
The organization of the human brain is governed by 
two fundamental principles: functional integration  
into large-scale networks, which is realized through 
long-range connections, and functional segregation into 
distinct regions, which is realized through local differen-
tiation1. Importantly, these two principles are not mutu-
ally exclusive but rather jointly form the neurobiological 
basis of all higher brain functions that arise from inter-
actions between specialized regions. The spatial arrange-
ment of cortical areas and subcortical nuclei presents 
a highly heterogeneous landscape, and ample evidence 
suggests that this complex topography is crucial for men-
tal processes2 and inter-individual differences thereof3–5. 
Accordingly, brain parcellation — that is, delineation 
of spatial partitions of the brain — is fundamental for 
decoding the human brain.

The study of brain organization is complicated by 
evidence of multiple axes of organization according to 
different neurobiological properties and their meas-
ures. For example, microstructure evidences different 
hippocampal subregions along the medio–lateral axis6, 
whereas patterns of long-range interactions vary along 
the hippocampal anterior–posterior axis7. Similarly, the 
premotor cortex can be distinguished from the adja-
cent prefrontal and primary motor cortex on the basis 
of microstructural characteristics8 and can also be sub-
divided into ventral and dorsal regions by connectivity 
and function9. Thus, from both a methodological and 
a conceptual standpoint, understanding human brain 
organization requires a dual perspective, considering 
both local properties and connectivity fingerprints10.

Brain cartography has a long history11 (Box 1), over 
which different properties of brain tissues have been 

progressively integrated towards the now commonly 
accepted conceptualization of brain areas12 as entities that 
show distinct connectivity, microarchitecture, topogra-
phy and function13. The concept of brain areas is closely 
related to the perspective of a so-called universal map 
that has driven the brain cartography field for more 
than a century14–16. However, the goal of creating a 
universal map is challenged by the complexity of brain 
organization at several levels and across several axes, 
as well as the divergence of patterns across different 
neurobiological properties. Furthermore, substantial 
inter-individual variability in brain network and areal 
topography has been documented17–19 but is still poorly 
understood, thus challenging the very existence of a 
universal brain atlas. Hence, the axiom of a universal 
map that grounds the field of brain cartography remains 
a matter of conjecture.

Not only can brain parcellations provide funda-
mental insights into the organizational principles of 
the human brain, but they are also of great practical 
relevance as biologically informed strategies of data 
reduction, enabling information from hundreds of 
thousands of voxels or vertices to be compressed into 
manageable sets of nodes reflecting distinct entities. 
Such reduction is important for some emerging big-data 
approaches that aim to predict behavioural or clinical 
phenotypes from brain imaging data20–23. Likewise, the 
study of brain connectivity with tools from graph theory 
requires a limited set of nodes24. Importantly, however, 
for such aggregation to provide a valid compression, the 
parcels should reflect a biologically meaningful pattern-
ing. This reasoning renders macrostructural character-
istics (for example, sulci and gyri; see macroanatomy 
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atlas examples in Table 1) notoriously unsuited for such 
tasks, as they do not converge with the heterogeneity 
of functional, structural or connectional markers13,25. 
Thus, brain parcellation contributes to a better under-
standing of brain function and dysfunction not only 
at the conceptual level but also by providing critical 
priors for connectomics and large-scale analyses of  
brain–behaviour relationships.

In spite of the technical and conceptual heterogene-
ity in the burgeoning field of brain parcellation, for more 
than a century its fundamental idea has remained to  
identify components (either topographically distinct 
regions or distributed networks) that are internally 
homogeneous with respect to a particular neurobio-
logical measure but that are different from each other. 
This goal can be achieved by two conceptually distinct 
approaches: boundary mapping and clustering or fac-
torization. In the boundary mapping approach, a bor-
der is detected by localizing the most abrupt spatial 
changes in the assessed feature using a local border 
detection (or edge detection) technique. In clustering 
and factorization approaches, spatial elements (voxels 
or vertices) are grouped on the basis of their similarity 
and dissimilarity according to a given marker. Hence, 
boundary mapping and clustering (or factorization) 
approaches can be referred to as local partitioning 
and global partitioning approaches, respectively. 
Note that here we consider only ‘hard partitions’ in 
which each location is assigned to one and only one 
spatial component of the brain, as opposed to ‘soft’  
partitions26 (Box 2).

Almost any parcellation approach can be applied to 
almost any neurobiological property (Table 1). Hence, 
we can further divide brain parcellation approaches 
according to the type of marker by distinguishing mark-
ers that describe underlying tissue properties (that is, 
capitalizing on local structural or functional properties) 
from markers that reflect integration into larger net-
works (that is, capitalizing on long-range connections). 
In other words, a further conceptual distinction can 
be proposed based on whether the parcellation builds  
on local architecture or function (local properties) or on 
connectivity fingerprints (global or connectivity proper-
ties). In this Review, we discuss the history of brain par-
cellation and its current state along this taxonomy of two 
independent dimensions — that is, the marker approach 
and the partitioning approach (Fig. 1) — and examine 
conceptual questions regarding the relationships among 
parcellations derived from different markers.

Parcellation based on local properties
Early efforts to parcellate the brain on the basis of 
local properties have mostly been histological, using, 
for example, cytoarchitecture and myeloarchitecture, 
neurochemical markers or (more recently) receptor 
expression (Box 1). However, these approaches usually 
require postmortem tissue, hence preventing parallel 
studies of function and leading to the highly labori-
ous examination of only small samples. By contrast, 
neuroimaging techniques such as MRI allow the acqui-
sition of whole-brain images in vivo, in large samples  
of individuals.

www.nature.com/nrn
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Box 1 | early brain cartography and histological approaches to brain parcellation

the very first endeavours to map the human brain in the 19th and early 20th centuries were based on ex vivo 
investigation of brain microstructure and macrostructure. Flattened out, the cortex is organized vertically, into columns 
and dendritic bundles, and horizontally, in layers parallel to the pial surface. From the earliest studies, these 
neurobiological features were observed to vary across the brain. More specifically, properties of these features regularly 
reveal zones of homogeneity and abrupt changes between zones. accordingly, the point at which the pattern of a  
marker — for example, the thickness of cortical layers, the size of pyramidal cells or the extent of myelination — changes 
represents a border between distinct areas13,118. a pioneering cartography work illustrating this approach is the map 
created by Korbinian Brodmann, widely known as Brodmann areas14. Other researchers of this period, such as Cécile  
and Oscar vogt, capitalized on different local properties, in particular myeloarchitecture, to define brain areas119. 
In addition, the first localization of brain macrostructure in a stereotactic coordinate system was proposed by  
talairach and tournoux120.

according to the means of their time, all these cartographers transcribed their observations by manually drawing 2D 
maps of brain regions on paper. importantly, these first maps were highly observer-dependent and based on subjective 
classification criteria and therefore suffer from reproducibility issues121. this motivated the subsequent development of 
observer-independent techniques based on computerized image analysis122 using a border detection approach47,77. 
Combined with 3D reconstruction and spatial registration of multiple postmortem brains into a standard reference 
space, this development allowed rigorous investigations of microstructure, providing evidence for more than 200 
histologically distinct brain areas13,123.

