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The human brain network is modular—consisting of commu-
nities of tightly interconnected nodes1. This network contains 
local hubs, which have many connections within their own 
communities, and connector hubs, which have connections 
diversely distributed across communities2,3. A mechanistic 
understanding of these hubs and how they support cognition 
has not been demonstrated. Here, we leveraged individual 
differences in hub connectivity and cognition. We show that 
a model of hub connectivity accurately predicts the cognitive 
performance of 476 individuals in 4 distinct tasks. Moreover, 
there is a general optimal network structure for cognitive 
performance—individuals with diversely connected hubs and 
consequent modular brain networks exhibit increased cogni-
tive performance, regardless of the task. Critically, we find 
evidence consistent with a mechanistic model in which con-
nector hubs tune the connectivity of their neighbours to be 
more modular while allowing for task appropriate information 
integration across communities, which increases global mod-
ularity and cognitive performance.

The human brain is a complex network that can be parsimo-
niously summarized by a set of nodes representing brain regions 
and a set of edges representing the connections between brain 
regions. In network models of functional magnetic resonance 
imaging (fMRI) data, each edge represents the strength of func-
tional connectivity—the temporal correlation of fMRI activity lev-
els—between the two nodes (Fig. 1). This network model can be 
used to study global and local brain connectivity patterns. Brain 
networks contain communities—groups of nodes that are more 
strongly connected to members of their own group than to mem-
bers of other groups (Fig. 1)1,2,4. This feature of networks is termed 
modularity and can be quantified by the modularity quality index 
Q (see Methods for equation).

Modularity is ubiquitously observed in complex systems in 
nature—a modular structure is observed consistently across the 
brains of very different species, from Caenorhabditis elegans to 
humans5. Given their ubiquity, modular network organizations are 
potentially naturally selected because they reduce metabolic costs. 
Functional and structural connectivity are metabolically expen-
sive6–10. A modular architecture with anatomically segregated and 
functionally specialized communities reduces the average length 
and number of connections—the network’s wiring cost. Moreover, 
the brain’s genotype–phenotype map is modular, forming groups 
of phenotypes, including brain communities (for example, the 

visual community)11,12, that are co-affected by groups of genes13. 
Modularity, at the genetic and phenotypic level, allows systems to 
quickly evolve under new selection pressures14,15.

As we noted in earlier work2, modularity potentially increases 
fitness in information processing systems16–18 and network simula-
tions show that modularity allows for robust network dynamics, in 
that the connections between nodes can be reconfigured without 
sacrificing information processing functions, a process necessary 
for the evolution of a network19. Artificial intelligence research has 
shown that modular networks also solve tasks faster and more accu-
rately and evolve faster than non-modular networks20, with lower 
wiring costs than non-modular networks21. Critically, modularity is 
also behaviourally relevant—modularity predicts intra-individual 
variation in working memory capacity22 and how well an individual 
will respond to cognitive training23,24.

Within each of these communities, local hubs exist that have 
strong connectivity to their own community. The within-commu-
nity strength can be used to measure a node’s locality (see Methods 
for equation and Fig. 1 for a schematic). A high within-community 
strength reflects that a node has strong connectivity within its own 
community and is thus a local hub. Local hubs are ideally wired 
for segregated processing. Because the connections of local hubs are 
predominantly concentrated within their own community and their 
functions are probably specialized and segregated, damage to local 
hubs tends to cause relatively specific cognitive deficits25,26 and does 
not dramatically alter the modular organization of the network26. 
Supporting their more segregated and discrete role in information 
processing, their activity levels do not increase as more communi-
ties are involved in a task1.

Yet, a completely modular organization renders the brain 
extremely limited in function—without connectivity between 
communities, information from, for example, visual cortex could 
never reach motor cortex and therefore visual information could 
not be used to inform movements. Thus, how is information inte-
grated across these mostly segregated communities? The inter-
dependence between modular communities and integration is 
a modern rendition of one of the first observations in neurosci-
ence—Cajal’s conservation principle, which states that the brain 
has been naturally selected and is thus organized by an economic 
trade-off between minimizing the wiring cost of the network, 
which leads to modularity, and more costly connectivity patterns 
that increase fitness, such as the integrative functions afforded by 
connections between communities27–29.
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Fig. 1 | Functional connectivity and network science processing workflow. a, The mean blood-oxygen-level dependent (BOLD) signal across time is 
extracted from 264 cortical, subcortical and cerebellar regions, 3 of which are shown here. b, The time series of the three nodes is shown. To measure 
functional connectivity, the Pearson r correlation coefficient between the time series of node i and the time series of node j for all i and j is calculated.  
c, The strongest (for example, the top 5% r values) functional connections serve as weighted edges in the graph (a range of graph densities was explored, 
see Methods for details). d, The Infomap community detection algorithm is applied, generating a community assignment for each node, displayed here 
in different colours in a schematic (top) and the mean graph across subjects (bottom). A single community (bottom, light blue) and its connections 
to the rest of the graph are extracted and enlarged, with nodes coloured by community. Note that the nodes within each community are more strongly 
connected to each other than to nodes in other communities. e, Given that particular community assignment and network, node participation coefficients 
are calculated. Red nodes are high participation coefficient nodes, shown here in a schematic (top) and the mean graph (bottom). A node (and its 
connections; bottom) with a high participation coefficient is extracted and enlarged, with nodes coloured by community. Note that the connector hub is 
connected to many different communities. f, Within-community strengths are also calculated. Purple nodes are high within-community strength nodes, 
shown here in a schematic (top) and the mean graph (bottom). A node (and its connections; bottom) with a high within-community strength is extracted 
and enlarged, with nodes coloured by community. Note that the local hub is strongly connected to its own community. The graphs along the bottom are 
laid out using the ForceAtlas2 algorithm, where nodes are repelling magnets and edges are springs, which causes nodes in the same community to cluster 
together, nodes that are diversely connected across communities (connector hubs) to be in the centre of the graph, and nodes that are strongly connected 
to a single community (local hubs) to be in the middle of that community. 
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Connector hubs have diverse connectivity across different com-
munities. The participation coefficient can be used to measure a 
node’s diversity (see Methods for equation and Fig. 1 for a sche-
matic). A high participation coefficient reflects that a node has con-
nections equally distributed across the brain’s communities and is 
thus labelled a connector hub. Connector hubs are ideally wired 
for integrative processing1,27,30–33. In human brain networks, con-
nector hubs have a particular cytoarchitecture34, are implicated in 
a diverse range of cognitive tasks35,36 and are physically located in 
anatomical areas at the boundaries between many communities32. 
Moreover, damage to connector hubs causes widespread cognitive 
deficits25 and a decrease in the modular structure of the network26. 
During cognitive tasks, connector hubs appear to coordinate con-
nectivity changes between other pairs of nodes—activity in con-
nector hubs predicts changes in the connectivity of other nodes, 
particularly the connectivity between nodes in different communi-
ties37–39. Connector hubs are also strongly interconnected to each 
other, forming a diverse club—tightly interconnected connector 
hubs2. Connector hubs also have connections to almost every com-
munity in the network. Thus, they have access to information from 
every community. Finally, connector hubs exhibit increased activity 
if more communities are engaged in a task, which suggests that con-
nector hubs are involved in processes that are more demanding as 
more communities are engaged1.

Connector hubs might be nature’s cheapest solution to integra-
tion in a modular network. Generative models suggest that the 
diverse club—tightly interconnected connector hubs—potentially 
evolved to balance modularity and efficient integration2. However, 
given the amount of wiring required to link to many different and 

distant communities, connector hub connectivity patterns dra-
matically increase wiring costs10. Despite this cost, connector hubs 
potentially provide a necessary function—connector hubs could be 
the conductor of the brain’s neural symphony.

A parsimonious mechanistic model of these findings is that con-
nector hubs tune connectivity between communities. Neuronal 
tuning refers to cells selectively representing a particular stimulus, 
association or information. We introduce the mechanistic concept 
of network tuning, in which connections between nodes are orga-
nized to achieve a particular network function or topology, such 
as the integration of information across communities or decreased 
connectivity between two communities. We propose that diverse 
connectivity across the network’s communities allows connector 
hubs to tune connectivity between communities to be modular 
but also allows for task appropriate information integration across 
communities. This facilitates a global modular network structure in 
which local hubs and nodes within each community are dedicated to 
mostly autonomous local processing. The modular network struc-
ture afforded by diversely connected connector hubs—connector 
hubs that are wired well for network tuning—is potentially optimal 
for a wide variety of cognitive processes. Thus, despite their cost, 
strong and diverse connector hubs might be critically necessary for 
integrative processing in complex modular neural networks.

Local and connector hubs have been exhaustively studied by 
network science and their functions have been inferred from their 
topological locations in the network2. Moreover, individuals’ brain 
network connectivity has been shown to be predictive of task per-
formance40–45 and is able to ‘fingerprint’ individuals46. However, no 
study has leveraged these individual differences to test a mechanistic  

