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Functional Specialization and Flexibility  

in Human Association Cortex 

 

Supplemental Material 
This supplemental material is divided into Supplemental Methods and Supplemental Results to 

complement the Methods and Results sections in the main text, respectively.  

 

Supplemental Methods 
Author-topic hierarchical Bayesian model 

The details of the model can be found elsewhere (Rosen-Zvi et al., 2010). For the sake of 

completeness, further details about the model pertaining to this work are described in this 

section. In our application, the model parameters are the probability that a task will recruit a 

component (𝜃, i.e., Pr(component | task)) and the probability that a recruited component will 

activate a voxel (𝛽, i.e., Pr(voxel | component)). 𝜃 and 𝛽 are matrices, where each row is a 

categorical distribution summing to one.  

The model assumed symmetric Dirichlet(𝛼) and Dirichlet(𝜂) priors on the 𝜃 and 𝛽 

respectively (Figure S1). Let 𝑇! denote the set of tasks (consisting of one or more BrainMap-

defined task categories) employed in the 𝑒-th experimental contrast1; 𝑒 took on values from 1 to 

10449. The 𝑒-th experiment resulted in a binary activation image obtained from preprocessing 

the BrainMap data (see BrainMap subsection in the Methods section). The set of voxels with 

values of 1 corresponded to an expanded set of activation foci associated with the experiment. 

The expanded set of activation foci were assumed to be independently and identically generated2 

(Rosen-Zvi et al, 2010). More specifically, the location 𝑣!" of the 𝑓-th activation focus was 

assumed to be generated as follows:    

 

1. Randomly generate a task 𝑇!" uniformly from the set of tasks 𝑇!. 

                                                
1 A small percentage of experiments in BrainMap utilized tasks from more than one task 
category. 
2 Note that the locations of the activation foci are independent conditioned on knowing 𝜃 and 𝛽. 
However, the locations of the activation foci are not independent if 𝜃 and 𝛽 are unknown. 
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2. Randomly generate a component 𝐶!" using the distribution specified in the 𝑇!"-th row of 

the 𝜃 matrix. 

3. Randomly generate the voxel location 𝑣!" of the activation focus using the distribution 

specified in the 𝐶!"-th row of the 𝛽 matrix. 

 

The above description specified the model exactly (Rosen-Zvi et al., 2010).  

 

Estimating the author-topic model 

Given the 10,449 BrainMap experiments with associated activation coordinates and task 

categories, Pr(component | task) 𝜃 and Pr(voxel | component) 𝛽 were estimated assuming the 

following fixed parameters: the number of cognitive components 𝑁!  , and the hyperparameters 𝛼 

and 𝜂.  

The choice of 𝑁!  is discussed in the main text. Following the original author-topic paper 

(Rosen-Zvi et al., 2010), the hyperparameters 𝛼 and 𝜂 were set to 50 𝑁!  and 0.01 respectively. 

Our experiments (not shown) suggested that the estimates were robust to the exact choice of 𝛼 

and 𝜂. 

 The original author-topic paper (Rosen-Zvi et al., 2010) utilized the Gibbs sampling 

algorithm to estimate Pr(topic | author) and Pr(words | topic). These are equivalent to 

Pr(component | task) 𝜃 and Pr(voxel | component) 𝛽 here. However, the Gibbs sampling 

algorithm is too computationally inefficient for this particular dataset: the algorithm did not 

converge after one week of computation time. This inspired us to derive a much faster 

expectation-maximization (EM) algorithm (Dempster et al., 1977).  

Given initial estimates of Pr(component | task) 𝜃! and Pr(voxel | component) 𝛽!, the E-

step and M-step were iterated until convergence. In particular, let 𝜃! and 𝛽! be the estimates of 

Pr(component | task) and Pr(voxel | component) after the 𝑖-th iteration of the EM algorithm. The 

(𝑖 + 1)-th iteration of the E-step involved computing the posterior probability that the 𝑓-th 

activation focus (located at voxel 𝑣!" from the binary activation image of the 𝑒-th experiment) 

was generated by task 𝑡 and component 𝑐: 

 

𝑞!"!!! 𝑡, 𝑐 ∝    ! !∈!!
!!