Over time, other histological approaches complemented cytoarchitecture and myeloarchitecture, such as 
immunochemistry or receptoarchitectonic studies (for a review, see ref.13). in receptoarchitectonic studies, examining 
the local density of various transmitter receptors allows the definition of specific ‘receptor fingerprints’ that differ 
between cortical areas and also reflect functional relationships77. interestingly, although not all cortical area borders are 
reflected by changes in all receptor types, those borders that are evident colocalize very well with each other and also 
with cytoarchitectonic and myeloarchitectonic differences77. as histological mapping is performed on directly 
observable — rather than modelled or inferred — markers, it provides important reference points for mapping the 
human brain. Conversely, the main drawback of histological brain mapping is the reliance on the use of postmortem 
specimens, thus precluding any comparison with functional data within the same individual. Moreover, given the 
labour-intensive preparation of tissue, sample sizes are inevitably and severely limited. However, developments of 
high-resolution Mri will offer an alternative approach by allowing whole-brain microstructural investigations without 
sample size restriction.

Large-scale networks
Constellations of brain areas 
that are strongly connected  
to each other, presumably  
subserving specific functions.

Connectivity fingerprints
Patterns of the interactions of 
brain regions with other brain 
regions.

Brain cartography
The study of brain organization 
with the particular objective of 
representing the organization 
of the brain as a map of 
distinct areas.

Brain areas
Brain regions showing specific 
structure, function and 
connectivity.

Universal map
A unique division of the brain 
into individual areas, each 
having specific structure, 
connectivity and function, 
which can be found in all 
humans.

Graph theory
The use of graphs to study and 
model relationships between 
objects with elements such as 
nodes and edges.

Cytoarchitecture
Tissue composition with regard 
to cell characteristics.

Myeloarchitecture
The pattern of myelinated 
fibres.
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Table 1 | Whole-brain or cortical parcellations available for download or visualization

Name (group or 
institution)

Brain coverage Granularity (number 
of parcels/networks)a

original format 
(and other formats)

Links refs

Macroanatomy

AAL Atlas Whole brain 82 parcels Volume http://www.gin.cnrs.fr/en/tools/aal-aal2/ 102

Harvard–Oxford Atlas Cerebrum 69 parcels Volume Included in the installation package of 
FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Atlases) and MRIcron (http://www.
mccauslandcenter.sc.edu/mricro/mricron) 
and can be found here: http://neuro. 
debian.net/pkgs/fsl-harvard-oxford- 
atlases.html

138–141

Desikan–Killiany Atlas Cerebral cortex 70 parcels Surface Included in the installation package of 
FreeSurfer: https://surfer.nmr.mgh.harvard.
edu/fswiki/CorticalParcellation

140

Destrieux Atlas Cerebral cortex 148 parcels Surface Included in the installation package of 
FreeSurfer: https://surfer.nmr.mgh.harvard.
edu/fswiki/CorticalParcellation

142

MarsAtlas Cerebrum 89 parcels Surface and volume http://meca-brain.org/software/marsatlas- 
colin27/

143

Rs-fMRI

Bellec et al. (2010) Whole brain 7 , 12, 20, 36, 64,  
122, 197 , 325 and 
444 parcels

Volume https://figshare.com/articles/Group_ 
multiscale_functional_template_
generated_with_BASC_on_the_
Cambridge_sample/1285615

61

Power et al. (2011) Cerebrum 14 networks Volume https://www.jonathanpower.
net/2011-neuron-bigbrain.html

144

Yeo et al. (2011), 
Buckner et al. (2011) 
and Choi et al. (2012)

Cerebral cortex, 
cerebellum and 
striatum

7 and 17 networks Surface of cerebral 
cortex and volume 
of cerebellum and 
striatum

Included in the installation package of 
FreeSurfer: https://surfer.nmr.mgh.harvard.
edu/fswiki/CorticalParcellation_Yeo2011, 
http://surfer.nmr.mgh.harvard.edu/fswiki/
CerebellumParcellation_Buckner2011 and 
https://surfer.nmr.mgh.harvard.edu/fswiki/
StriatumParcellation_Choi2012

70,145,146

The 7 and 17 spatially distributed cortical 
networks have also been converted 
into 51 and 114 spatially connected 
parcels, respectively: https://github.
com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/
Yeo2011_fcMRI_clustering

Craddock et al. (2012) Whole brain 10 to 1,000 parcels Volume http://ccraddock.github.io/cluster_roi/
atlases.html

83

Shen et al. (2013) Whole brain 93, 184 and 278 parcels Volume www.nitrc.org/frs/?group_id=51 147

Gordon et al. (2016) Cerebral cortex 333 parcels Surface (and volume) www.nil.wustl.edu/labs/petersen/
Resources.html

59

Atlas of Intrinsic 
Connectivity of 
Homotopic Areas

Cerebrum 384 parcels Volume In the installation package of AAL toolbox  
(http://www.gin.cnrs.fr/en/tools/aal-aal2/)  
and MRIcron (http://www.mccauslandcenter. 
sc.edu/mricro/mricron) and can be found 
here: https://omictools.com/atlas-of- 
intrinsic-connectivity-of-homotopic- 
areas-tool

148

Wang et al. (2015) Cerebral cortex 18 networks Surface Pre-compiled code for individual-specific 
network parcellations: http://nmr.mgh.
harvard.edu/bid/DownLoad.html

18

Gordon et al. (2017) Cerebral cortex Subject dependent Surface Individual-specific network and areal-level 
parcellations for the Midnight Scan Club 
subjects: https://www.openfmri.org/
dataset/ds000224/

97

Schaefer et al. (2018) Cerebral cortex 100, 200, 400, 600, 800 
and 1,000 parcels

Surface (and volume) https://github.com/ThomasYeoLab/
CBIG/tree/master/stable_
projects/brain_parcellation/
Schaefer2018_LocalGlobal

54
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Different types of parcellation based on local prop-
erties. The MRI approach that is most similar to histo-
logical methods is the mapping of myelin27. One popular 
estimate of myelin content that is used to create myelin 
density maps is yielded by the T1-weighted:T2-weighted 
ratio28. Myelin markers can be used to disentangle pri-
mary areas from associative areas. For example, V1 and 
V2 delineated using functional imaging and histological 
measures are much more heavily myelinated than higher 
visual cortical areas28 (Fig. 2). However, MRI-based 
(and histology-based) myelin mapping for cartography 
purposes has been mostly limited to auditory29, visual30 
and sensorimotor28 regions. Owing to a lack of distinc-
tiveness in myelination densities across the association 
cortex, the application of myelin mapping for cartogra-
phy beyond the sensorimotor cortex often requires the 
incorporation of additional information, such as cortical 
thickness or cytoarchitecture28.

Other local markers that can be used for parcel-
lation are functional signals in response to specific 
external stimulation or mental tasks. Following the 
modelling of local responses across time or across 
different contexts, distinct areas can be disentangled 
based on their response patterns. The most widespread 
application of such approaches is visuotopic mapping31 
(Fig. 2). Importantly, visual areas defined based on 
functional MRI (fMRI) visuotopic mapping corre-
spond well with the areas defined by cytoarchitecture, 
supporting the validity of using fMRI signals for brain  
parcellation (Fig. 2).

However, beyond visuotopic mapping, parcellation 
based on local functional signal has been surprisingly 
rarely explored. Although parcellation on the basis 
of local functional responses presumably represents 
a powerful approach to understand brain organiza-
tion in terms of areas and networks, recording the 
complete repertoire of functional responses remains 

a major challenge. Accordingly, parcellations based 
on functional response have thus far been limited to a 
particular set of tasks or a comparably confined brain 
region. For example, one study parcellated the brain 
into functional networks by clustering task-evoked 
responses during finger tapping32. Another recent 
study proposed a parcellation based on response to 
semantic content during several hours of story listen-
ing by seven individuals33 (Table 1). Nevertheless, the 
richness of these recordings probably did not come 
close to reflecting the entirety of the brain’s functional 
repertoire. Together with the small sample sizes used, 
this point raises the question of the universality of the 
resulting parcellation.