60 70 80 90 100 110
40

50

60

70

80

90

100

110

120

P
er

fo
rm

an
ce

Pearson's r (d.f. = 471): 0.536,
P <1×10–3,  CI: 0.468, 0.597

50 60 70 80 90 100
30

40

50

60

70

80

90

100

110

6 7 8 9 10 11 12 13

Predicted performance

2

4

6

8

10

12

14

P
er

fo
rm

an
ce

60 65 70 75 80 85 90 95 100 105

Predicted performance

20

30

40

50

60

70

80

90

100

110

Working memory Relational

Language and maths Social

La
ng

ua
ge

Rela
tio

na
l

Soc
ial

W
or

kin
g 

m
em

or
y

Working memory

Social

Relational

Language

0.825

0.850

0.875

0.900

0.925

a b
Pearson's r (d.f. = 455): 0.357,

P <1×10–3, CI: 0.274, 0.434

Pearson's r (d.f. = 469): 0.375,
P <1×10–3, CI: 0.295, 0.45

Pearson's r (d.f. = 471): 0.28,
P <1×10–3, CI: 0.195, 0.361

Fig. 2 | Hub diversity and locality, modularity and network connectivity predict cognitive performance. a, For each task, the correlation between 
task performance and the performance predicted by a predictive model of hub diversity and locality, modularity and network connectivity. Each data 
point represents the (y axis) true performance (see Methods, each task’s performance value scale is unique) of the subject and the (x axis) predicted 
performance of the subject by the neural network. Shaded areas represent 95% CIs. In every task, the predictive model significantly predicted task 
performance (P <1⨯ 10-3, Bonferroni corrected (n tests =  4), N =  working memory: 473, relational: 457, language and maths: 471, social: 473). b, We 
correlated the tasks’ feature correspondence values (see Supplementary Fig. 3 for each task’s feature correspondence with each subject measure)—
measuring whether the two tasks’ optimal hub and network structures are also optimal for the same subject measures. High correlations mean that  
the two tasks’ hub and network structures are similarly optimal for the same subject measures (all results significant at P < 1⨯ 10-3, Bonferroni corrected  
(n tests =  4), d.f. =  45, N =  47, the number of subject measures, while the feature correspondence N =  working memory: 473, relational: 457, language and 
maths: 471, social: 473).
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model of hub function and direct evidence supporting a mecha-
nistic model of these hubs and how they support human cognition 
remains absent. Moreover, it is currently unknown whether there is 

a hub and network structure that is optimal for a diverse set of tasks 
or whether different hub and network structures are optimal for 
different tasks. Here, we analyse how individual differences in the 
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Fig. 3 | Connector hubs and local hubs concurrently facilitate increased modularity and task performance. a–d, For each task, diversity- and locality-
facilitated modularity coefficients, measures of how the diversity and locality (respectively) of a node facilitate modularity, were calculated. In every 
task, the diversity- and locality-facilitated modularity coefficients of connector (a) and local hubs (b), compared with other nodes, are significantly 
(except resting state for locality) higher, demonstrating that strong connector and local hubs facilitate the modular structure of brain networks. For 
each task, diversity- and locality-facilitated performance coefficients were calculated. In every task, the diversity- and locality-facilitated performance 
coefficients of connector (c) and local hubs (d), compared with other nodes, are significantly (except language for diversity (P =  0.0677 after Bonferroni 
correction (uncorrected P =  0.0169)), relational and social for locality) higher, demonstrating that strong connector and local hubs facilitate increased task 
performance. For a–d, the mean and quartiles are marked in each violin. Each task’s distribution of coefficients was tested for normality using D’Agostino 
and Pearson’s omnibus test k2. No evidence was found (k2 > 0.0 for all tasks) that these distributions were not normal. N =  264, the number of nodes in 
the graph. e, The correlation between a node’s diversity-facilitated modularity coefficient and a node’s diversity-facilitated performance coefficient. f, The 
correlation between the node’s locality-facilitated modularity coefficient and the node’s locality-facilitated performance coefficient. In e and f, N =  264, the 
number of nodes in the graph. Shaded areas represent 95% CIs. All P values are Bonferroni corrected (n tests =  4). Wm, working memory.
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locality and diversity of hubs during the performance of a task relate 
to network connectivity, modularity and performance on that task 
as well as subject measures collected outside of the scanner, includ-
ing psychometrics (for example, fluid intelligence, working mem-
ory) and other behavioural measures (for example, sleep quality and 
emotional states). We test a mechanistic model in which connector 
hubs tune their neighbours’ connectivity to be more modular, which 

increases the global modular structure of the network and task per-
formance, regardless of the particular task.

We leveraged the size and richness of fMRI data from 476 (S500 
release) subjects that participated in the Human Connectome 
Project47. A network was built for each subject using fMRI data col-
lected during seven different cognitive states (resting state, working 
memory, social cognition, language and maths, gambling, relational 
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between connector hubs and modularity. a, Each entry is the Pearson correlation coefficient, r, across subjects (N =  476), between modularity (Q) 
and that edge’s weights. b, For each connector hub, the Pearson r between the hub’s participation coefficients and each edge’s weights across subjects 
(N =  476) was calculated. The matrix in b is the mean of those matrices across connector hubs. c, To investigate the relationship between connector 
hubs’ participation coefficients, edge weights and Q, a mediation analysis was performed for each connector hub, with an edge’s weights mediating the 
relationship between the connector hub’s participation coefficients and Q indices (N =  476). Each edge’s mean mediation value between connector hubs’ 
participation coefficients and Q is shown. d, The anatomical locations of each node and community on the cortical surface35,48.
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and motor; see Methods). Thus, each subject has seven different 
networks for analysis. Each edge represents the strength of func-
tional connectivity between each pair of 264 nodes48. In every net-
work, Q and a division of nodes into communities was calculated 
(see Methods). Next, in every network, for each node, locality and 
diversity were measured. Within-community strength measures a 
node’s locality and the participation coefficient measures a node’s 
diversity (see Methods for equations). Figure 1 displays this pro-
cessing workflow.

In the proposed mechanistic model of hub connectivity, connec-
tor hubs, via their diverse connectivity, tune the network to preserve 
or increase global modularity and local hub locality, which, in turn, 
increases task performance. If this model is true, hub connectivity 
in the network and network modularity should be predictive of task 
performance. Thus, the first test of this model involved using hub 
diversity and locality, network connectivity and modularity to pre-
dict task performance. A predictive multilayer perceptron model (3 
layers plus the input layer and the output layer (enough for non-linear 
relationships); 8 neurons per layer (1 per feature, with 2 layers con-
taining 12 neurons, allowing for higher dimensional expansion)) was 
used to predict subjects’ task performance (Supplementary Fig. 1 and 
Fig. 2). Known as deep neural networks, these predictive models are 
constructed by tuning the weights between neurons across adjacent 
layers to achieve the most accurate relationship between the features 
(input) and the value the model is trying to predict (output). The 
predictive model’s features (n =  8) captured how well subject node 
diversity and locality, network connectivity (that is, edge weights in 
the network) and modularity (Q) are optimized for the performance 
of a task. For example, for the feature that captures how optimized 
the diversity of a subject’s nodes are for task performance, for each 
node, the Pearson r across subjects between that node’s participa-
tion coefficients (which measures diversity) and task performance 
values was calculated (Supplementary Fig. 1a). We call this r value 
the node’s diversity-facilitated performance coefficient. The feature, 
then, for a given subject, is the Pearson r across nodes between each 
node’s diversity-facilitated performance coefficient and each node’s 
participation coefficient in that subject, representing how optimized 
the diversity of that subject’s nodes are for performance in the task 
(Supplementary Fig. 1). Critically, for each subject’s feature calcu-
lation, the diversity-facilitated performance coefficients are calcu-
lated without that subject’s data. The same procedure is executed for 
locality (using the within-community strengths) and edge weights; 
instead of participation coefficients, within-community strengths 
or edge weights are used. Finally, the Q values of the networks are 
included in the model.

The predictive model was fitted for each of the four cognitive 
tasks that subjects performed in the Human Connectome Project 
for which performance was measured (working memory, relational, 
language and maths, social tasks; see Methods for task performance 
measures). For this and other subject performance analyses, we 
could not analyse the gambling, motor or resting-state tasks, as 
there was no performance measured for these tasks. Each predictive 
model was fitted to the subjects’ networks constructed during the 
performance of each task as well as the resting state (four features 
from each). The inclusion of the resting-state and the cognitive task 
state allowed the model to capture the subjects’ so-called intrinsic 
network states as well as the subjects’ task-driven network states. 
Using a leave-one-out cross-validation procedure, the features were 
constructed and the model was fitted with data from all subjects 
except one. The predictive model was then used to predict the left-
out subject’s task performance (Supplementary Fig. 1c). To test the 
accuracy of the model, the Pearson r between the observed and 
predictive performance of each subject was calculated (Fig. 2 and 
Supplementary Fig. 2).

This predictive model significantly (P < 0.001, Bonferroni cor-
rected (n tests =  4)) predicted performance in all four tasks (Fig. 2). 

Also, using a predictive model with only node diversity and locality 
and modularity features (that is, ignoring individual connections 
in the network) did not dramatically decrease the models’ predic-
tion accuracies (Supplementary Fig. 2a,b). Given that head motion 
is a concern when analysing fMRI data, scrubbing techniques were 
applied to remove motion artefacts from the fMRI data and the mean 
frame-wise displacement was regressed out from task performance. 
Neither of these additional analyses dramatically decreased the pre-
dictive models’ prediction accuracies (Supplementary Fig. 2c–f).  
Finally, in each task, modularity (Q) alone was only weakly cor-
related with task performance (working memory, Pearson’s r 
(d.f. =  471): 0.303, P < 0.001, confidence interval (CI): 0.219, 0.383; 
relational, Pearson’s r (d.f. =  455): 0.106, P: 0.095, CI: 0.014, 0.196; 
language and maths, Pearson’s r (d.f. =  469): 0.085, P: 0.259, CI: 
–0.005, 0.174; social, Pearson’s r (d.f. =  471): 0.084, P: 0.275, CI: 
–0.006, 0.173; all CIs =  95%). These results suggest that the diversity 
and locality of nodes, in combination with the modular connectivity 
structure of the network, are highly predictive of task performance.

The Human Connectome Project contains psychometrics and 
other behavioural measures collected outside of the magnetic 
resonance imaging scanner; for clarity and to differentiate these 
measures from the task performance measures and the tasks’ corre-
sponding networks, we call these ‘subject measures’49. If a particular 
hub and network structure is generally optimal for many different 
types of cognition and many different behaviours (a component of 
the mechanistic model of hub function), then the tasks’ optimal hub 
and network structures should be similarly optimal across subject 
measures—suboptimal for negative measures such as poor sleep, 
sadness and anger and optimal for positive measures such as life 
satisfaction and processing speed.