  𝜃!,!!   𝛽!,!!"
!  , 
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where 𝛿(𝑡 ∈ 𝑇!) was equal to one if task 𝑡 belongs to the set of tasks 𝑇! employed in the 𝑒-th 

experiment and was equal to zero otherwise. 𝑇!  indicated the size of the task set 𝑇!.   𝜃!,!!  

corresponded to the 𝑡-th row and 𝑐-th column of 𝜃!, while   𝛽!,!!"
! corresponded to the 𝑐-th row 

and 𝑣!"-th column of 𝛽!. The posterior probability 𝑞!"!!! 𝑡, 𝑐   was then used to estimate 𝜃!!!  and 

𝛽!!!  in the (𝑖 + 1)-th iteration of the M-step: 

𝜃!!! 𝑡, 𝑐 ∝    𝑞!"!!! 𝑡, 𝑐 + 𝛼
!!

!!!

!

!!!

  

𝛽!!! 𝑐, 𝑙 ∝ 𝑞!"!!! 𝑡, 𝑐
!∈!!

𝑤!"! + 𝜂        ,
!!

!!!

!

!!!

 

 

where 𝑙 indexed voxel locations within a MNI152 brain mask. The hyperparameters 𝛼 and 𝜂 

acted as pseudo-observations, so that the estimates 𝜃  and 𝛽 were non-zero for all tasks, 

components and locations within the mask. 𝑤!"!  was a positive constant if activated voxel 𝑣!" 

corresponded to location 𝑙, and zero otherwise. The exact value of 𝑤!"!  was not important; what 

mattered was the ratio between 𝑤!"!  and 𝜂. In other words, as long as 𝑤!"!  and 𝜂 were scaled by 

the same amount, the estimates would always be the same. Here 𝑤!"!  was set to five. 

 Although the EM algorithm is much faster, we found that the Gibbs sampling algorithm 

provided qualitatively better results, possibly because Gibbs sampling was able to explore a 

larger portion of the parameter space. Consequently, the resultant estimation procedure was as 

follows: (1) Gibbs sampling was performed for 100 iterations (a few hours) and (2) the EM 

algorithm was run with the Gibbs sampling output as initialization (a few hours). The estimation 

procedure was repeated with 100 random initializations resulting in 100 estimates.  

A final estimate was obtained by selecting the solution closest to the remaining 99 

estimates. Briefly, for each pair of estimates, we reordered the components (using the Hungarian 

matching algorithm) to maximize the correlations of the Pr(voxel | component) between 

corresponding pairs of components. After obtaining the optimal match, the pairwise correlations 

were averaged across all components, resulting in an average correlation value indicating the 

quality of match between the pair of estimates. The estimate resulting in the highest average 
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correlation values with the remaining 99 estimates was taken as the final estimate. We obtained 

the same final estimate using KL-divergence instead of correlation. 

 

Exhaustive search of nested ontology 

 An exhaustive search was performed to quantify the scenario that two components of the 

(N+1)-component estimate were subdivisions of a component of the N-component estimate 

(while the remaining N-1 components remained similar across both estimates). This 

quantification is based on the following idea: if a component of the N-component estimate 

divides into i-th and j-th subcomponents of the (N+1)-component, then the combination of the 

two subcomponents should be similar to the original component. To quantify the presence of this 

phenomenon, the Pr(voxel | component) of the i-th and j-th components were averaged3 into a 

single Pr(voxel | component). The resulting N components of the (N+1)-component estimate 

were matched to the N-component estimate by reordering the components (using the Hungarian 

matching algorithm) to maximize the correlation of the Pr(voxel | component) between 

corresponding pairs of components. After obtaining the optimal correspondence, the pairwise 

correlations were averaged across all pairs of components, resulting in an average correlation 

value indicating the quality of the split (with higher correlation values indicating a better split). 

By performing an exhaustive search over all values of i and j, we found the component of the N-

component estimate whose split best approximates the (N+1)-component estimate. This 

procedure was independently repeated using Pr(component | task). The estimated splits were 

visually inspected. If different (i, j) pairs were found via exhaustive search of Pr(voxel | 

component) and Pr(component | task), visual inspection was used to resolve the differences. 

