickly by computing the CC using the fast 
Fourier transform approaches (e.g. as in [64, 65]), 

interpolating and upsampling it to the desired resolution, and 
finding the maximum of the upsampled CC. Otherwise, 
computing the integral cost function would require dividing 
each voxel into 2� subvoxels depending on the subvoxel shift 
between the two images, and subsequently calculating the 
integral analytically in each subregion. Once the analytical 
formula for a subregion is derived, the formula for the rest of 
the subregions can be computed by swapping the two images 
and shifting them. For instance, if the integral cost function is 
desired to be computed in the 1D case with 0 ≤ Δ ≤ 1, the 
pixel .0,10 needs to be divided into the two subpixel intervals 
of .0, Δ0 and .Δ, 10. Once the analytical formula ���.50, �.50, Δ� is derived for the integral of the first interval, 
the integral of the second interval can be seen to be ���.5 +10, �.50, 1 − Δ�, and therefore does not need to be computed 
from scratch. 

Fig. 5.  (a) High-res and low-res versions of the sagittal slice.   (b) 2D registration cost function of the high-res image.   Registration sum (c) and integral (d) cost 
functions of the low-res image. 
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For our experiments on the sphere, we estimated the 
integral cost function via the Monte-Carlo integral 
approximation method. We generated spatially-uniform quasi-
random Halton sample points on the 2D Cartesian interval of ��, �� ∈ .−1,10 × .0,2s0, using the haltonset command of 
Matlab. We then transferred the points onto the sphere by 
computing ^ = acos �. One can see that the surface element |sin ^ �^��| = |��cos ^���| = |����| remains unchanged, 
preserving the uniformity of the sample points. 

Regarding the disk-shaped kernels (11) in Sec.  IV, a 
drawback of their employment is the fact that they cannot be 
implemented in a separable fashion, i.e. as a product of 1D 
functions, thereby making them computationally more 
expensive. In fact, besides the Gaussian kernel, no other 
radially symmetric kernel is separable [4]. To make up for the 
computational complexity, one might want to pre-filter the 
image with the disk-shaped kernel offline to remove the corner 
frequency components and subsequently interpolate it at each 
iteration using a separable kernel such as bicubic or windowed 
sinc, the downside of which, yet, would be the introduction of 
undesirable artifacts (aliasing, blurring, ringing, etc.) twice 
over, instead of only once. 

In Sec.  IV, we made the general assumption that images 
have nonzero components in the corners of the frequency 
domain, since they are represented on the Cartesian lattice, 
and that they have not been upsampled to avoid diagonal 
aliasing. In case the interpolated image is known not to 
contain any components in the corners of the frequency 
domain, such as in MRI with spiral trajectories in the k-space, 
aliasing due to rotation will naturally not occur and the use of 
disk-shaped kernels is not expected to bring about any 
improvement. 

VI. RESULTS AND DISCUSSIONS 

A. Integral vs. Sum Cost Function 

Cartesian Grid 

In this section, we first compare the integral and sum cost 
functions by visualizing them in 2D self-registration of a 

synthesized brain magnetic resonance image (MRI) slice taken 
from the BrainWeb simulated brain database [66, 67].2 A T1 
image of a normal brain with isotropic 1-mm³ voxels was 
generated, and a sagittal slice of it with the dimensions 
129×129 was taken for the task of 2D translation-only 
registration. The ideal low-pass filter was then applied to the 
image which was subsequently downsampled 10 times (to 
13×13). Both high-res and low-res versions of the images are 
shown on Fig. 5(a). Next, the high-res image was registered to 
itself with the resolution of 1 pixel, the cost function of which 
is illustrated on Fig. 5(b) with respect to the 2D shift. This cost 
function is considered as the ground truth for the low-res 
downsampled data, which were next registered with the 
resolution of 0.1 pixels using linear interpolation. The sub-
pixel registration of the low-res data was performed once 
using the sum cost function (Fig. 5(c)), and again using the 
integral cost function by analytically computing the integral of 
the square of the difference of the continuous interpolated 
images on the sub-pixel regions created by the overlapping 
pixels of the fixed and the shifted meshes (Fig. 5(d)). 
Resampling artifacts can be clearly seen in the sum cost 
function as periodic piecewise-convex regions. Their convex 
nature is due to the quadratic convexity of the square of the 
linearly interpolated image, appearing in the SSD. Such 
artifacts can, for instance, alter the direction of the gradient in 
gradient-based optimization approaches, potentially leading to 
local optima and slower convergence. The artifacts, however, 
are much smaller and almost invisible in the smooth integral 
cost function. Furthermore, when we computed the correlation 
coefficient between each low-res cost function and the ground 
truth, it was slightly higher (0.3%) for the integral case (r = 
0.996) than for the sum case (r = 0.993). 