For each task, the predictive model constructs features that cap-
ture how optimal each subject’s hub and network structure is for 
performance on that task. Using the subjects’ networks from a given 
task, the predictive model of hub and network structure can con-
struct features that capture how optimal each subject’s hub and net-
work structure is for a given subject measure collected outside of 
the scanner instead of task performance. This was executed using 
the networks from each of the four tasks for all subject measures. 
Thus, the predictive model constructs features that capture how 
optimal each subject’s hub and network structure (measured dur-
ing the performance of a task (for example, working memory)) is 
for a given subject measure (for example, delayed discounting). The 
correspondence between the features in the two models—how simi-
larly optimal subjects’ hub and network structures are for the task 
and a given subject measure—can then be calculated by, across sub-
jects, computing the correlation between the features in the two pre-
dictive models. Specifically, for each feature, the correlation, across 
subjects, between the feature in the predictive model fitted to task 
performance (for example, working memory) and that feature in the 
predictive model that was fitted to a subject measure (for example, 
delayed discounting) is computed. The mean correlation across the 
edge, locality and diversity features (n =  6, 3 features from resting-
state and 3 features from the task) is then calculated, which we call 
feature correspondence. The Q feature was ignored, as the Q feature 
remains constant regardless of what the model is fitted to. Thus, 
this value determines whether each task’s optimal hub and network 
structure is optimal for other subject measures and whether all of 
the tasks’ optimal hub and network structures are similarly optimal 
for other subject measures.

For each task, the hub and network structures that were optimal 
for that task were typically also optimal for positive subject mea-
sures and suboptimal for negative subject measures (Supplementary 
Fig. 3). Next, the similarity by which two tasks’ optimal hub and 
network structures generalized to other subject measures can be 
measured by correlating the feature correspondence values (for 
example, the working memory and social columns in Supplementary 
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Fig. 3). High Pearson r correlations were found between all tasks (r 
(d.f. =  45) values between 0.82 and 0.96, P < 0.001 Bonferroni cor-
rected (n tests =  4), Fig. 2b). Finally, the predictive model was able to 
significantly predict most subject measures (Supplementary Fig. 4).  
These results demonstrate that, if an individual has a particular 
brain state during a given task, as defined by the connectivity of 
the network’s hubs, that is optimal for that given task, it also prob-
ably optimal for other subject measures. Critically, different tasks’ 
optimal hub and network structures are similarly optimal for other 
subject measures. Moreover, these findings demonstrate that the 
predictive model captures hub connectivity patterns in the network 
that are relevant for behaviour and cognition in general, instead of 
overfitting hub connectivity patterns that are only related to a par-
ticular cognitive process or behaviour.

Having established relationships between hub locality and diver-
sity, modularity and task performance, we sought to test the mecha-
nistic claim that diverse connector hubs increase modularity by 
analysing how individual differences in a node’s diversity within the 
network are predictive of individual differences in brain network 
modularity (Q; see Methods for mathematical definition). Typically, 
the result of damage to a region can be used to infer the function 
of that region—if a region is damaged and modularity decreases, 
the region is putatively involved in preserving modularity. Here, 
we analyse the other direction—when a hub is diversely connected 
across the brain (that is, strong), if modularity increases, the region’s 
diverse connectivity is putatively involved in preserving modularity 
(Supplementary Fig. 5).

Thus, we first tested whether, across subjects, a node’s participa-
tion coefficients are positively correlated with modularity (Q). For 
each node, the Pearson r between that node’s participation coeffi-
cients and the network’s modularity values (Q) across subjects was 
calculated. Intuitively, higher r values indicate that the node’s diver-
sity (that is, the participation coefficient) is associated with higher 
network modularity. This is an important feature that can be used 
to distinguish the roles of different brain regions. For ease of pre-
sentation, we refer to each node’s r value as the diversity-facilitated 
modularity coefficient, as it measures how the diversity of the node’s 
connections facilitates (we use this term to remain causally agnos-
tic) the modularity of the network. For every node, the Pearson r 
between the within-community strengths and Q values across sub-
jects was also calculated. Intuitively, higher r values indicate that 
the node’s locality (that is, the within-community strength) is asso-
ciated with higher network modularity. We refer to each node’s r 
value (between within-community strengths and Q values across 
subjects) as the locality-facilitated modularity coefficient, as it 
measures how the locality of the node’s connections facilitates the 
modularity of the network.

We performed these computations separately for all seven dis-
tinct cognitive states. In all states, the diversity-facilitated modu-
larity coefficients of connector hubs (top 20% highest participation 
coefficient nodes) were shown to be significantly higher than other 
nodes in a Bonferroni-corrected, independent two-tailed t-test  
(Fig. 3a, working memory t (d.f.: 262): 7.182, P < 0.001, Cohen’s 
d: 1.104, CI: 0.062, 0.117; gambling t (d.f.: 262): 4.101, P: 0.0004, 
Cohen’s d: 0.63, CI: 0.025, 0.052; language and math t (d.f.: 262): 
7.292, P < 0.001, Cohen’s d: 1.12, CI: 0.062, 0.102; motor t (d..f: 262): 
7.354, P < 0.001, Cohen’s d: 1.13, CI: 0.088, 0.13; relational t (d.f.: 
262): 4.457, P: 0.0001, Cohen’s d: 0.685, CI: 0.038, 0.075; resting state 
t (d.f.: 262): 3.947, P: 0.0007, Cohen’s d: 0.606, CI: 0.029, 0.096; social 
t (d.f.: 262): 3.716, P: 0.0017, Cohen’s d: 0.571, CI: 0.022, 0.051. P val-
ues Bonferroni corrected (n tests =  7), all CIs =  95%). Moreover, in 
all cognitive states, the locality-facilitated modularity coefficients of 
local hubs (top 20% highest within-community strength nodes) were 
shown to be significantly higher than other nodes in a Bonferroni-
corrected, independent two-tailed t-test (Fig. 3b, working memory 
t (d.f.: 262): 5.415, P < 0.001, Cohen’s d: 0.832, CI: 0.045, 0.093;  

gambling t (d.f.: 262): 4.959, P < 0.001, Cohen’s d: 0.762, CI: 0.034, 
0.074; language and maths t (d.f.: 262): 6.428, P < 0.001, Cohen’s d: 
0.988, CI: 0.045, 0.085; motor t (d.f.: 262): 9.822, P < 0.001, Cohen’s 
d: 1.509, CI: 0.101, 0.146; relational t (d.f.: 262): 6.131, P < 0.001, 
Cohen’s d: 0.942, CI: 0.036, 0.07; resting state t (d.f.: 262): 0.966, 
P: 1.0, Cohen’s d: 0.148, CI: –0.014, 0.038; social t (d.f.: 262): 4.54, 
P:0.0001, Cohen’s d: 0.698, CI: 0.026, 0.06. P values Bonferroni cor-
rected (n tests =  7), all CIs =  95%). While the diversity-facilitated 
modularity coefficients of connector hubs were not always positive, 
they were typically close to or above zero. This means that a diverse 
connector hub can be associated with increased integrative con-
nectivity between communities without decreasing the modularity 
of the network. To more fully understand the relationship between 
node diversity and the network modularity, the Pearson r between 
each node’s mean participation coefficient across subjects (which 
defines a connector hub) and the node’s diversity-facilitated modu-
larity coefficient was calculated (Supplementary Fig. 6). Moreover, 
the Pearson r between each node’s mean within-community strength 
across subjects (which defines a local hub) and the node’s locality-
facilitated modularity coefficient was calculated (Supplementary Fig. 
6). In every task, there was a significant positive correlation between 
a node’s mean participation coefficient and that node’s diversity-
facilitated modularity coefficient (Supplementary Fig. 6a). In every 
task, there was also a significant positive correlation between a node’s 
mean within-community strength and its locality-facilitated mod-
ularity coefficient (Supplementary Fig. 6b). These analyses dem-
onstrate that connector hubs’ strong diverse connectivity to many 
communities and local hubs’ strong local connectivity are associated 
with higher brain network modularity, regardless of the subject’s 
cognitive state. Thus, these results are consistent with the mechanis-
tic model of connector hub function, where connector hubs preserve 
the modular structure of the network via diverse connectivity.

We confirmed the reliability and reproducibility of these results 
and demonstrated that they are not driven by analytically neces-
sary relationships. First, the mean participation coefficient and 
within-community strength were calculated in one half of the sub-
jects and the diversity- and locality-facilitated modularity coef-
ficients were calculated in the other half of the subjects, testing 
10,000 splits (Supplementary Fig. 7). Next, four null models were 
tested to ensure that the current results were not driven by analyti-
cally necessary relationships (Supplementary Fig. 8). Other analy-
ses ensured that the current results are not driven by the number 
of communities (Supplementary Figs. 9 and 10). Finally, to justify 
the use of the Pearson r to calculate the coefficients, the relation-
ship between node diversity and Q was confirmed as typically linear 
(Supplementary Fig. 11).

Having found evidence supporting a mechanistic model in 
which connector hubs tune their neighbours’ connectivity to be 
more modular, thereby increasing the global modular structure 
of the network, we next asked whether diverse hubs concurrently 
facilitate higher modularity and higher task performance. To 
address this question, the Pearson r between each node’s partici-
pation coefficient (or within-community strength) and task per-
formance was calculated. A positive r at a node indicates that a 
subject with a higher participation coefficient (or within-commu-
nity strength) at that node performs better on the task. We refer 
to this r value as the node’s diversity-facilitated performance coef-
ficient for participation coefficients, and locality-facilitated perfor-
mance coefficient for within-community strengths. Note that these 
are the same r values used in the construction of the predictive 
performance model features (Supplementary Fig. 1). However, for 
the predictive model, we calculated these r values with the subject 
whose behaviour was to be predicted held out. Here, we calculate 
these r values across all subjects.