 

An alternative measure of flexibility: unnormalized entropy 

 To ensure our analyses are robust to the exact definition of flexibility, unnormalized 

entropy (defined as − 𝑃𝑟 𝑣𝑜𝑥𝑒𝑙     𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖) ∗ 𝑙𝑜𝑔  𝑃𝑟(𝑣𝑜𝑥𝑒𝑙  |  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖)! ) was also 

considered as an alternative measure. The Shannon entropy measure (defined as 

−𝑃𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖   𝑣𝑜𝑥𝑒𝑙) ∗ 𝑙𝑜𝑔  𝑃𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖     𝑣𝑜𝑥𝑒𝑙! )) was deemed unsuitable due to 

the following toy example. Consider a voxel with Pr(voxel | component) equal to 1e-6 for all 

                                                
3 A nice property here is that the averaged Pr(voxel | component) is still a valid probability 
distribution. 
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components and a second voxel with Pr(voxel | component) equal to 1e-5 for all components. 

Then Pr(component | voxel) will be equal to 1/𝑁!  for both voxels for both components. 

Therefore the entropy measure will consider both voxels as equally flexible, while the 

unnormalized entropy measure will consider the second voxel to be more flexible.  

 

An alternative model 

 Here we consider an alternative generative model with N cognitive components. For 

simplicity, each experiment was assumed to only utilize one task. The activations of an 

experiment utilizing task T were assumed to be generated using a two-step procedure. In the first 

step, the set of components recruited during task T was randomly generated via the probability 

distributions Pr(component | task). Here, there are N probability distributions per task, where 

Pr(k-th component | task T) is a number between zero and one, specifying the probability that the 

k-th component is going to be active or not during task T. This contrasts with the author-topic 

model, where there is one probability distribution per task Pr(component | task), which consists 

of N numbers (between zero and one) that sum to one.  

 In the second step, each brain voxel was then determined to be activated if any of the 

recruited components (from the first step) activated the voxel according to Pr(voxel | 

component). Here, each component has an associated Pr(voxel | component) for each voxel. 

Pr(voxel | component) is a number between zero and one for each voxel (and for each 

component). This contrasts with the author-topic model, where Pr(voxel | component) is a 

number between zero and one that sums to one over all voxels (for each component). For 

example, if components C1 and C2 were recruited (according to the first step) and Pr(voxel 1 | 

C1) = 0.8 and Pr(voxel 1 | C2) = 0.3, then the probability that voxel 1 was not activated is (1 – 

0.8)*(1 – 0.3). 

 It is unclear whether this alternative model is biologically more plausible than the author-

topic model, although the probabilities may be interpreted without the qualification “for an 

activation focus”, as in the case for the author-topic model.  

We had previously experimented with a variation of this model, but the resulting 

algorithm was many times slower than the author-topic model. The reason was that the author-

topic model generates brain activation by iterating over activation foci, and therefore the 

resulting estimation algorithm iterated over activation foci. The current inference algorithm 
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(using Gibbs sampling and EM) took a few hours per random initialization. By contrast, the 

alternative model generates brain activation by iterating over all brain voxels in MNI152 space, 

and therefore the resulting estimation algorithm iterated over all brain voxels in MNI152 space. 

Given that there were many times more brain voxels than the number of activation foci, the 

resulting algorithm for the alternative model was orders of magnitudes slower. When the 

alternative model was initialized with the author-topic estimate, the resulting estimate was 

qualitatively similar. Because of the computational complexity, the alternative model has not 

been estimated with random initializations. Developing more efficient algorithms for estimating 

the alternative model will be left for future work. 
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Supplemental Results 
 

Table S1: Examples of nested ontology of Pr(component | task) 
 

n components  n+1 components 
Pr(10C9 | task) 
Theory of Mind: 0.57 
Episodic Recall: 0.52 
Face Mon/Discrim: 0.52 
Subj Emo Pict Discrim: 0.43 
Acupuncture: 0.40 

 Pr(11C9 | task) 
Theory of Mind: 0.63 
Episodic Recall: 0.55 
Rest: 0.42 
Deception: 0.34 
Acupuncture: 0.34 

Pr(11C10 | task) 
Face Mon/Discrim: 0.79 
Olfactory Mon/Discrim: 0.45 
Passive Viewing: 0.39 
Classical Conditioning: 0.36 
Subj Emo Pict Discrimin: 0.31 

    