To tackle these limitations directly, meta-analytic 
approaches have been used to define subregions within, 
for example, the insular cortex34 on the basis of the con-
vergence of activation during tasks involving different 
cognitive domains, such as motor tasks and cognitive 
or affective processing. This approach was recently 
automated in a clustering procedure, thus highlight-
ing the potential to parcellate cortical and subcortical 
regions by local activation data35 (Fig. 1). Importantly, 
the extension of such approaches to other brain regions 
(such as the hippocampus) would require an extensive 
repertoire of functional responses, complicating devel-
opments. Recent progress in the aggregation of activa-
tion data36–38 may help to overcome these challenges. 
Whole-brain maps of local response patterns to vari-
ous task conditions and stimuli may thus be computed 
from large sets of activation data. Such an approach 
would enable the delineation of brain areas based on 
their pattern of activations across many dimensions 
of behavioural tasks (depending on the task, stimulus, 
response and so on). However, this approach might 
be biased towards tasks that can readily be applied 
in the scanner and by the fact that activations are 

Visuotopic mapping
The identification of visual 
areas based on differential 
cortical responses to different 
visual stimuli. An example of a 
mapping stimulus would be a 
rotating sector of a flashing 
checkerboard.

Name (group or 
institution)

Brain coverage Granularity (number 
of parcels/networks)a

original format 
(and other formats)

Links refs

Rs-fMRI (cont.)

Kong et al. (2018) Cerebral cortex 17 networks Surface Code for individual-specific network 
parcellations: https://github.com/
ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/
Kong2019_MSHBM

5

Other

PrAGMATiC, based on 
task fMRI

Cerebral cortex 320 parcels Volume (and surface) For visualization only: http://gallantlab. 
org/huth2016/

33,149

Brainnetome, based 
on PDT

Cerebral cortex 
and subcortical 
structures

246 parcels Volume http://atlas.brainnetome.org/download.
html

103

Varikuti et al. (2018), 
based on sMRI (SC)

Whole brain 2 to 500 parcels Volume http://anima.fz-juelich.de/studies/
Varikuti_NMFBrainAge_2018

23

HCP Multimodal 
Parcellation, Glasser 
et al. (2016)

Cerebral cortex 360 parcels Surface https://balsa.wustl.edu/WN56 16

AAL , automated anatomical labelling; fMRI, functional MRI; FSL , FMRIB Software Library ; HCP, Human Connectome Project; PDT, probabilistic diffusion tractography ; 
rs-fMRI, resting-state functional MRI; SC, structural covariance ; sMRI, structural MRI. aGranularity refers to the number of parcels, clusters/components or networks. 
Only parcellations or segmentations based on MRI data are reported in this table. Manual segmentation and atlases based on other techniques (for example, Brodmann 
atlas) are not included here. The atlases are organized by modality and by publication date within each modality.

Table 1 (cont.) | Whole-brain or cortical parcellations available for download or visualization
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more frequently reported in certain brain regions (for 
example, the insula) than in others39. Furthermore, 
a fundamental limitation of meta-analysis is the  
spatial blurring that is inherent to combining partici
pants from studies across different laboratories and 
coordinate systems. Therefore, extensive recordings 
of activation paradigms in a small number of partici-
pants40 and extensive aggregation of activation studies 
are highly complementary.

Future challenges for parcellations based on local 
properties. Although MRI-based measurements 
of the brain’s local properties, such as myelination 
or functional responses, are less time-intensive and 
labour-intensive than ex vivo microstructural exami
nation, their clear drawback is that the respective 
properties are not directly observable but must be 
inferred from the measured data, rendering the ensu-
ing brain maps contingent on the model for meas-
uring these properties. Nevertheless, as illustrated 
in Fig. 2, the delineation of cortical areas based on 
MRI-measured local properties converge with those 
from histology-based architectonic approaches, clearly 
supporting the biological validity of the former41. 
Furthermore, the ongoing development of high-field 
scanners should provide the possibility of MRI-based 
architectonic parcellation41,42. That is, in the future, 
parcellations could capitalize on imaging properties 
that are closer to the microstructure of the brain, such 
as the laminar patterns in the human medial temporal 
cortex that were observed through ex vivo MRI43. Such 
advances could provide an important bridge to histo-
logical investigations in the same specimen44–46. Thus, 
brain parcellation based on local properties not only 
has a storied tradition (Box 1; Fig. 1) but also should see 
substantial future progress42.

Parcellation based on connectivity
Local differentiation and network integration are com-
plementary characteristics of brain organization47, as 
each brain area is characterized by its regional makeup 
and its specific interactions with other regions48. Thus, 
a connectivity profile distinct from neighbouring tissue 
has been a longstanding criterion for defining a cortical 
area. Accordingly, information on functional interac-
tion and anatomical connectivity, which reflect func-
tional integration, can be used for mapping the regional  
segregation of a brain area48.

We note that connectivity is itself a heterogeneous 
concept, referring to, for example, functional depend-
encies (functional connectivity) or a physical connec-
tion (structural connectivity). To provide an overview 
on the key lines of research, we focus on the three 
approaches that have been used most frequently in brain 
parcellation to date (Box 3): the estimation of anatomi-
cal connectivity by tractography on diffusion-weighted 
images49; task-free functional connectivity assessed 
through resting-state echo planar imaging time series cor-
relations50; and co-activations during task performance 
revealed through meta-analytic connectivity modelling51,52. 
These approaches all allow the inference of voxel-wise 
or vertex-wise structural or functional connectivity 
with other brain locations, which in turn allows the 
computation of a connectivity fingerprint15. Brain areas 
can be delineated directly from their functional con-
nectivity or from their whole-brain connectivity fin-
gerprint using either boundary mapping or clustering 
approaches. Of note, the parcellation technique can, in 
theory, be applied to any connectivity measure, such 
as structural covariance, although the latter has been 
less commonly used (Box 3). Thus, the most frequently 
used connectivity-based parcellations are based on 

Non-negative matrix 
factorization
A multivariate statistical 
approach to factorize data into 
components promoting a 
part-based representation of 
the data.

Box 2 | Defining brain components with clustering and factorization

Neuroimaging data typically consist of values for thousands of voxels or vertices. 
Different approaches can be used to identify latent patterns of spatial organization in 
the data. these approaches are frequently referred to as unsupervised learning because  
the spatial pattern is unknown a priori, in contrast to supervised learning approaches,  
in which the true assignment of each data point is known a priori. In the framework of 
brain parcellation, two main unsupervised learning approaches can be distinguished: 
clustering and factorization. Clustering is used to group similar voxels or vertices 
together and apart from other, different voxels or vertices, whereas factorization 
organizes the data sets into dimensions and components that best represent variations 
in the data. Please note that this distinction is only for didactic purposes, as from a 
mathematical point of view, some clustering algorithms (such as k-means) can be 
seen as matrix factorization problems, and some factorization approaches (such as 
non-negative matrix factorization (NMF)) are frequently used within a clustering 
perspective. accordingly, some variants of k-means and NMF are mathematically 
equivalent124.

as mentioned above, from a more conceptual point of view, clustering approaches are 
typically used to group a set of objects into different groups in such a way that objects 
from the same group are more similar to each other than are objects from different 
groups. the clustering is based on the mathematical distance (that is, the dissimilarity) 
between the elements (in this context, voxels or vertices), computed usually based on 
their connectivity fingerprints. elements are grouped into clusters such that two 
elements that have similar connectivity fingerprints are assigned to the same cluster 
and, conversely, elements that have highly dissimilar connectivity profile are assigned 
to different clusters. the most widely used clustering algorithms in the connectivity- 
based parcellation (CBP) field are k-means clustering, spectral clustering and 
hierarchical clustering (see ref.53 for a comparative study).