In all tasks, the diversity-facilitated performance coefficients of 
connector hubs (top 20% strongest) were shown to be significantly  
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higher than other nodes in a Bonferroni-corrected, indepen-
dent two-tailed t-test, with only the language and maths task at 
P =  0.0677 after Bonferroni correction (uncorrected P =  0.0169) 
(Fig. 3c, working memory t (d.f.: 262): 5.378, P < 0.001, Cohen’s 
d: 0.826, CI: 0.03, 0.071; language and maths t (d.f.: 262): 2.404, 
P: 0.0677, Cohen’s d: 0.369, CI: 0.005, 0.04; relational t (d.f.: 262): 
2.959, P: 0.0135, Cohen’s d: 0.455, CI: 0.01, 0.037; social t (d.f.: 262): 
4.744, P < 0.001, Cohen’s d: 0.729, CI: 0.025, 0.053. All P values 
Bonferroni corrected (n tests =  4), all CIs =  95%). The locality-
facilitated performance coefficients of local hubs (top 20% stron-
gest) were shown to be significantly higher than other nodes in 
a Bonferroni-corrected, independent two-tailed t-test (Fig. 3d, 
working memory t (d.f.: 262): 2.712, P: 0.0285, Cohen’s d: 0.417, 
CI: 0.008, 0.054; language and maths t (d.f.: 262): 2.864, P: 0.0181, 
Cohen’s d: 0.44, CI: 0.006, 0.043; relational t (d.f.: 262): 0.327,  
P: 1.0, Cohen’s d: 0.05, CI: –0.016, 0.021; social t (d.f.: 262): 1.862, 
P: 0.2547, Cohen’s d: 0.286, CI: 0.0, 0.031. All P values Bonferroni 
corrected (n tests =  4), all CIs =  95%). Moreover, the correlation 
between each node’s diversity-facilitated performance coeffi-
cient and each node’s mean participation coefficient was positive 
and significant (Supplementary Fig. 6), suggesting that, for con-
nector hubs, a higher participation coefficient is associated with 
higher task performance. The Pearson r correlation between each 
node’s locality-facilitated performance coefficient and each node’s 
mean within-community strength was also positive and signifi-
cant (Supplementary Fig. 6; all tasks except relational, Bonferroni 
(n tests =  4) P =  0.081, uncorrected P =  0.02), suggesting that, for 
local hubs, a higher within-community strength is also associated 
with higher task performance. Finally, there was a significant posi-
tive correlation between a node’s diversity-facilitated modularity 
coefficient and a node’s diversity-facilitated performance coeffi-
cient (Fig. 3e) as well as a significant positive correlation between 
a node’s locality-facilitated modularity coefficient and a node’s 
locality-facilitated performance coefficient (Fig. 3f). Thus, diverse 
connector hubs facilitate higher task performance in proportion 
to how much they facilitate higher modularity, suggesting a strong 
link between the increased modularity afforded by diverse hubs 
and increased task performance.

Next, we tested the mechanistic network tuning claim of the 
model: Do connector hubs increase Q by tuning the connectivity 
of their neighbours’ edges to be more modular? This relationship 
should only hold for connector hubs, not local hubs, as previous 
studies suggest that connector hubs tune connectivity between 
communities and maintain a modular structure1,35,37–39. We there-
fore examined connector hubs for which their diversity-facilitated 
modularity coefficients were positive. This analysis had two aspects. 
First, do connector hubs increase modularity by tuning within-
community edge strengths? Second, are connector hubs tuning the 
within-community edge strengths of their neighbours in order to 
increase global modularity?

In order to test the first aspect of the neural tuning mechanism—
whether within-community edges are tuned by connector hubs 
in order to increase global modularity—we used a canonical divi-
sion of nodes into communities (Fig. 4d displays this division, see 
Methods for link to division35,48). We assessed, for each edge in the 
network, how the edge’s weights related to modularity values (Q) 
across subjects (Fig. 4a). Next, we calculated how well each connec-
tor hub’s participation coefficients correlate with each edge’s weights 
across subjects (Fig. 4b). Higher Q values and higher connector hub 
participation coefficients are associated with decreased connectiv-
ity between the visual, sensory/motor hand, sensory/motor mouth, 
auditory, ventral attention, dorsal attention and cingulo-opercular 
communities. These communities were also more strongly con-
nected to fronto-parietal, default mode, salience and subcortical 
communities in networks with higher modularity values and higher 
connector hub participation coefficients.

Given these observations, we sought to find the edges that medi-
ate between connector hubs’ increased participation coefficients 
and modularity (Q), as these are the edges that connector hubs 
probably tune in order to increase Q. Specifically, a mediation anal-
ysis was performed for each connector hub, with an edge weight 
mediating the relationship between the connector hub’s participa-
tion coefficients and the Q indices of the networks across subjects. 
An edge’s mediation value of a connector hub’s participation coef-
ficients and Q is the regression coefficient of the edge’s weights by 
the connector hub’s participation coefficients across subjects multi-
plied by the regression coefficient of Q indices by the edge’s weights, 
controlling for the connector hub’s participation coefficients, across 
subjects. Each edge’s mean mediation value across connector hubs is 
shown in Fig. 4c. We found that edges between the visual, sensory/
motor hand, sensory/motor mouth, auditory, ventral attention, dor-
sal attention and cingulo-opercular communities, as well as edges 
between those communities and the fronto-parietal, default mode 
and subcortical communities, mediate the relationship between 
connector hubs’ participation coefficients and Q indices. These 
results are consistent with a mechanistic model in which diverse 
connector hubs tune connectivity to increase segregation between 
sensory, motor and attention systems, which increases the global 
modularity of the network.

Next, we tested the second aspect of the network tuning mecha-
nism—whether the relationship between a connector hub’s par-
ticipation coefficients and Q indices is mediated primarily by that 
connector hub’s neighbours’ edge pattern increasing Q. Neighbours 
were defined based on edges present between the 2 nodes in a 
graph at a density of 0.15 (as it was our densest cost explored). The 
mediation values calculated above each represent an edge medi-
ating between a node i’s participation coefficients and Q values. 
Thus, for each connector hub i, there is the set of arrays of absolute 
mediation values of node i’s neighbours’ edges (n =  263 for each 
neighbour j’s array) and the set of arrays of the absolute mediation 
values of node i’s non-neighbours’ edges (n =  263 for each non-
neighbour j’s array). Edges of node i in every array were ignored, 
as we were only interested in how the participation coefficients of 
connector hub i modulate Q via the mediation of j’s connectivity 
to the rest of the network, not j’s connectivity to connector hub i 
(thus, n =  264–1). If a connector hub is primarily modulating Q 
via the tuning of its neighbours’ edges, then the absolute media-
tion values in the neighbours’ arrays should be greater than the 
absolute values in the non-neighbours’ arrays. The distribution of  
t values between the two sets of arrays for all connector hubs 
(neighbours versus non-neighbours) is shown in Supplementary 
Fig. 12; across tasks, the mediation values were consistently and sig-
nificantly higher for connector hubs’ neighbours’ edges than non-
neighbours’ edges. Moreover, these same t values can be calculated 
for local hubs, using the within-community strength instead of the 
participation coefficient; thus, an edge mediates between a local 
hub’s within-community strengths and Q. Across tasks, connector 
hubs’ neighbours’ mediation t values were shown to be higher than 
local hubs’ neighbours’ mediation t values with a two-tailed inde-
pendent student’s t-test (t (d.f.: 1,358): 3.892, P: 0.0001, Cohen’s  
d: 0.219, CI: 1.887, 6.62), demonstrating that this result is specific 
to connector hubs. All distributions were confirmed as normal (k2 
> 100.0, P < 0.00001 for all tasks). We also performed an alterna-
tive analysis that confirmed these relationships (see Methods and 
Supplementary Fig. 13). These results suggest that each connector 
hub, not local hub, tunes their neighbours’ connectivity to be more 
modular. A connector hub’s high diversity-facilitated modular-
ity coefficient does not largely reflect diffuse global connectivity 
changes. Instead, connector hubs are probably connected in a way 
that allows them to directly tune the connectivity of their neigh-
bours to be more modular, thereby increasing global network 
modularity. Thus, the locality-facilitated modularity coefficients 
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are probably a downstream effect of connector hub modulation. 
Supporting this interpretation, we found that, when connector 
hubs have high participation coefficients, local hubs have high 
within-community strengths (Supplementary Fig. 14).

In the series of analyses we report here, we explicitly and com-
prehensively tested a mechanistic model by leveraging individual 
differences in connectivity and cognition in humans. Specifically, 
a model of the diversity and locality of hubs, the modularity of 
the network and the network’s connectivity was highly predictive 
of task performance and a range of subject measures. Critically, 
the diversity and locality of nodes optimal for each task were also 
similarly optimal for positive subject measures. Thus, it appears 
that there is a hub and network structure that is generally opti-
mal for cognitive processing. We found evidence that diverse 
connector hubs preserve or increase the modularity of brain net-
works. Moreover, diverse connector hubs tune the connectivity 
of their neighbours to be more modular. Finally, we found that 
the diversity of connector hubs simultaneously facilitated higher 
modularity and task performance. Thus, connector hubs appear 
to contribute to the maintenance of an optimal modular archi-
tecture during integrative cognition without greatly increasing 
the wiring cost or decreasing modularity2,28,50. In sum, these data 
are consistent with a mechanistic model of hub function, where 
connector hubs integrate information and subsequently tune their 
neighbours’ connectivity to be more modular, which increases the 
global modularity of the network, allowing local hubs and nodes to 
perform segregated processing.

Across individuals, we found that diverse connector hubs 
increase modularity and task performance, regardless of the task. 
In all seven tasks, the subjects with the most diversely connected 
connector hubs also had the highest modularity and, in the four 
tasks for which performance was measured, the highest task perfor-
mance. Thus, we propose that connector hubs are probably critical 
for integrating information and tuning their neighbours’ connectiv-
ity to be more modular, regardless of the task. Although connector 
hubs are more active during tasks that require many communities1, 
as their functions are probably more computationally demanding 
during these tasks, it is likely that every task requires the functions 
of connector hubs, as supported by our finding that their diverse 
connectivity predicts performance in all of the tasks analysed here.

Our findings compliment many previous task-based fMRI stud-
ies that have identified regions that are more active during a partic-
ular cognitive process. We have demonstrated that, while different 
regions are more or less active in different tasks, including connector 
hubs, the diverse connectivity and integration and tuning functions 
of connector hubs are consistently required across different cogni-
tive processes. Our findings are also consistent with neuropsycho-
logical studies of patients with focal brain lesions. It has been found 
that damage to connector hubs decreases modularity and causes 
widespread cognitive deficits, while damage to local nodes does 
not decrease modularity and causes more isolated deficits, such as 
hemiplegia, or aphasia25,26. While connector hubs are probably not 
critical for only one specific cognitive process, their functions and 
diverse connectivity are required to maintain a cognitively optimal 
modular structure across cognitive processes. Thus, as we observed 
here, individual differences in the diversity of connector hubs’ con-
nectivity is predictive of cognitive performance across a range of 
very different tasks. Although diversely connected connector hubs 
are critical for successful performance in many different tasks, any 
given task nevertheless recruits very different cognitive and neu-
ral processes; each task probably engages connectivity patterns that 
are specifically optimal to that task. Future analyses should seek to 
understand both the general optimal connectivity patterns of con-
nector hubs found here and the connectivity patterns that are opti-
mal to a single task, including whether and how these connectivity 
patterns interact.