Pr(11C8 | task) 
WCST: 0.50 
Counting/Calculation: 0.45 
n-back: 0.41 
Sternberg: 0.40 
Flanker: 0.38 

 Pr(12C8 | task) 
Flanker: 0.49 
Deception: 0.45 
Go/No-Go: 0.39 
Stroop: 0.31 
Simon: 0.27 

Pr(12C9 | task) 
WCST: 0.59 
Counting/Calculation: 0.45 
n-back: 0.38 
Sternberg: 0.37 
Task Switching: 0.33 

    

Pr(12C4 | task) 
Visual Pursuit/Tracking: 0.59 
Action Observation: 0.58 
Naming (C): 0.39 
Naming (O): 0.32 
Mental Rotation: 0.32 

 Pr(13C4 | task) 
Naming (C): 0.55 
Naming (O): 0.52 
Face Mon/Discrim: 0.28 
Passive Viewing: 0.18 
Reading (C): 0.16 

Pr(13C5 | task) 
Visual Pursuit/Tracking: 0.80 
Action Observation: 0.59 
Mental Rotation: 0.35 
Visual Distractor/Attn: 0.30 
Saccades: 0.28 

    

Pr(13C11 | task) 
Theory of Mind: 0.68 
Episodic Recall: 0.40 
Rest: 0.39 
Deception: 0.27 
Fixation: 0.25 

 Pr(14C11 | task) 
Rest: 0.49 
Fixation: 0.37 
Episodic Recall: 0.32 
Cued Explicit Recogn: 0.26 
Imagined Obj/Scenes: 0.23 

Pr(14C12 | task) 
Theory of Mind: 0.81 
Subj Emo Pict Discrim: 0.50 
Deception: 0.34 
Episodic Recall: 0.22 
Film Viewing: 0.22 

 