Factorization approaches, by contrast, extract latent dimensions from data or  
find a low-dimensional representation of the elements’ profiles. the classical matrix 
factorization is principal component analysis (PCa), which identifies the main 
dimensions along which different data points vary.

By contrast, NMF19 approaches constrain the decomposed components to be 
strictly non-negative. together with additional constraints (for example, that 
components should be mostly zero, except in a small number of locations), NMF  
often yields a part-based decomposition of the data. For example, when applied to 
face photographs, NMF will yield components that represent distinct facial parts 
(such as nose, eyes and mouth). accordingly, NMF has an inherent clustering  
property, which allows the parcellation of the brain into localized components 
that mirror brain regions and has thus been successfully used for whole-brain 
partitions23,125.

importantly, all methods have distinct advantages and disadvantages, and thus the 
choice of approach should depend on the data at hand, as well as the objective of 
the parcellation. For example, NMF can model many different data distributions owing 
to the flexibility of matrix factorization, whereas k-means attempts to capture spherical 
clusters (in feature space). However, standard k-means yields a hard clustering, whereby 
each element (voxel or vertex) is uniquely assigned to either one cluster or another, 
whereas factorization approaches (such as fuzzy or soft clustering71) do not yield a clear, 
deterministic assignment. in soft partitioning, any given element (voxel or vertex) can 
be assigned to several groups by obtaining, for example, the probability of assignment 
to each group. However, a final spatial hard partition can be obtained when the scores 
from fuzzy clustering or factorization are integrated in a ‘winner-takes-all’ approach126. 
Currently, there are no clear guidelines for the use of these techniques in brain 
parcellation, owing to a lack of comprehensive empirical and theoretical studies that 
evaluate the advantages and limitations of each approach and variants thereof for 
different data sets and parcellation purposes.
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structural connectivity inferred from diffusion MRI, 
resting-state functional connectivity and task-based 
functional connectivity.

Boundary mapping versus clustering. In contrast to 
histological brain mapping, which has largely relied 
on border detection, connectivity-based parcellation 
(CBP) has mainly used clustering approaches to group 
voxels, such that connectivity fingerprints are as sim-
ilar as possible within a group of voxels and as differ-
ent as possible between groups of voxels. The resulting 
clusters represent different brain areas or networks. All 

methods have their inherent assumptions, strengths and 
limitations, and the choice of algorithm imposes those 
assumptions on the resulting parcellation. Accordingly, 
different algorithms can yield different parcellations on 
the same data25,53,54. To date, relatively few studies have 
applied boundary mapping techniques to resting-state 
functional connectivity markers55–59 (Fig. 1) or clustering 
to markers of local properties32,35. There are, however, 
no technical or conceptual reasons for the dominant 
partnering of local properties and border detection on 
the one hand and the pairing of connectivity markers 
and clustering approaches on the other. Rather, either 

Algorithm Boundary mapping Clustering or factorization

Markers

Local

Global

Histology-based:
• Cytoarchitecture
• Receptors
• Myelin

MRI-based:
• Myelin
• Meta-analytic activation modelling

MRI-based:
• Resting-state functional connectivity
• Meta-analytic connectivity modelling
• Diffusion tractography
• Structural covariance

Border detection in cortex based
on cytoarchitecture

Clustering of amygdala voxels 
based on their activation in 
behavioural paradigms

Boundary mapping of resting-state 
functional connectivity of cerebral 
cortex

Clustering of cerebral cortex 
based on resting-state 
functional connectivity

3

3

5

5

2

2

4

4

1

1

Fig. 1 | A 2D taxonomy of brain parcellation approaches. Parcellation approaches can be classified along two 
dimensions. The marker dimension ranges from markers that capitalize on local properties of brain tissues, such as cell 
body density or functional MRI (fMRI) signal time course, to markers that capitalize on connectivity fingerprint48 across the 
brain. The other dimension categorizes parcellation approaches according to the algorithm used for defining parcels, 
distinguishing local boundary mapping techniques55 from global clustering (or factorization) approaches. At the top of the 
table are two examples of such approaches: on the left (under ‘Boundary mapping’), cortical regions were partitioned 
according to their resting-state functional connectivity55 and, on the right (under ‘Clustering or factorization’), a matrix 
reveals five distinct clusters of voxels in area 44 that show similar patterns of whole-brain co-activation, measured using 
fMRI/PET during different tasks72. In theory , any type of parcellation approach can be used for regional or whole-brain 
parcellation. Accordingly , each cell illustrates an example application of a local (left column) or global (right column) 
parcellation technique to markers of local (top row) or global (bottom row) properties. Top left cell: regions of the JuBrain 
atlas identified by border detection according to architectonic properties. Top right cell: parcellation of the amygdala into 
subregions with a clustering approach applied to behavioural meta-analytic data35 (activation studies across a wide range 
of paradigms probing cognitive, motor and socio-affective functions from the BrainMap database36). Bottom left cell: 
parcellation of the cerebral cortex based on boundary mapping applied to resting-state functional connectivity59. Bottom 
right cell: parcellation of the cerebral cortex into functional networks based on clustering applied to the resting-state 
functional connectivity70. “Boundary mapping” heading image adapted with permission from ref.55, Elsevier. “Clustering 
or factorization” heading image adapted with permission from ref.72, Elsevier. Left-hand cell images adapted with 
permission from ref.11, Elsevier. Top-right cell image adapted with permission from ref.35, Elsevier. Bottom-right cell image 
adapted with permission from J. Neurophysiol., Yeo, B. T. et al., 106, 2011, 1125–1165 (ref.70).

Spectral clustering
A clustering approach based 
on the eigenvectors of the 
matrix of similarity (such as 
connectivity) between brain 
locations (voxels or vertices). 
The term ‘spectral’ refers to the 
spectrum (eigenvalues) of the 
similarity matrix.

Hierarchical clustering
A clustering approach that 
disentangles clusters in a 
hierarchical fashion, in such a 
way that relationships between 
clusters can be visualized as a 
tree structure.

Principal component 
analysis
A multivariate statistical 
approach to factorize data into 
orthogonal components that 
best represent variance in the 
data.

Fuzzy or soft clustering
A clustering approach in which 
points are not assigned to one 
single group but have a 
fractional value that represents 
their relative membership in 
each group.
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type of neurobiological property may be assessed 
using either approach; the current predilection seems  
historically driven.

Indeed, boundary mapping and clustering can be 
considered complementary for capturing different 
aspects of brain organization and as such were very 
recently integrated into a single hybrid model54. This 
was done by using an objective function that promoted 
the assignment of vertices with similar connectivity 
profiles to the same region (that is, clustering) but at 
the same time encouraged the assignment of spatially 
adjacent vertices with different profiles to different 
regions (that is, boundary mapping). As illustrated 
in Supplementary Figure 1, the resulting brain par-
cellation outperformed local and global approaches 
in terms of the homogeneity of the functional signal 
within the derived regions and also captured topo
graphic organization in sensorimotor and visual 
areas. Thus, combining local border detection with 
clustering may be a promising direction for future  
brain parcellations.