Methods
Data and preprocessing. We used fMRI data from the Human Connectome 
Project47 S500 release. For the task-based fMRI data, Analysis of Functional 
NeuroImages (AFNI) was used to preprocess the images51. The AFNI command 
3dTproject was used, passing the mean signal from the cerebral spinal fluid mask, 
the white matter mask, the whole brain signal and the motion parameters to the 
‘-ort’ options, which removes these signals via linear regression. Within AFNI, 
the ‘-automask’ option was used to generate the masks. The ‘-passband 0.009 0.08’ 
option, which removes frequencies outside 0.009 and 0.08, was used. Finally, the 
‘-blur 6’ option, which smooths the images (inside the mask only) with a 6 mm 
full-width at half-maximum filter after the time series filtering, was used. Given 
the short length of the emotion task (176 frames; resting state: 1,200, social: 274, 
relational: 232, motor: 284, language: 316, working memory: 405, gambling: 253), 
it was not included in our analyses. For the fMRI data collected at rest, we used 
the images that were previously preprocessed by the Human Connectome Project 
with ICA-FIX. We also used the AFNI command 3dBandpass to further preprocess 
these images. We used it to remove the mean whole brain signal and frequencies 
outside 0.009 and 0.08 (explicitly, ‘-ort whole_brain_signal.1D -band 0.009 0.08 
-automask’). We did not regress out stimulus or task effects from the time series of 
each node, because how nodes’ low frequency oscillations respond to stimulus or 
task effects is meaningful. Moreover, other investigators have noted that task effect 
regression has minimal effects52.

As subject head motion during fMRI can impact functional connectivity 
estimates and has been shown to bias brain–task performance relationships53, 
performance prediction analyses were executed with scrubbing (removing frames 
with high motion) on frames with frame-wise displacement greater than 0.2 mm, 
including the frame before and after the movement. Frame-wise displacement 
measures movement of the head from one volume to the next, and was computed 
as the sum of the absolute values of the differentiated rigid body realignment 
estimates (translation and rotation in x, y and z directions) at every time point with 
rotation values evaluated with a radius of 50 mm53. Frames were removed after all 
preprocessing was executed. Subjects with more than 75% of frames removed were 
not analysed. Moreover, we executed all analyses after regressing out mean frame-
wise displacement from the task performance values (Supplementary Fig. 2).

Graph theory analyses. The Power atlas48 was used to define the 264 nodes in our 
graph because it was the only atlas that met all of the following requirements: (1) 
Given that the homogeneity of nodes in this atlas is high and they do not share 
physical boundaries, it will not overestimate the local connectivity of regions. (2) It 
is the only atlas that is defined based both on functional connectivity and studies 
of task activations, making it optimal for our current analyses. (3) It accurately 
divides nodes into communities observed with other approaches (for example, at 
the voxel level), and this division has been used in many studies32,35,48,54. A canonical 
division of nodes into communities aides in the interpretation and generalizability 
of our results. It can be found at https://sites.wustl.edu/petersenschlaggarlab/
files/2018/06/Power2011ROI_Module-2hv15xc.xls. Moreover, we used this division 
to calculate within- and between-community edge weight changes across subjects. 
(4) It has anatomical coverage of cortical, subcortical and cerebellar regions.

All graph theory analyses were executed with our own custom Python code 
that uses the iGraph library. All analysis code is also publicly available. For each 
task (both left-right and right-left encoding directions were used) and for each 
subject, the mean signal from 264 regions in the Power atlas was computed. 
The Pearson r between all pairs of signals was computed to form a 264-by-264 
matrix, which was then Fisher z transformed. We chose Pearson r values to 
represent functional connectivity (that is, edges) between nodes, for its simplicity 
in interpretation and ubiquity in human network neuroscience55. However, 
more complex statistical measures could be employed, including measures that 
attempt to estimate the directionality of each edge. The left-right and right-left 
matrices were then averaged. The mean matrix was then thresholded, retaining 
edge weights, at a range of costs (0.05–0.15 at 0.01 intervals, a common range 
and interval in graph theory analyses)1,26,32,48. The maximum spanning tree was 
calculated to ensure that all nodes had at least one edge. No negative correlations 
were included in our analyses. The matrix was then normalized to sum to a 
common value across subjects, and was used to represent the edges in the graph. 
Thus, all graphs had the same number of edges and sum of edge weights.

For each cost, the Infomap algorithm56 was run. While this method has been 
shown to be highly accurate on benchmark networks with known community 
structures, it is still a heuristic, as community detection is non-deterministic 
polynomial time-hard57. While Infomap does not explicitly maximize Q, it has been 
shown to estimate community structure accurately in several test cases58, rendering 
the Q value, the participation coefficients and within-community strengths 
computed based on the community structure accurate and valid. Moreover, in 
biological networks, Infomap achieves Q values that are similar to algorithms 
that maximize Q59; in the current resting-state data, Infomap Q values and Fast-
Greedy Q60 values were correlated at Pearson r =  0.87 (d.f. =  474, P < 0.001, 95% 
CI: 0.84, 0.89); Infomap Q values were found to be higher than Fast-Greedy Q 
values with a student’s independent t-test (t (d.f.: 952): 16.027, P < 0.001, Cohen’s 
d: 0.775, 95% CI: 0.024, 0.03). Infomap Q values and Louvain Q61 values were 
correlated at Pearson r =  0.98 (d.f. =  474, P < 0.001, 95% CI: 0.97, 0.98); Louvain 
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Q values were higher than Infomap Q values. When comparing Infomap Q values 
to the distribution that includes both Louvain and Fast-Greedy, 2 algorithms that 
explicitly maximize Q, Infomap Q values were shown to be significantly higher 
with a student’s independent t-test (t (d.f.: 1,429): 5.304, P < 0.001, Cohen’s d: 0.222, 
95% CI: 0.005, 0.011). Regardless, we found that it detects a community structure 
with Q values highly similar to other methods (Supplementary Fig. 15). Moreover, 
previous work has demonstrated the stability of community detection and the 
participation coefficient across community detection methods2.

The participation coefficients, within-community strengths and Q were 
calculated at each cost. Q is written analytically as follows. Consider a weighted and 
undirected graph with n nodes and m edges represented by an adjacency matrix A 
with elements

= i jA edge weight between andij

Thus, the strength of a node is given by

∑=k Ai j ij

and modularity (Q) can be written as

∑ γ δ= −
≠

Q
m

p c cA1
2

( ) ( , )
i j

ij ij i j

Here, Pij is the probability that nodes i and j are connected in a random null 
network

=P
k k

m2ij
i j

γ  is the resolution parameter and ci is the community to which node i belongs, and 
δ(α, β)= 1 if α =  β and δ(α, β)= 0 if α ≠  β.

Given a particular community assignment, the participation coefficient of each 
node can be calculated. The participation coefficient (PC) of node i is defined as
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where Ki is the sum of i’s edge weights, Kis is the sum of i’s edge weights to 
community s and NM is the total number of communities. Thus, the participation 
coefficient is a measure of how evenly distributed a node’s edges are across 
communities. A node’s participation coefficient is maximal if it has an equal sum of 
edge weights to each community in the network. A node’s participation coefficient 
is 0 if all of its edges are to a single community.

Finally, we calculate the within-community strength value for each node  
as follows:

σ
=

− ¯
z

k k
i

i s

k

i

si

where ki is the number of links of node i to other nodes in its community si, ̄ksi
 is 

the average of k over all of the nodes in si and σksi
 is the standard deviation of k in 

si. Thus, the within-community strength measures how well-connected node i is to 
other nodes in the community relative to other nodes in the community.

Each subject’s participation coefficient, within-community strength and Q were 
the mean of those values across the range of costs. All analyses were executed and 
all prediction models were fitted separately for each task.

Tasks. The following descriptions for each task have been adapted for brevity from 
the Human Connectome Project Manual62.

Working memory. The category-specific representation task and the working 
memory task are combined into a single task paradigm. Participants were presented 
with blocks of trials that consisted of pictures of places, tools, faces and body parts 
(non-mutilated parts of bodies with no ‘nudity’). Within each run, the  
four different stimulus types were presented in separate blocks. Also, within each 
run, 1⁄2 of the blocks use a 2-back working memory task and 1⁄2 use a 0-back 
working memory task (as a working memory comparison). A 2.5 s cue indicates 
the task type (and target for 0-back) at the start of the block. Each of the 2 runs 
contains 8 task blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation blocks (15 s). 
On each trial, the stimulus is presented for 2 s, followed by a 500-ms inter-task 
interval (ITI).

Gambling. Participants play a card guessing game where they are asked to guess 
the number on a mystery card (represented by a ‘?’) in order to win or lose money. 
Participants are told that potential card numbers range from one to nine and 
to indicate if they think the mystery card number is more or less than five by 
pressing one of two buttons on the response box. Feedback is the number on the 

card (generated by the program as a function of whether the trial was a reward, 
loss or neutral trial) and: (1) a green up arrow with ‘$1’ for reward trials, (2) a 
red down arrow next to ‘–$0.50’ for loss trials or (3) the number five and a grey 
double-headed arrow for neutral trials. The ‘?’ is presented for up to 1,500 ms 
(if the participant responds before 1,500 ms, a fixation cross is displayed for the 
remaining time), following by feedback for 1,000 ms. There is a 1,000-ms ITI with 
a ‘+ ’ presented on the screen. The task is presented in blocks of 8 trials that are 
either mostly reward (6 reward trials pseudo-randomly interleaved with 1 neutral 
and 1 loss trial, 2 neutral trials or 2 loss trials) or mostly loss (6 loss trials pseudo-
randomly interleaved with 1 neutral and 1 reward trial, 2 neutral trials or 2 reward 
trials). In each of the 2 runs, there are 2 mostly reward and 2 mostly loss blocks, 
interleaved with 4 fixation blocks (15 s each).