Notes: The number of estimated components from 2 to 20 components was explored. From 6 to 
16 components, additional components emerged as subdivisions of lower order components, 
corresponding to a nested ontology. This table illustrates for 10 to 14 components, how the top 
tasks recruiting a cognitive component are re-distributed among the subdivided components 
when more cognitive components are estimated. For example, the 12-component estimate of C4 
(12C4) divided into the 13-component estimates of C4 (13C4) and C5 (13C5), while the remaining 
11 components remained almost identical. As is evident from the table, the top 5 tasks for the 
12C4 component became the top two and three tasks that recruit 13C4 and 13C5, respectively. 
“(C)” and “(O)” indicate “covert” and “overt” respectively. 
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Figure S1. Formal mathematical representation of the author-topic model in the context of 
this work. This type of diagram is referred to as a graphical model (Blei et al., 2003). The 
circled variables represent random variables, while the squared nodes represent non-random 
parameters. The edges represent statistical dependencies. The model assumes a total of 𝐸 
experiments. The 𝑒-th experiment has 𝐹! number of activated voxels and a set 𝑇! of behavioral 
tasks. The 𝑓-th activated voxel has an observed location 𝑣, as well as a latent (unobserved) 
component 𝐶 and latent (unobserved) task 𝑇 associated with it. The variables at the corner of the 
rectangles indicate the number of times the variables inside the rectangles were replicated. 
Therefore 𝑇! was replicated 𝐸 times, once for each experiment. For the 𝑒-th experiment, the 
variables 𝑣, 𝐶 and 𝑇 were replicated 𝐹! times, once for each activated voxel in the binary 
activation image. 𝜃 denote Pr(component | task) and 𝛽 denote Pr(voxel | component). Therefore 
𝜃 and 𝛽 are matrices, where each row is a categorical distribution summing to one. 𝛼 and 𝜂 are 
hyperparameters parameterizing the Dirichlet priors on 𝜃 and 𝛽 respectively. 
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Figure S2. Probability of components activating subcortical structures Pr(voxel | 
component). (a) Cortico-cerebellar topography. Components C1, C2 and C5 activated distinct 
cerebellar territories from anterior to posterior, consistent with known cerebellar organization 
(Stooley and Schmahmann, 2009). Component C3 primarily activated auditory cortex, but not 
the cerebellum. (b) Component C7 activated the brainstem with high probability. (c) Component 
C11 activated the anterior hippocampus and amygdala with high probability. (d) Component C12 
activated the ventral striatum with high probability. The top color bar represents the surface-
based visualization of Pr(voxel | component), while the bottom color bar represents the 
volumetric slices highlighting subcortical structures.  
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Figure S3. No Pr(voxel | component) is particularly diffuse. Figure plots the values of 
Pr(voxel | component) for each component, sorted from low to high and plotted. Each curve 
corresponds to one component. The curves are all tightly clustered suggesting that no component 
is especially spatially extensive. 
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Figure S4. Quantification of nested ontology. A high correlation value at ‘n’ on the x-axis 
indicates a good quality of split from the n-component estimate to the (n+1)-component estimate. 
For instance, the high correlation value at 6 (dashed line) implies that the hypothesized split from 
6-component to 7-component is good. Similarly, the high correlation value at 15 (dashed line) 
implies that the hypothesized split from 15-component to 16-component is good. Overall, the 
high correlation values from 6 to 15 indicate evidence of a nested ontology from 6 to 16 
components. Quantifications are shown for Pr(Component | Task) (top) and Pr(Voxel | 
Component) (bottom). 
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Figure S5. Nested ontology of Pr(voxel | component). Additional components emerged as 
subdivisions of lower order components, corresponding to a nested ontology. This figure 
illustrates how the voxels likely to be activated by a cognitive component are redistributed 
among the subdivided components as the number of components is increased from (a) 10 to 11, 
(b) 11 to 12 and (c) 13 to 14. 
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Figure S6. Alternative flexibility measure: unnormalized entropy of Pr(voxel | component). 
This figure shows an alternative functional flexibility measure, unnormalized entropy, defined as 
− 𝑃𝑟 𝑣𝑜𝑥𝑒𝑙     𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖) ∗ 𝑙𝑜𝑔  𝑃𝑟(𝑣𝑜𝑥𝑒𝑙  |  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑖)! . The resulting functional 
flexibility map is similar to the original definition (Figure 5), with Pearson’s correlation equal to 
0.88. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7. Multiple-Demand (MD) system estimated in Fedorenko et al. (2013). The overlay 
corresponds to t-statistic from multiple task contrasts that isolate cognitive demand processes as 
detailed in Fedorenko et al (2013), averaged across seven tasks and shown for both hemispheres. 
The unthresholded data in volumetric space can be found at http://imaging.mrc-
cbu.cam.ac.uk/imaging/MDsystem.  
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Figure S8. Possible functional gradient within posterior medial frontal cortex. Seven 
components from the 12-component estimate have high probability of activating the posterior 
medial frontal cortex. The components are arranged so that their activations within this brain 
region were roughly ordered posterior to anterior. The black vertical line provides a reference for 
comparing activation locations across components. 
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Figure S9. Functional specificity in the cerebral cortex for 12-component and 13-
component estimates. Only regions with statistically significant (corrected for multiple 
comparisons for the entire cerebral cortex, FDR q < 0.05) functional specificity of at least two 
are shown. The somato-motor and auditory cortices exhibited higher functional specificity than 
the association cortex. Nevertheless, multiple components exhibited significant specificity in the 
association cortex, suggesting a fair degree of functional segregation in association cortex. 
Functional specificity estimates are similar across the 12-component and 13-component 
estimates: the Pearson’s correlation between the two maps is 0.76. Differences in functional 
specificity estimates between 12-component and 13-component estimates arise mostly in the 
visual cortex. This is because of the division of the visual component into dorsal and ventral 
visual streams as the number of components increases from 12 to 13. This illustrates the scale-
dependent nature of functional specialization. Note that the colorscale is logarithmic. 
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Figure S10. Functional specificity estimates are robust to analysis choices. This figure 
illustrates an alternative analysis for 3 of the 41 functionally specialized islands in lateral frontal 
and parietal cortices. For each island, the probability that the top five tasks of each component 
would activate the island was computed. The asterisks and colors indicate the most likely 
components as identified in the quantitative functional specificity maps (Figure 7). In the 
examples shown here, the top five tasks of the most likely component (as identified in Figure 7 
and Table 1) had the highest probability of activating the respective islands. The agreement 
between this alternative analysis and the original functional specificity estimates (p < 1e-5) 
suggests the estimates truly reflected the BrainMap data, rather than being artifacts of the 
particular model or estimation procedure. 
 