Examples of connectivity-based parcellations. CBP 
was first performed on structural connectivity mark-
ers estimated from diffusion MRI. Behrens et al.49 and 
Johansen-Berg et al.60 computed probabilistic tractography 
for each seed voxel in the thalamus and medial fron-
tal cortex, respectively, and then grouped these voxels 
according to their connectivity profiles. The resulting 
thalamic subregions corresponded to nuclei identi-
fied by histological studies, and spatial clusters in the 
medial frontal cortex matched the supplementary and 
pre-supplementary motor areas defined by task acti-
vation, providing important face validity. In another 

study, CBP applied to resting-state functional connec-
tivity markers55 demonstrated the existence of sharp 
local transitions in functional connectivity patterns 
across the cortex. Following these pioneering stud-
ies, CBP based on resting-state functional connectiv-
ity markers or on probabilistic tractography has been 
widely applied. Resting-state functional connectivity 
has proved particularly popular and accessible for esti-
mating connectivity and has already been widely used 
for parcellation not only at the areal level but also at 
the network level, while still representing the focus of 
technical developments61,62.

Soon after, CBPs based on meta-analytic connectivity 
modelling63–65 and on structural covariance64,66 data were 
also introduced. As a proof of concept, meta-analytic 
connectivity modelling was first used to delineate the 
pre-supplementary motor area and the supplemen-
tary motor area65, and both approaches (CBP based on 
meta-analytic connectivity modelling and CBP based 
on structural covariance) were then used to parcellate 
the insula63,64. Meta-analytic connectivity modelling has 
since been extensively used to parcellate cortical regions 
and subcortical structures, whereas structural covari-
ance has been only sparingly used. The relatively limited 
use of the latter approach may relate to its complicated 
interpretation; it is based on structural data but used as 
a proxy for functional interactions. Importantly, CBPs 
based on different markers seem to converge towards 
a similar pattern of brain organization64,67, suggesting 
that they capture robust aspects of brain topography. 
Nevertheless, we should note that often such conver-
gence was explicitly searched for or requested as a proof 
of concept, and some evidence suggests that at higher 
granularity, partitions based on different connectivity 

a  Retinotopy b  Cytoarchitecture c  Myelin mapping

V3A

V3

V3

V1

V1–V2
V1

VP

V2

V2

V2

V2V

Fig. 2 | Mapping of visual areas with local markers. Different parcellation approaches converge towards similar 
delineations of visual areas. Visuotopic mapping (based on functional MRI (fMRI)) and cytoarchitecture mapping  
(based on ex vivo brain tissues) show consistency in the delineation of V1 from V2. Furthermore, myelin mapping (based 
here on MRI) distinguishes V1 and V2 from higher visual areas in a similar way to visuotopic and cytoarchitecture mapping. 
a | Delineation of V1 and V2 based on fMRI visuotopic mapping136. b | Mapping of visual areas based on cytoarchitecture137. 
c | Myelin mapping, based on MRI T1-weighted:T2-weighted ratio28, differentiates V1 and V2, which are heavily myelinated 
(red), from higher visual areas (such as V3), which show lower myelin ratios (yellow and green). Part a is adapted with 
permission from ref.136, National Academy of Sciences. Part b is adapted with permission from ref.31, Elsevier. Part c is 
republished with permission of Society for Neuroscience, from Mapping human cortical areas in vivo based on myelin 
content as revealed by T1- and T2-weighted MRI. Glasser, M. F. & Van Essen, D. C. 31, (2011)28; permission conveyed 
through Copyright Clearance Center, Inc.

Echo planar imaging
An MRI sequence used for 
functional and diffusion 
imaging.

Meta-analytic connectivity 
modelling
A method that aims to model 
functional connectivity in the 
brain based on a co-activation 
pattern across various 
activation studies.

Probabilistic tractography
An approach to estimate 
white-matter tract pathways in 
the brain from diffusion MRI 
images.

Structural covariance
The pattern of covariations in 
measures of morphometry 
(such as grey-matter volume) 
across brain regions.
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measures tend to diverge64,68. Below, we briefly discuss 
challenges associated with CBP and new technical devel-
opments before returning to the issue of divergence 
and convergence between partition schemes based on  
different markers.

Challenges associated with connectivity-based par-
cellations. Parallel with the increase in the range of 
markers, CBP has undergone rapid development, which 
has produced divergent methods, leading to a rather 
heterogeneous literature. In fact, there are hardly any 
examples of CBP papers using the same approach. These 
technical developments and the ensuing challenges are 

reviewed elsewhere69 but, here, we wish to highlight one 
critical aspect: the issue of selecting the number of clus-
ters or parcels. First, we note that this may represent an 
ill-posed problem, as the brain has a multilevel organ-
ization, and therefore, there may be no right number 
of parcels61,70. Instead, different granularities may reflect 
different levels of brain organization. Second, it must be 
remembered that clustering algorithms such as k-means 
can partition any data set into any number of clusters71. 
In combination with a lack of biological ground truth, 
the question of how many clusters or parcels to select 
has necessitated the development of evaluation proce-
dures. Many studies have used internal information; that 

Box 3 | Main connectivity measures used for parcellation

traditionally, the term ‘connectivity’ refers to physical connections via 
white-matter tracts, which can be demonstrated using invasive tracing 
techniques in experimental animals or ex vivo fibre-dissection methods. 
Moreover, structural connectivity can also be estimated using 
tractography based on diffusion-weighted images127 (although see 
ref.128). By contrast, functional relationships between different parts of 
the brain may be revealed by correlating the time series of signals from 
different voxels or vertices during task performance or, more commonly, 
in the absence of a behavioural task — that is, in the resting state129. 
Notably, anatomical connectivity and functional connectivity represent 
very broad concepts with many different measurement and computation 
approaches, each carrying its own advantages and challenges, as well as 
potentially unique contributions, to multimodal brain-mapping 
endeavours. the four approaches assessing connectivity most frequently 
used in brain parcellation are resting-state functional connectivity, 
meta-analytic connectivity modelling, diffusion tractography and 
structural covariance (see the table).

Meta-analytic connectivity modelling reflects task-based functional 
organization estimated from the co-activation patterns of voxels across 
many studies, whereas structural covariance reflects functional coupling 
that is suggested by concurrent morphological variations across a group 
of subjects. Both approaches rely on covariation across a population 
sample (structural covariance) or multiple group studies (meta-analytic 
connectivity modelling), in contrast to probabilistic diffusion 
tractography and resting-state functional connectivity, in which measures 
are inferred independently for each subject. within the structural versus 
functional taxonomy, structural covariance is in an ambiguous position, as 
it is a proxy for functional connectivity but inferred from statistical 
covariance in the brain structure.