Motor. Participants are presented with visual cues that ask them to tap their left or 
right fingers, squeeze their left or right toes or move their tongue to map motor 
areas. Each block of a movement type lasts 12 s (10 movements) and is preceded by 
a 3-s cue. In each of the 2 runs, there are 13 blocks, with 2 of tongue movements, 
4 of hand movements (2 right and 2 left) and 4 of foot movements (2 right and 2 
left). In addition, there are 3 15-s fixation blocks per run.

Language and maths. The task consists of two runs that each interleave four blocks 
of a story task and four blocks of a maths task. The lengths of the blocks vary 
(average of approximately 30 s), but the task was designed so that the maths task 
blocks match the length of the story task blocks, with some additional maths trials 
at the end of the task to complete the 3.8 min run as needed. The story blocks 
present participants with brief auditory stories (five to nine sentences) adapted 
from Aesop’s fables, followed by a two-alternative forced- choice question that asks 
participants about the topic of the story. For example, after a story about an eagle 
that saves a man who had done him a favour, participants were asked, ‘Was that 
about revenge or reciprocity?’ The maths task also presents trials auditorily and 
requires subjects to complete addition and subtraction problems. The trials present 
subjects with a series of arithmetic operations (for example, ‘14 plus 12’), followed 
by ‘equals’ and then two choices (for example, ‘29 or 26’). Participants push a 
button to select either the first or the second answer. The tasks are adaptive to try 
to maintain a similar level of difficulty across participants.

Social (theory of mind). Participants were presented with short video clips (20 s)  
of objects (squares, circles, triangles) that either interacted in some way or  
moved randomly on the screen. After each video clip, participants judge whether  
the objects had a mental interaction (an interaction that appears as though the 
shapes are taking into account each other’s feelings and thoughts), ‘not sure’ or  
‘no interaction’ (that is, there is no obvious interaction between the shapes and  
the movement appears random). Each of the 2 task runs has 5 video blocks  
(2 mental and 3 random in one run, 3 mental and 2 random in the other run)  
and 5 fixation blocks (15 s each).

Relational. The stimuli are six different shapes filled with one of six different 
textures. In the relational processing condition, participants are presented with 
two pairs of objects, with one pair at the top of the screen and the other pair at the 
bottom of the screen. They are told that they should first decide what dimension 
differs across the top pair of objects (differed in shape or differed in texture) and 
then they should decide whether the bottom pair of objects also differ along that 
same dimension (for example, if the top pair differs in shape, does the bottom pair 
also differ in shape?). In the control matching condition, participants are shown 
two objects at the top of the screen and one object at the bottom of the screen, 
and a word in the middle of the screen (either ‘shape’ or ‘texture’). They are told 
to decide whether the bottom object matches either of the top two objects on that 
dimension (for example, if the word is ‘shape’, is the bottom object the same shape 
as either of the top two objects?). For both conditions, the subject responds ‘yes’ 
or ‘no’ using one button or another. For the relational condition, the stimuli are 
presented for 3,500 ms, with a 500-ms ITI, and there are 4 trials per block. In the 
matching condition, stimuli are presented for 2,800 ms, with a 400-ms ITI, and 
there are 5 trials per block. Each type of block (relational or matching) lasts a total 
of 18 s. In each of the 2 runs of this task, there are 3 relational blocks, 3 matching 
blocks and 3 16-s fixation blocks.

Performance measures. All performance measures were chosen a priori. In the 
working memory task, we used the mean accuracy across all n-back conditions 
(face, body, place, tool). In the relational task, we used mean accuracy across both 
the matching and the relational conditions. For the language task, we took the 
maximum difficulty level that the subject achieved across both the maths and 
language conditions. We did not use accuracy, because the task varies in difficulty 
based on how well the subject is doing, making accuracy an inaccurate measure 
of performance for these tasks. For the social task, given that almost all subjects 
correctly identified the social interactions as social interactions, we used the 
percentage of correctly identified random interactions.

Deep neural network model. A deep neural network is a supervised learning 
algorithm that can learn a non-linear function for regression or classification. 
Unlike logistic regression, there are one or more non-linear layers, called hidden 
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layers, between the input and the output layer. Thus, the model is trained to relate 
a set of input features to outputs by learning weights between neurons across 
adjacent layers (Supplementary Fig. 1). Our implementation uses the sklearn 
Python library. Explicitly, a prediction for subject z is calculated as:

model =  sklearn.neural_network.MLPRegressor(hidden_layer_sizes =  (8,12,8,12))
model.fit(x[subjects! =  z], y[subjects! =  z])
prediction =  model.predict(x([z])

where x is the set of features across subjects and y is the task performance  
across subjects.

Analytic quality of diversity- and locality-facilitated modularity coefficients. 
To further understand diversity- and locality-facilitated modularity coefficients, 
we performed an iterative split-half analysis. Specifically, we estimated the mean 
within-community strength or participation coefficient of each node in 1 half 
of subjects, and each node’s locality- and diversity-facilitated coefficient in the 
other half, testing 10,000 random splits of subjects. All relationships were reliably 
observed in every cognitive state (Supplementary Fig. 7). Next, we sought to 
determine whether this relationship was a necessary feature of the underlying 
mathematics, or whether it was a phenomenon specific to the neurophysiology 
of brain networks. To address this question, we tested four null model networks 
and observed that none of them exhibited a significant relationship between 
mean participation coefficient and diversity-facilitated modularity coefficient 
(Supplementary Fig. 8). As a third check, we assessed whether the number of 
communities identified in the network was inadvertently biasing our results. 
We observed that the number of communities in each network was negatively 
correlated with the modularity value Q (Supplementary Fig. 9). After regressing 
out the number of communities in each network from the modularity value, we 
observed that our findings remained qualitatively unchanged (Supplementary 
Fig. 10). Finally, we tested whether the relationships between variables of interest 
were linear (and therefore appropriate to examine with Pearson r correlation 
coefficients) or non-linear. To address this question, we analysed individual 
first, second and third order curve fits of the relationship between participation 
coefficients and modularity values. We observed that many relationships were 
well-captured by a first order fit, with the connector hub’s maximal participation 
coefficients corresponding to maximal Q indices, with only a few showing a more 
non-linear relationship (Supplementary Fig. 11).

Alternative analysis of connector hubs tuning the connectivity of their 
neighbours. We executed an alternative analysis to test whether connector hubs 
tune the connectivity of their neighbours to be more modular. For each node i we 
calculated a matrix, where the j–kth entry is the Pearson r correlation coefficient 
that captures how well the participation coefficients of node i correlate with  
the edge weights between nodes j and k in the network across subjects. These 
Pearson r values allowed us to test whether a node’s participation coefficients 
correlate positively with its neighbours’ increased connectivity to its own 
community and decreased connectivity to other communities. We subtracted  
the sum of r values in the matrix corresponding to node i’s participation 
coefficients and node j’s between-community edge weights from the sum of  
r values in the matrix corresponding to node i’s participation coefficients and 
node j’s within-community edge weights. Thus, this value measures how well 
the participation coefficients of node i are correlated with the increased modular 
(within-community) connectivity of node j. We used the partition of nodes into 
communities that was created along with the nodes themselves (Fig. 4d)48. Edges 
between node i and node j were ignored in this calculation, as the participation 
coefficient of node i is probably highly correlated with the edge weights between 
node i and node j, and we were only interested in how the participation coefficient 
of node i modulates node j’s connectivity to the rest of the network, not node j’s 
connectivity to node i. Edges that were not positive on average across subjects 
were not included in this analysis, as the interpretation of negative edges in  
fMRI-based networks is not obvious (results were similar only including the  
top 25% of edges; see Supplementary Fig. 13). Correlations between the edge 
strength between nodes i and j and the amount of modulation of j’s modularity  
by i were calculated such that the set of nodes i were either connector hubs or  
non-connector hubs. A positive correlation means that a node is biased to 
modulate the connectivity of its neighbours versus its non-neighbours to be 
more modular. In all cognitive states, these correlations were only positive and 
significant (Pearson’s r > 0.17, P < 0.001, Bonferroni corrected (n tests =  7)) for 
connector hubs (Supplementary Fig. 13), suggesting that connector hubs tune the 
connectivity of their neighbours to be more modular.

To test whether this relationship existed for local hubs, we calculated a similar 
matrix, where, for each node i, the j–kth entry is the Pearson r value that captures 
how well the within-community strengths of node i correlate with the edge weight 
between nodes j and k in the network across subjects. Correlations between 
the edge strength between nodes i and j and the amount of modulation of j’s 
modularity by the within-community strength of i were calculated such that nodes 
i were either local hubs or non-local hubs. None of these correlations were robust 
(–0.1 > r < 0.1). These analyses add to our conclusion, demonstrated in the results, 
that connector hubs facilitate higher modularity by tuning the connectivity of their 
neighbours to be more modular.

Statistical methods. The number of subjects was determined by the number of 
subjects released by the Human Connectome Project at the start of the analyses. 
As this dataset represented the largest dataset of its kind at that time and the 
number of subjects is greater than many similar analyses46, no power analysis was 
computed. Total N =  working memory: 475, gambling: 473, relational: 458, motor: 
475, language and maths: 472, social: 474, resting state: 476. However, as we only 
analysed subjects with both resting state and the task scans, N =  working memory: 
473, relational: 457, language and maths: 471, social: 473. This results in a unique 
N =  476 across tasks, in that 476 different subjects had a resting state scan and at 
least 1 task scan. As scrubbing (which removes frames with large head motion) 
can cause too many frames to be removed from the time series, subjects with less 
than 75% of remaining frames were not included in the analyses that implemented 
scrubbing; thus, for analyses using scrubbed data, N =  working memory: 351, 
relational: 335, language and maths: 348, social: 358.

All CIs are reported with alpha =  0.05. For Pearson r correlation coefficient 
CIs, the interval of r values is given by Fisher transforming r to z, computing the 
interval and then Fisher reverse transforming the z intervals back to r intervals.  
For t-tests, the CI represents the largest and smallest differences in means across 
the two distributions. For all t-tests, distributions were confirmed as normal  
(P < 0.001), or exhibiting no significant evidence as not normal (k2 > 0.0), using 
D’Agostino and Pearson’s omnibus test k2. All P values are two-sided tests.