 
Spherical Registration 

We also looked into the patterns of artifacts in spherical 
image registration, which has applications in, e.g., registration 
of the cerebral cortex (see [68] and the references therein). We 
generated two separate images of independent and identically 
distributed white noise on the sphere with a triangular mesh 
based on the icosahedron subdivision [68], with 2562 vertices 
and 5120 triangles. We then computed the sum SSD 
registration cost function of the two images with barycentric 
(linear) interpolation while rotating one of them around a fixed 
axis. In the absence of artifacts, the cost function is expected 
to be roughly flat superimposed with an irregular noise 
pattern. However, structured artifacts with a period of 4.6° – 
about the angular size of the edges – were observed in the cost 
function (Fig. 6, blue solid curve), most strongly affecting the 
origin where the two triangular meshes are entirely aligned. 
Rotation of a sphere acts as rotation close to the poles and as 
translation close to the equator, which explains why the cost 
function appears to be a combination of patterns resulted by 
both rotation with a bias at the grid aligning origin (see for 
instance [40, Fig. 12]), and translation with periodic artifacts 
(similar to Fig. 5(c)). 

 
2 To avoid algorithmic biases in the results, we only change the 

interpolation strategy in each experiment while using the same registration 
algorithm. 
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Fig. 6.  Comparison of sum (solid blue) and integral cost functions with the 
same number of Halton sample points (green dotted) and five times more 
points (red dashed) in spherical registration of white noise. 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 9

To compute the integral cost function, we resorted to the 
Monte Carlo approach of stochastic estimation of an integral 
[40], and approximated the integral as a sum over randomly 
distributed points on the sphere. Moreover, since the uniform 
distribution produces sample points that do not fill the surface 
as uniformly as expected (due to the clustering effects), we 
followed the suggestion in [28] and used Halton sampling [69] 
to produce a set of quasi-random but more uniform set of 
points. Figure 6 shows the results with as many Halton sample 
points as the number of vertices (1×, green dotted curve) and 
with five times more points (5×, red dashed curve). As can be 
seen, there are significantly less artifacts compared to the case 
with the sum cost function. Additionally, a better 
approximation of the integral (more sample points) results in a 
smoother cost function. The standard deviations of the integral 
– 1× and 5× – and the sum cost functions over the rotation 
angle were 3.3, 2.5, and 16.7, respectively. 

We then used the cortical sulcal maps of the five subjects 
included in the Spherical Demons package [68], originally 
from the OASIS public database [70], to test the spherical 
registration on real brain MRI data. The maps were projected 
on icosahedron meshes of orders four (low-res Ic4, 2562 
vertices) and six (high-res Ic6, 40962 vertices), for both of 
which we computed the sum and integral cost functions 
similarly to the previous case, except that this time images 
were rotated about two axes, resulting in 2D cost functions in .−10°, 10°0�. Every pair in the five subjects was forward and 
backward registered, totaling 20 experiments. We found the 
location of the minimum of each cost function, and used the 
high-res Ic6 minima as the ground truths for comparing the 
low-res Ic4 results of the different techniques. The error for 
each technique was computed as the L2 distance between the 
locations of cost function minima in Ic4 and Ic6, the average 
of which across experiments is listed in Table I. As can be 
seen, low-res registration with Halton instead of regular 
sampling produces minima that are more compatible with 
those of the high-res image. In addition, a fivefold increase in 
the number of Halton samples further improves the accuracy 
of registration via better approximation of the integral. One 
can also see that when Halton sampling is used in the ground 
truth Ic6 registration, the low- and high-res experiments result 
in closer minima. This is expected, since the artifacts exist 
even in high-res registration, albeit with lower magnitude, and 
reducing them via Halton sampling eliminates one source of 
perturbation in the distance between the minima. 