Connectivity-based parcellation (CBP) was initially developed for 
connectivity computed at the individual subject level but was quickly 
extended to connectivity inferred from statistical dependencies across a 

data set. each type of connectivity measure has its own strengths and 
limitations and is prone to particular artefacts. For example, diffusion 
tractography might yield spurious results128 owing to several 
factors. Crossing fibres might cause the tractography model to ‘jump’ 
between tracts, leading to false positives. Furthermore, diffusion 
tractography shows a gyral bias: more connections may be detected, 
hitting the crown of a gyrus rather than its wall, owing to the intrinsic 
geometry of cortical folds130,131. Conversely, tractography may also fail to 
infer the connectivity of grey-matter voxels or vertices near pial surfaces 
that are particularly spatially distant from white matter68. In addition, the 
limited spatial resolution of current tractography methods can potentially 
result in false negatives (missed connections), particularly with regard to 
small white fibres132.

Functional connectivity approaches are less affected by geometric 
factors, but signal loss and distortion are nevertheless common with 
functional Mri (fMri) near air–tissue interfaces. Furthermore, functional 
connectivity approaches are based on statistical dependencies between 
regions (either at the subject level in resting-state functional connectivity 
or at the group level in meta-analytic connectivity modelling and 
structural covariance) and are therefore sensitive to confounding factors. 
For example, fMri, particularly resting-state fMri (rs-fMri), is sensitive to 
various systemic influences, such as motion, respiratory and cardiovascular 
noise133,134. task-based fMri might be less influenced than rs-fMri by 
physiological noise but is usually more limited than the latter in terms of 
sample size (for example, the mean sample size across experiments in the 
BrainMap database36 is 12 subjects). although aggregation of studies (that 
is, in meta-analyses) can overcome the size limitation of individual studies, 
averaging across subjects and studies with different stereotaxic spaces 
limits spatial precision. Given that several known and unknown factors 
might potentially result in artefactual patterns, one approach for increasing  
the likelihood of a parcellation representing some true biological property 
is to retain only patterns that are consistent across markers and methods.

Crossing fibres
Individual white-matter fibres 
whose spatial direction result 
in points where they meet or 
cross each other, complicating 
the estimation of their 
respective paths.

k-means
A clustering algorithm that 
divides a set of data points into 
k clusters by iteratively 
optimizing the definition of 
each cluster centroid and data 
points assigned to the clusters.

Type Data measured Main method Variant methods Parameters refs

fMRI and PET imaging (functional)

Task-based fMRI and 
PET

Activation during task Meta-analytic connectivity 
modelling

Within-fMRI study 
functional connectivity

• Task domains
• Map or peak data

65

Resting-state fMRI Signal fluctuations at rest Cross-time correlation in 
signal fluctuations

• Signal denoising
• Target voxels or ROI

55

Imaging of co-plasticity (structural)

Anatomical MRI Structural variation 
in morphology in 
anatomical scan

Cross-subject correlation 
in grey-matter volume 
(structural covariance)

Cortical thickness135 • Segment modulation
• Smoothing
• Target voxels or ROI

64,66

Structural or anatomical

Diffusion MRI Estimation of fibre 
direction

Probabilistic diffusion 
tractography

Deterministic 
tractography

• Seed WM masking
• Target voxels or ROI

49

fMRI, functional MRI; PET, positron emission tomography ; ROI, region of interest, WM, white matter.
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is, information within the data. For example, consider-
ing that a good clustering should maximize variance 
between clusters and minimize variance within clusters, 
the ratio of these variances can be used to character-
ize cluster separation and to select the optimal number 
of clusters. Such internal information criteria mainly 
target the quality of the yielded clustering when con-
sidered purely from a technical point of view — that 
is, within the framework of an unsupervised learning 
problem. Although these criteria have been frequently 
used in CBP studies72–74, a good clustering from a data 
representation perspective might not necessarily repre-
sent a good partition with regards to the neurobiology 
that the approach aims to reveal — particularly in the 
presence of, for example, structured noise or outliers.

Consequently, there is increasing interest in evalua-
tion criteria for assessing parcellations that go beyond 
characterizing the quality of data representation. For 
example, assuming that partitions driven by biologi
cal truth should be more stable across different sam-
ples, reproducibility may indicate biological validity. 
Many studies have hence investigated stability across 
re-sampling and reproducibility across independent 
samples to propose optimal partitions70,75. Along the 
same lines, some recent studies have capitalized on the 
richness of technical variants (that is, the use of differ-
ent data preprocessing and/or clustering algorithms) 
to examine the robustness of the parcellation scheme 
across different analyses22,31. The underlying idea here 
is that a partition scheme that is constant across dif-
ferent techniques is likely to be driven by the under
lying neurobiology rather than methodological effects. 
Nevertheless, because such resampling methods do not 
rule out the influence of consistent artefacts within the 
same measurement technique, evidence of convergence 
across different markers has also more recently been 
used for so-called cross-modal validation67,68,70,76. Thus, 
in the absence of apparent ground truth, current par-
cellation work capitalizes on replication, robustness and  
convergence as proxies for biological validity.

Divergence between properties
The idea that different neurobiological properties should 
show similar patterns of organization was already noted 
in 1925 by von Economo and Koskinas and has remained 
a fundamental axiom of brain mapping. As written by 
Zilles and colleagues77 in 2002, “all these architectonic 
and functional imaging studies support the hypothesis 
of a correlated structural and functional subdivision of 
the cortex.” Such convergence across properties is indeed 
frequently observed (Fig. 2). Accordingly, especially with 
the emergence of CBP, convergence with previous brain 
maps (particularly from cytoarchitecture) has been used 
to argue for the validity of newly developed methods. 
We stress, however, that no property, be it resting-state 
connectivity, cytoarchitecture, diffusion tractography 
or task-based activation patterns, should be considered 
conceptually superior to any other modality, as each 
represents its own specific window into the topographic 
organization of the human brain. The prevailing notion 
that there is a gold-standard parcellation method thus 
seems misleading. Rather, the critical question is how to 

examine and interpret the convergence and divergence 
across parcellation results.

Although consistency across neurobiological proper-
ties certainly instils confidence in the robustness of a par-
cellation, we note a confusing development. There seems 
to have been a gradual shift from providing arguments 
that a newly conceived method may identify meaningful 
patterns towards the notion that parcellations must nec-
essarily converge if they are to be considered biologically 
relevant41,78. This notion is in stark contrast to the fun-
damental idea that different properties reflect different 
aspects of brain organization79. In fact, divergences in 
the topographical maps evidenced by different markers 
can actually be found quite frequently in the literature, 
although they are rarely highlighted80. For example, his-
tological features mainly show an organization of the 
hippocampus along the medial–lateral axis6, whereas 
connectivity markers will primarily reveal an organiza-
tion along the anterior–posterior axis81,82. Notably, such 
differences are largely irrelevant from a data compres-
sion perspective, as the best representation of the data 
is specific to the data in hand and to the purpose of the 
representation11,83. For example, a CBP derived from 
resting-state functional connectivity provides a good 
condensed representation of voxel-wise data for subse-
quent analyses of fMRI signals, with resulting parcels 
being more homogeneous in terms of resting-state signal 
than, for example, cytoarchitectonic areas83.

From a conceptual view, however, such differences 
between topographical maps that have been derived 
using different markers arguably deserve more attention 
than they have received up to now. The fact that each 
neurobiological property represents a unique window 
into brain organization suggests that several different, 
equally valid maps can be derived from the analysis of 
different markers, such as cytoarchitecture, connectivity 
or function. Furthermore, this conceptualization implies 
that parcellation based on any given characteristic (such 
as cytoarchitecture) cannot be used as a completely faith-
ful surrogate for parcellation based on another character-
istic (such as anatomical connectivity)44,84, although it can 
be expected to have some predictive value (see below).