All P values that are part of a family of tests are Bonferroni corrected for 
multiple comparisons. For example, we test whether two tasks’ hub and network 
structures are similarly optimal for the same subject measures, testing across a 
large number of subject measures. In this case, we applied a Bonferroni correction 
to the P values to determine whether the effect remained true for particular subject 
measures. Here, the number of tests is equal to the number of subject measures, 
47. Individual subject networks were built independently for each task and task 
performance is different for each task. Thus, these tests are not strictly in the same 
family. However, to be conservative, we still Bonferroni corrected these P values. 
In these cases, the family size is either four or seven, depending on the number of 
tasks analysed. Unless otherwise stated, all P values are Bonferroni corrected.

Many statistical tests are calculated here without reported P values. For 
example, Pearson r values are used to calculate functional connectivity. Here, 
only the r values are of interest—more precisely, individual differences in 
the r values across subjects, and how these differences relate to individual 
differences in cognition. This treatment of multiple comparisons in the context 
of functional connectivity and individual differences in cognition is common 
and recommended46,63. We extend this notion to other analyses here as well. 
For example, we use the Pearson correlation coefficient r to compare how well 
different nodes’ participation coefficients across subjects explain variance in 
network modularity or task performance (the diversity-facilitated modularity 
and performance coefficients). In these cases, we relate these r values to other 
measures, and are only concerned with how these r values explain another 
distributions’ variance (here, we find a positive correlation between these r values 
and a node’s mean participation coefficient across subjects). We are not concerned 
with the statistical significance of any particular r value as estimated by the P value. 
We care about the distribution of r values, not the distribution of P values, and we 
do not make any claims about any single r value. Thus, the P values are neither 
reported nor corrected for multiple comparisons. This is precisely how functional 
connectivity is treated statistically.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. All graph theory analyses were executed with our own custom 
Python code (https://github.com/mb3152/brain_graphs) that uses the iGraph 
library. All analysis code is also publicly available (https://github.com/mb3152/
hcp_performance/).

Data availability. Data were provided by the Human Connectome Project, 
WU-Minn Consortium (Principal Investigators: D. Van Essen and K. Ugurbil; 
1U54MH091657) funded by the 16 NIH Institutes and Centers that support 
the NIH Blueprint for Neuroscience Research and by the McDonnell Center 
for Systems Neuroscience at Washington University. The content is solely the 
responsibility of the authors and does not necessarily represent the official views 
of any of the funding agencies. All analyses were executed in accordance with the 
authors’ institutions’ relevant ethical regulations as well as the WU-Minn HCP 
Consortium Open Access Data Use Terms. Informed consent was obtained from 
all participants.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection All data are available through the Human Connectome Project

Data analysis All analysis code is written in python and is freely available at www.github.com/mb3152/hcp_performance

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

• The datasets analyzed during the current study are available in the Human Connectome Project database: https://www.humanconnectome.org
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description All analyses were quantitative measures of individual differences in human brain functional connectivity measured with fMRI

Research sample All data analyzed is included in the Human Connectome Project S500 Release

Sampling strategy No sample size calculation was executed, as the sample size is very large and cross validation techniques were employed

Data collection All data was independently collected by the Human Connectome Project. We analyzed all subjects that were part of the S500 release. 
Extensive details can be found at: https://www.humanconnectome.org/storage/app/media/documentation/s500/
hcps500meg2releasereferencemanual.pdf

Timing All data was collected between 2009 and 2014

Data exclusions All subjects that were part of the S500 data release and completed the fMRI sessions were included. This results in 476 unique subjects, 
475, 458, 472, and 474 in the working memory, relational, language/math and social task, respectively.

Non-participation For each fMRI task analyzed, only subjects that completed the task and resting-state scans were analyzed. This results in 25, 42, 28, and 
26 subjects that were not included in the working memory, relational, language/math and social task, respectively.

Randomization Subjects were not placed in different groups

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above; also, extensive details regarding the demographics and screening protocol can be found here: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3724347/

Recruitment All subjects were recruited independently by the Human Connectome project. Details can be found here: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3724347/

Magnetic resonance imaging
Experimental design

Design type All analyses were executed on the preprocessed time series. No event related designs or block designs were used.
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Design specifications The following descriptions for each task have been adapted for brevity from the Human Connectome Project Manual. 
Working Memory. The category specific representation task and the working memory task are combined into a single 
task paradigm. Participants were presented with blocks of trials that consisted of pictures of places, tools, faces and 
body parts (non-mutilated parts of bodies with no “nudity”). Within each run, the 4 different stimulus types were 
presented in separate blocks. Also, within each run, 1⁄2 of the blocks use a 2-back working memory task and 1⁄2 use a 
0-back working memory task (as a working memory comparison). A 2.5 second cue indicates the task type (and target 
for 0-back) at the start of the block. Each of the two runs contains 8 task blocks (10 trials of 2.5 seconds each, for 25 
seconds) and 4 fixation blocks (15 seconds). On each trial, the stimulus is presented for 2 seconds, followed by a 500 ms 
inter-task interval (ITI). 
Gambling. Participants play a card guessing game where they are asked to guess the number on a mystery card 
(represented by a “?”) in order to win or lose money. Participants are told that potential card numbers range from 1-9 
and to indicate if they think the mystery card number is more or less than 5 by pressing one of two buttons on the 
response box. Feedback is the number on the card (generated by the program as a function of whether the trial was a 
reward, loss or neutral trial) and either: 1) a green up arrow with “$1” for reward trials, 2) a red down arrow next to -
$0.50 for loss trials; or 3) the number 5 and a gray double headed arrow for neutral trials. The “?” is presented for up to 
1500 ms (if the participant responds before 1500 ms, a fixation cross is displayed for the remaining time), following by 
feedback for 1000 ms. There is a 1000 ms ITI with a “+” presented on the screen. The task is presented in blocks of 8 
trials that are either mostly reward (6 reward trials pseudo randomly interleaved with either 1 neutral and 1 loss trial, 2 
neutral trials, or 2 loss trials) or mostly loss (6 loss trials pseudo- randomly interleaved with either 1 neutral and 1 
reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there are 2 mostly reward and 2 mostly loss 
blocks, interleaved with 4 fixation blocks (15 seconds each). 
Motor. Participants are presented with visual cues that ask them to either tap their left or right fingers, or squeeze their 
left or right toes, or move their tongue to map motor areas. Each block of a movement type lasted 12 seconds (10 
movements), and is preceded by a 3 second cue. In each of the two runs, there are 13 blocks, with 2 of tongue 
movements, 4 of hand movements (2 right and 2 left), and 4 of foot movements (2 right and 2 left). In addition, there 
are 3 15-second fixation blocks per run. This task contains the following events, each of which is computed against the 
fixation baseline. 
Language & Math. The task consists of two runs that each interleave 4 blocks of a story task and 4 blocks of a math task. 
The lengths of the blocks vary (average of approximately 30 seconds), but the task was designed so that the math task 
blocks match the length of the story task blocks, with some additional math trials at the end of the task to complete the 
3.8 minute run as needed. The story blocks present participants with brief auditory stories (5-9 sentences) adapted 
from Aesop’s fables, followed by a 2-alternative forced- choice question that asks participants about the topic of the 
story. For example: “after a story about an eagle that saves a man who had done him a favor, participants were asked, 
“Was that about revenge or reciprocity?” The math task also presents trials aurally and requires subjects to complete 
addition and subtraction problems. The trials present subjects with a series of arithmetic operations (e.g., “fourteen 
plus twelve”), followed by “equals” and then two choices (e.g., “twenty- nine or twenty- six”). Participants push a button 
to select either the first or the second answer. The math task is adaptive to try to maintain a similar level of difficulty 
across participants. 
Social (Theory of Mind). Participants were presented with short video clips (20 seconds) of objects (squares, circles, 
triangles) that either interacted in some way, or moved randomly on the screen. After each video clip, participants 
judge whether the objects had a mental interaction (an interaction that appears as if the shapes are taking into account 
each other’s feelings and thoughts), Not Sure, or No interaction (i.e., there is no obvious interaction between the 
shapes and the movement appears random). Each of the two task runs has 5 video blocks (2 Mental and 3 Random in 
one run, 3 Mental and 2 Random in the other run) and 5 fixation blocks (15 seconds each). 
Relational. The stimuli are 6 different shapes filled with 1 of 6 different textures. In the relational processing condition, 
participants are presented with 2 pairs of objects, with one pair at the top of the screen and the other pair at the 
bottom of the screen. They are told that they should first decide what dimension differs across the top pair of objects 
(differed in shape or differed in texture) and then they should decide whether the bottom pair of objects also differ 
along that same dimension (e.g., if the top pair differs in shape, does the bottom pair also differ in shape). In the control 
matching condition, participants are shown two objects at the top of the screen and one object at the bottom of the 
screen, and a word in the middle of the screen (either “shape” or “texture”). They are told to decide whether the 
bottom object matches either of the top two objects on that dimension (e.g., if the word is “shape”, is the bottom 
object the same shape as either of the top two objects. For both conditions, the subject responds yes or no using one 
button or another. For the relational condition, the stimuli are presented for 3500 ms, with a 500 ms ITI, and there are 
four trials per block. In the matching condition, stimuli are presented for 2800 ms, with a 400 ms ITI, and there are 5 
trials per block. Each type of block (relational or matching) lasts a total of 18 seconds. In each of the two runs of this 
task, there are 3 relational blocks, 3 matching blocks and 3 16-second fixation blocks.

Behavioral performance measures All performance measures were chosen a priori. In the working memory tasks, we used the mean accuracy across all n-
back conditions (face, body, place, tool). In the relational task, we used mean accuracy across both the matching and 
the relational conditions. For the language task, we took the maximum difficulty level that the subject achieved across 
both the math and language conditions. We did not use accuracy, because the task varies in difficulty based on how well 
the subject is doing, making accuracy an inaccurate measure of performance for these tasks. For the social task, given 
that almost all subjects correctly identified the social interactions as social interactions, we used the percentage of 
correctly identified random interactions.