We also measured the inverse-consistency of registration 
[10] by computing the L1 distance between the forward and 
backward registration cost functions corresponding to each 
pair of subjects, and observed that on average, compared to 

regular sampling, the asymmetry error is reduced by 36% and 
56% using Halton sampling with the same number of and five 
times more sample points, respectively.  

B. Rotation-Induced Aliasing 

Next, we performed rotation-only registration experiments 
to validate the interpolation kernel introduced in Sec.  IV. We 
used a high-res 760×760 planar fingerprint image [71] (Fig. 7, 
top left)  as the ground truth, and each time rotated it with a 
specific angle (Fig. 7, top right). Subsequently, we applied the 
ideal low-pass filter to both the original and rotated images 
and downsampled them 20 times (Fig. 7, bottom). Then we 
registered the low-res images by an exhaustive search in the 
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Fig. 7.  Hi-res (top) and low-res (bottom) versions of the original (left) and the 
rotated (right) fingerprint image. Note how in the both low-res images the 
diagonal frequencies are better retained than the horizontal and vertical 
frequencies are. 

Fig. 8.  Histogram of the registration error with sinc, Bessel, and bicubic 
interpolations. 

TABLE I 

REGISTRATION ERROR FOR DIFFERENT SAMPLING METHODS 

Ground truth Regular sampling Halton, 1× Halton, 5× 

Regular sampling, Ic6 1.64° 1.45° 1.29° 

Halton sampling, Ic6 1.22° 1.02° 0.78° 

The spherical registration error for different sampling schemes on Ic4, 
where Ic6 is used as the ground truth. 
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vicinity of the known rotation angle with a resolution of 0.1°, 
using the sum cost function. We performed the experiment 
three times, making use of the Bessel (ℎ��, Eq. (11)) and the 
sinc kernels (both with a 15-tap Hanning window) and also the 
bicubic interpolation implemented in Matlab (imrotate). 
We repeated the experiment for 181 rotation angles from 0° to 
180°, and noted that the Bessel kernel with a mean error of 
0.18° outperformed the bicubic and the sinc interpolations 
with mean errors of 0.20° and 0.29°, respectively. The 
corresponding p-values derived using Wilcoxon’s paired 
signed rank test for the equality of the median of errors were 
3×10-19, 3×10-2 , and 3×10-7, for Bessel vs. sinc, Bessel vs. 
bicubic, and bicubic vs. sinc, respectively. The histogram of 
the signed errors is plotted in Fig. 8, where the Bessel kernel 
can clearly be seen to have a higher concentration of error 
around zero than the other two methods do. 

Bicubic interpolation seems to be more robust than the 
windowed sinc, which may be explained by the fact that it is 
equivalent to convolution with the cardinal cubic kernel which 
approximates the IIR sinc  [57], as opposed to the FIR 15-tap 
windowed sinc kernel used here. Also note that no matter what 
the rotation angle is, the low-res images (Fig. 7, bottom) 
resolve the high frequencies better in the diagonal than in the 
horizontal and vertical directions, in accordance with our 
discussion in Sec.  IV and Fig. 2. 

VII. CONCLUSION 

In this paper, we discussed the artifacts in subpixel 
registration from a sampling point of view, and showed that 
resampling the interpolated image is the major cause of these 
artifacts. We compared the two cases of including and 
excluding the resampling step in image registration 
analytically, and also through experiments by calculating the 
integral cost function via both analytical and stochastic 
approaches. Computing the objective function in a continuous 
manner dramatically reduced the amplitude of the induced 
artifacts, thereby increasing the accuracy of the gradient and 
the global optimum of the cost function, and also the inverse-
consistency of registration. We also demonstrated aliasing 
errors due to rotation, and proposed to use radially symmetric 
interpolation kernels to avoid them. We observed significant 
improvement in registration accuracy by choosing the 
proposed interpolation kernels over the traditional ones. 

Applying the derived methods to functional connectivity 
MRI registration is part of an ongoing project, where we have 
noted that not addressing the resampling artifacts guaranteed 
that almost every registration would converge to the wrong 
optimum. Future work consists of devising practical 
implementations with lower computational complexity for the 
integral cost function. 
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