Nevertheless, inferences on brain organization that 
are based on any one specific marker in isolation might 
also be difficult because all methods are susceptible to 
artefacts. In particular, MRI-based markers indirectly 
represent biological features (Box 3), whereas analyses 
of histological sections are susceptible to geometric dis-
tortions resulting from tangential sectioning. Hence, 
one approach for increasing the likelihood that a par-
cellation represents a biological property of the brain is 
to retain only those patterns that are consistent across 
parcellations based on different markers and methods, 
even though this approach comes at the cost of poten-
tially missing important aspects of brain organization 
not revealed by all markers and methods.

Multimodal approaches
Although the idea of integrating different approaches 
towards a universal whole-brain (or cortical) map has 
been around for many years12, the perspective has been 
only recently concretized in humans16,85. Although we 
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refer to these approaches as ‘multimodal’, this term 
should not be taken as referring to different MRI 
modalities but more generically to studies investigating 
different markers for parcellation, be they MRI-based 
(such as resting-state functional connectivity) or not 
(for example, based on a receptor fingerprint).

First endeavours of multimodal approaches. Several 
studies have derived multimodal parcels by retaining the 
spatial overlap between clusters from unimodal parcella-
tions. For example, resting-state functional connectivity, 
meta-analytic connectivity modelling and probabilistic 
tractography parcellation schemes were superimposed 
to derive robust parcels in the superior parietal lobule86, 
in the dorsal premotor cortex68 and even in a small sub-
cortical structure, the nucleus accumbens87. Thus, the 
cluster conjunction approach has provided encouraging 
results for brain cartography in terms of representing 
robust, fundamental units11.

However, such conjunction allows unequivocal 
mapping only when all unimodal parcellations reveal a 
similar pattern, whereas the procedure for dealing with 
substantial discrepancies between unimodal parcella-
tions remains an open challenge. Most previous studies 
chose to exclude ambiguous voxels, but doing this can 
lead to a fragmented and incomplete map. Furthermore, 
we anticipate that when a convergence between partition 
schemes based on different markers can be observed, 
it will be restricted to subdivisions at certain spatial 
scales64,68, thus enforcing the conjunction at a level of 
partitions that might not be optimal (for example, less 
stable) for each unimodal partition when considered in 
isolation. Thus, there is no guarantee that this approach 
could be successfully applied to the whole brain and 
yield a biologically valid map.

One strategy to avoid such a situation lies in mul-
timodal integration before partitioning. Using a 
semi-automated border identification approach, an 
innovative integration of MRI-derived local and connec-
tivity measures into a unique parcellation was recently 
performed16. As a fully automated detection of borders 
is prone to false positives (because abrupt changes in 
marker distribution can be driven by artefacts), a trained 
(human) observer supervised the procedure and ulti-
mately accepted or rejected each automatically detected 
border. This approach has the advantage of being able 
to integrate decades of prior knowledge on brain organ-
ization but conversely comes with the drawback that a 
priori knowledge and expectations of brain organization 
may bias the ensuing parcellation.

Challenges in integrating properties. An important 
but underappreciated aspect of multimodal brain par-
cellation is the fact that different properties should be 
expected to provide complementary information about 
regional brain organization80. Arguably, only a combi-
nation of different measures may allow a true under-
standing of topographic organization in the human 
brain. However, three sub-goals may potentially conflict 
here. First, a multimodal approach should retain infor-
mation relating to each property. Second, a multimodal 
approach should neutralize artefacts or spurious patterns 

that occur in only one measure. Third, the approach 
should be data-driven to minimize potential biases from 
a priori and subjective expectations. These are poten-
tially contradictory requirements because a pattern 
observed in only one modality could reflect a biolog-
ical aspect that is uniquely captured by that modality 
or an artefact of the technique. In turn, artefacts can be 
detected by human inspection, but such intervention is 
ultimately observer-dependent and may hinder the dis-
covery of new patterns that are not expected from previ-
ous literature. Considering these issues, we discuss below 
two potential strategies to maximize the information  
retained and to minimize manual intervention.

Maximizing the number of modalities. One basic 
axiom is that different modalities reflect the many 
dimensions along which the brain is organized. For 
example, the frontal lobe is organized along rostro–
caudal, ventro–dorsal and medial–lateral axes88. Let 
us accordingly consider three dimensions A, B and C. 
Suppose a given marker predominantly reflects dimen-
sion A; to a lesser extent, dimension B; and to an even 
more minor extent, dimension C. By contrast, another 
marker might mostly reflect dimension B; to a lesser 
extent, dimension A; and to even lesser extent, dimen-
sion C. Integrating both modalities would maximize the 
likelihood of capturing brain organization along both 
dimensions A and B. Such integration would also offer 
greater insights into dimension C than either of the 
modalities considered in isolation. However, the inte-
gration of modalities might still not optimally represent 
brain organization along dimension C. An additional 
modality sensitive to dimension C would be necessary 
to fully capture this last dimension.

In other words, we expect that the higher the num-
ber of different modalities is, the higher the chance to 
fully capture each dimension or organizational aspect. 
This strategy would not only promote an optimal cov-
erage of the multiple organizational dimensions of the 
brain but also contribute to disentangling true neuro-
biological aspects from artefacts with minimal human 
intervention. We therefore argue that a multimodal 
approach should maximize the number and the diversity 
of modalities. This pertains particularly to the integra-
tion of structural, functional and connectional measures 
across both MRI and, importantly, histological meas-
ures. To the best of our knowledge, such integration has 
not yet been achieved. Thus far, the few published mul-
timodal studies have focused exclusively on MRI-based 
features16,68,86,87,89, and integration of histological features 
with MRI-based features has been performed in only 
one specimen85. For example, the integration of histo-
logical myelin maps with MRI-derived proxies thereof 
has been unexplored to date, but such integration would 
provide at least some protection against method-specific 
artefacts or biases.

Towards a multimodal map with predictive value. 
The integration of different markers poses technical 
challenges, and how divergent parcellations should 
be conceptualized also remains an open topic. That 
is, if different properties, such as microstructure and 
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long-range connectivity, indeed reflect different organ-
izational dimensions, how should a multimodal map of 
cortical areas be defined? Although certainly a prema-
ture idea at the current stage, we suggest that an opti-
mal representation of multiple divergent parcellations 
is defined by an ‘or’ combination of unimodal borders. 
Concretely, wherever the local information-processing 
infrastructure or the pattern of interactions changes, a 
new region should be defined. Such an approach might 
potentially contribute to disentangling small regions, 
called domains, that have been observed in invasive 
studies in non-human primates and that are hypoth-
esized to exist in humans. The primary example of 
domains are separable entities in the posterior parietal 
cortex, primary motor and premotor cortex that seem to 
be related to different kinds of movements (for example, 
defence of the head) and could support close functions 
in humans, such as protective behaviour of periper-
sonal space90,91. An ‘or’ combination across a multi-
modal map might help to disclose those small entities 
but could also include spurious borders owing to  
modality-specific artefacts.

One avenue to empirically evaluate different methods 
for combining multiple maps is through supervision on 
a meta-level by testing which approach holds the high-
est predictive value for brain function and dysfunction. 
In other words, an optimal multimodal map should 
provide the best prediction of task-related activations, 
behavioural phenotype and/or clinical symptoms. For 
example, a map that divides the hippocampus along 
both the anterior–posterior axis (based on connectivity) 
and the medial–lateral axis (based on histology) might 
better predict clinical phenotype (in Alzheimer disease 
or major depressive disorder) with supervised machine 
learning than either connectivity-based or histological 
maps alone.