Acquisition

Imaging type(s) Functional

Field strength 3T

Sequence & imaging parameters Sequence: Gradient-echo EPI 
TR: 720 ms 
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TE: 33.1 ms 
flip angle: 52 deg 
FOV: 208x180 mm (RO x PE) 
Matrix: 104x90 (RO x PE) 
Slice thickness: 2.0 mm; 72 slices; 2.0 mm isotropic voxels 
Multiband factor: 8 
Echo spacing: 0.58 ms 
BW: 2290 Hz/Px 
 
Task , Runs, Frames per run, Run Duration (min:sec) 
REST (Resting-state), 4, 1200, 14:33 
Working Memory, 2, 405, 5:01 
Gambling, 2, 253, 3:12 
Motor, 2, 284, 3:34 
Language, 2, 316, 3:57 
Social Cognition, 2, 274, 3:27 
Relational Processing, 2, 232, 2:56 
Emotion Processing, 2,176, 2:16

Area of acquisition Whole Brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software  Analysis of Functional NeuroImages (AFNI) 

Normalization Registration of the T1 to atlas space includes an initial volumetric registration to MNI152 space using FSL’s linear FLIRT 
tool, followed by the nonlinear FNIRT algorithm.

Normalization template MNI152

Noise and artifact removal Data and Preprocessing We used fMRI data from the Human Connectome Project33 S500 release. For the task-based 
fMRI data, Analysis of Functional NeuroImages (AFNI) was used to preprocess the images50. The AFNI command 
3dTproject was used, passing the mean signal from the cerebral spinal fluid mask, the white matter mask, the whole 
brain signal, and the motion parameters to the “-ort” options, which removes these signals via linear regression. Within 
AFNI, the “-automask” option was used to generate the masks. The “-passband 0.009 0.08” option, which removes 
frequencies outside of 0.009 and 0.08, was used. Finally, the “-blur 6” option, which smooths the images (inside the 
mask only) with a 6 mm FWHM filter after the time series filtering. Given the short length of the Emotion task (176 
frames; Resting-State:1200, Social: 274, Relational:232, Motor:284, Language:316, Working Memory:405, 
Gambling:253) it was not included in our analyses. For the fMRI data collected at rest, we used the images that were 
previously preprocessed by the Human Connectome Project with ICA- FIX. We also used the AFNI command 3dBandpass 
to further preprocess these images. We used it to remove the mean whole brain signal and frequencies outside 0.009 
and 0.08 (explicitly, “-ort whole_brain_signal.1D -band 0.009 0.08 -automask”). We did not regress out stimulus or task 
effects from the time series of each node, because how nodes’ low frequency oscillations respond to stimulus or task 
effects is meaningful. Moreover, other investigators have noted that task effect regression has minimal effects.

Volume censoring As subject motion during fMRI can impact functional connectivity estimates and has been shown to bias brain-task 
performance relationships, performance prediction analyses were executed with scrubbing executed on frames with 
frame-wise displacement greater than 0.2 millimeters, including the frame before and after the movement. Frame-wise 
displacement measures movement of the head from one volume to the next, and was computed as the sum of the 
absolute values of the differentiated rigid body realignment estimates (translation and rotation in x, y, and z directions) 
at every time point with rotation values evaluated with a radius of 50 mm(52). Frames were removed after all 
preprocessing was executed. Subjects with more than 75 percent of frames removed were not analyzed. Moreover, we 
executed all analyses after regressing out mean frame-wise displacement from the task performance values (Extended 
Data Figure 1).

Statistical modeling & inference

Model type and settings Functional Connectivity

Effect(s) tested Pearson r correlations between all ROIs / nodes

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

The Power atlas (34) was used to define the 264 nodes in our graph because it was the only atlas that 
met all of the following requirements: (1) Given that the homogeneity of nodes in this atlas is high and 
they do not share physical boundaries, it will not overestimate the local connectivity of regions, (2) it is 
the only atlas that is defined based both on functional connectivity and studies of task activations making 
it optimal for our current analyses, (3) it accurately divides nodes into communities observed with other 
approaches (e.g., at the voxel level), and this division has been used in many studies(8,12,34,53). A 
canonical division of nodes into communities aides in the interpretation and generalizability of our 
results. It can be found at: http://www.nil.wustl.edu/labs/petersen/Resources_files/Consensus264.xls. 
Moreover, we used this division to calculate within and between community edge weight changes across 
subjects. (4) It has anatomical coverage of cortical, subcortical, and cerebellar regions.

Statistic type for inference
(See Eklund et al. 2016)

Each Pearson r correlation was calculated between ROIS

Correction No multiple comparisons were calculated for the functional connectivity measurements; however, graphs were 
thresholded to retain only the strongest 5-15 percent of connections / correlations.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson r correlation

Graph analysis Subject level weighted thresholded graphs were used, with the weights normalized to sum to an identical 
value across subjects. Modularity, the participation coefficient, and the within community strength were 
all calculated for each individual.

Multivariate modeling and predictive analysis A predictive multilayer perceptron model (three layers (enough for non-linear relationships), eight neurons 
(one per feature) in each layer) was used to predict subjects’ task performance. Known as deep neural 
networks, these predictive models are constructed by tuning the weights between neurons and layers to 
achieve the most accurate relationship between the features (input) and the value the model is trying to 
predict (output). The predictive model’s features (n=8) captured how well subjects’ nodes’ diversity and 
locality, network connectivity (i.e., edge weights in the network), and modularity (Q) are optimized for the 
performance of a task. For example, for the feature that captures how optimized the diversity of subjects’ 
nodes’ are for task performance, for each node, the Pearson r across subjects between that node’s 
participation coefficients (which measures diversity) and task performance values was calculated. The 
feature, then, for a given subject, is the Pearson r across nodes between those r values for each node and 
each node’s participation coefficient in that subject, representing how optimized the diversity of that 
subject’s nodes’ are for performance in the task. The same procedure is executed for locality (using the 
within community strengths) and edge weights. Finally, the Q values of the network are included in the 
model. The predictive model was fit for each of the four cognitive tasks that subjects performed in the 
Human Connectome Project for which performance was measured (Working Memory, Relational, 
Language and Math, Social tasks; see Methods for task performance measures). Each predictive model was 
fit to the subjects’ networks constructed during the performance of each task as well as the resting state 
(four features from each). The inclusion of the resting-state and the cognitive task state allowed the model 
to capture the subjects’ so-called intrinsic network states as well as the subjects’ task driven network 
states. Using a leave-one- out cross-validation procedure, the features were constructed and the model 
was fit with data from all subjects except one. The predictive model was then used to predict the left-out 
subject’s task performance. To test the accuracy of the model, the Pearson r between the observed and 
predictive performance of each subject was calculated. 
 
The model was executed with scikit-learn in python. A random state was initiated for each run. The default 
parameters were used: sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(8,12,8,12), 
activation=’relu’, solver=’adam’, alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, 
learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, tol=0.0001, verbose=False, 
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, 
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08) 
 
Statistical Methods 
 
The number of subjects was determined by the number of subjects released by the Human Connectome 
Project at the start of the analyses. As this dataset represented the largest dataset of its kind at that time 
and the number of subjects is greater than many similar analyses47, no power analysis was computed. 
Total N=Working Memory: 475, Gambling: 473, Relational:458, Motor:475, Language & Math:472, 
Social:474, Resting State: 476. However, as we only analyzed subjects with both Resting-State and the task 
scans, N=Working Memory:473, Relational:457, Language & Math:471, Social:473. This results in a unique 
N=476 across tasks, in that 476 different subjects had a resting state scan and at least one task scan. As 
scrubbing (which removes frames with large head motion) can cause too many frames to be removed from 
the time series, subjects with less than 75 percent of remaining frames were not included in the analyses 
that implemented scrubbing; thus, for analyses using scrubbed data, N=Working Memory:351, 
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Relational:335, Language & Math:348, Social:358. 
 
All confidence intervals (CI) are reported with alpha=0.05. For Pearson r correlation coefficients CIs, the 
interval of r values is given by Fisher transforming r to z, computing the interval, and then Fisher reverse 
transforming the z intervals back to r intervals. For t-tests, the confidence interval represents the largest 
and smallest differences in means across the two distributions. For all t-tests, distributions were confirmed 
as normal (p<1e-3) or exhibiting no significant evidence as not normal (k2>0.0) using D’Agostino and 
Pearson’s omnibus test k2. All p values are two sided tests. 
 
All p values that are part of a family of tests are Bonferroni corrected for multiple comparisons. For 
example, we test if two tasks’ hub and network structures are similarly optimal for the same subject 
measures, testing across a large number of subject measures. In this case, we applied a Bonferroni 
correction to the p-values to determine whether the effect remained true for particular subject measures. 
Here, the number of tests is equal to the number of subject measures, 47. Individual subject networks 
were built independently for each task and task performance is different for each task. Thus, these tests 
are not strictly in the same family. However, to be conservative, we still Bonferroni corrected these p-
values. In these cases, the family size is either 4 or 7, depending on the number of tasks analyzed. Unless 
otherwise stated, all p values are Bonferroni corrected. 
 
Many statistical tests are calculated here without reported p values. For example, Pearson r values are 
used to calculate functional connectivity. Here, only the r values are of interest—more precisely, individual 
differences in the r values across subjects, and how these differences relate to individual differences in 
cognition. This treatment of multiple comparisons in the context of functional connectivity and individual 
differences in cognition is common and recommended47,63. We extend this notion to other analyses here 
as well. For example, we use the Pearson correlation coefficient r to compare how well different nodes’ 
participation coefficients across subjects explain variance in network modularity or task performance (the 
diversity facilitated modularity and performance coefficients). In these cases, we relate these r-values to 
other measures, and are only concerned with how these r-values explain another distributions’ variance 
(here, we find a positive correlation between these r-values and a node’s mean participation coefficient 
across subjects). We are not concerned with the statistical significance any particular r-value as estimated 
by the p-value. We care about the distribution of r-values, not the distribution of p-values, and we do not 
make any claims about any single r-value. Thus, the p-values are neither reported nor corrected for 
multiple comparisons. This is precisely how functional connectivity is treated statistically.
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