We note that this view is in line with a long tradi-
tion in brain cartography, as even early brain-mapping 
books sought to relate partitioning to behavioural (dys-) 
function. For example, intracranial stimulation in two 
distinct areas in non-human primates induced differ-
ent patterns of interference with animal behaviour92. 
In humans, invasive cortical stimulation mapping in 
surgical patients mirrors such functional validation18. 
The neuropsychological lesion–deficit approach can 
also contribute to the distinction of different brain 
areas, despite several limitations93. Alternatively, the 
validity of functional maps can be tested in surgical 
patients based on their ability to predict post-surgical 
deficits. Hence, being more controlled than the post 
hoc lesion approach, investigation in surgical patients 
can be seen as a gold standard for functional mapping. 
This deficit-based view should then be complemented 
by a detailed, again multimodal characterization of the 
physiological properties of the delineated areas in order 
to build a functionally comprehensive atlas upon the 
spatial parcellation scheme.

Multimodal and unimodal maps. Importantly, testing 
the validity of a multimodal map based on its predic-
tive value remains relatively unexplored. Given that 
each type of neurobiological property is differentially 

informative80, the concept of such map may itself be 
open to debate. For example, Glasser et al.’s16 multi-
modal parcellation gives an excellent separation between 
motor and somatosensory areas but does not provide 
somatotopic or visuotopic information. Accordingly, 
the interpretability and relevance of such a map can be 
debated, although the latter may be proxied by its predic-
tive value. We initially proposed that a multimodal map 
would have more predictive value than any unimodal 
map. We nevertheless should raise the point that, con-
ceptually, individual maps may outperform multimodal 
maps with respect to the prediction of some phenotypes. 
For example, a map yielded by tractography mapping 
could have a higher predictive value in multiple scle-
rosis atrophy and symptoms than would a map derived 
from resting-state functional connectivity, whereas the 
latter may have better predictive value for schizophre-
nia diagnosis and subtyping. Accordingly, a collection of 
unimodal maps may have its own place in understand-
ing brain–behaviour relationships and may complement 
multimodal maps.

Future questions and challenges
Inter-individual variability. An important consid-
eration for building a general representation of brain 
organization pertains to inter-subject variability, which 
is encountered at all spatial levels and in all neurobio-
logical properties, from histology6,17,94 to large-scale net-
works95,96. Group-based parcellation schemes generally 
capture the main aspects of organization evident across 
individuals, whereas the size, shape and position of areas 
and networks can vary substantially between individ-
uals5,18,19,76,97 (Fig. 3). Furthermore, divergent patterns 
of brain organization from the most common pattern 
(that is, changes in the spatial arrangement of cortical 
regions) can be observed in approximately 5–10% of 
the healthy population16,19, and care should therefore 
be taken to avoid the undue influence of such outliers. 
Notwithstanding their non-conformation to a theo-
retically universal map of the brain, such topological 
outliers, if they do not result from artefacts, can also be 
considered to be interesting cases of inter-individual var-
iability to understand brain–phenotype relationships98. 
Indeed, recent studies have suggested that the topo
graphy (location and size) of individual-specific brain 
parcellations is predictive of individual differences in 
demographics, cognition, emotion and personality3,5,99. 
In this context, we would argue that the quest to under-
stand robust patterns of brain topography across differ-
ent markers and the investigation of inter-individual 
differences are closely intertwined challenges. Only by 
understanding the generic characteristic of topographic 
organization can we start to appreciate idiosyncrasies 
and their relationships to socio-demographic, cognitive 
or affective profiles.

Further complicating the understanding of inter- 
individual differences, regions that show high inter
individual variability often also show substantial changes 
across ontogenesis and phylogenesis and even exhibit 
inter-hemispheric asymmetry35,95,100,101. This coexist-
ence of different, albeit related, issues has caused many 
debates on the true structure and function of these ‘hot 

Domains
Spatial units in the brain that 
are smaller than usual brain 
regions and show specific 
functions.
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regions’, which include, for example, the inferior por-
tion of the posterior middle frontal gyrus. Although this 
region had long been somewhat neglected, the recent 
multimodal parcellation by Glasser et al.16 found strik-
ing local and connectivity marker changes in that region 
relative to adjacent regions, as well as activation during 
language tasks, leading to the hypothesis of the exist-
ence of a new ‘area 55b’ devoted to language functions. 
However, the authors also pointed out that this area 
showed high inter-individual variability. Furthermore, 
meta-analytic investigation revealed an engagement of 
this region in language functions only in the left hemi-
sphere68. Generally, as many brain structures seem to be 
symmetric at the macrostructural and microstructural 
levels102, hemispheric symmetry is implicitly assumed 
and often prioritized in parcellation studies16,103. Never
theless, studies that do not pose such constraints have 
revealed different patterns of organization across hemi
spheres (that is, asymmetry) in neocortical70 but also 
evolutionarily older brain structures81,104. In sum, the 
extent to which the brain is symmetrically organized 
can be considered an open question. Asymmetries in 
brain structure can be observed early in human develop-
ment105, but functional asymmetries are probably further 
shaped across ontogenesis to varying extents in different 
individuals. In other words, functional (a)symmetry is 
highly variable across individuals, making it difficult to 
draw conclusive evidence for a strict symmetry or asym-
metry in some regions. Following these assumptions, 

future studies should test whether individual patterns 
of brain functional asymmetry are associated with or 
predict individual phenotypes.

Studies of ontogeny and phylogeny. The question of 
symmetry and the influence of ontogeny will become 
particularly interesting when considering, for example, 
the prefrontal cortex — a highly variable, evolutionarily 
new brain region that matures relatively late compared 
with other brain regions and shows evidence for strong 
hemispheric specialization106,107. Both developmental 
and phylogenetic aspects, however, are still rarely con-
sidered in the context of studies of brain parcellation, 
though we expect this may change rapidly. Although 
multimodal MRI captures only a limited repertoire of 
neurobiological properties, it has the advantage of being 
readily performed not only at different stages across the 
human lifespan but also in non-human primates or 
rodents. Comparisons with non-human primates have 
often highlighted similarities in brain organization to 
humans8,108–113, but there is also evidence of differences114. 
For example, a recent study has suggested the existence 
of an area called FPl (referring to its lateral frontal pole 
location) in humans that lacks correspondence with any 
region in the macaque prefrontal cortex115. Similarly, 
the first studies of brain organization in non-human 
primates with approaches mirroring those used in 
humans have been only recently performed44,84,116,117. In 
turn, and quite surprisingly, systematic comparisons of 
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Fig. 3 | inter-individual variability in functional parcellation. Organization of individual-specific cortical parcellations 
echoes that of group-level parcellations but also exhibits substantial inter-individual variability. a | Network-level 
parcellations of Human Connectome Project (HCP) individuals using a half hour of resting-state functional MRI (rs-fMRI) 
data per participant18. b | By exploiting a large quantity of data (5 hours per participant) from the Midnight Scan Club, 
highly detailed network-level (left) and area-level (right) parcellations of individual participants were generated97.  
c | Recent algorithmic advances allow the delineation of highly detailed network-level parcellations using a half hour of 
data per HCP participant5. Consistent with multiple studies, individual-specific networks exhibit unique topological 
features that are highly replicable across two different days (black arrows). Part a is adapted from ref.18, Springer Nature 
Limited. Part b is adapted with permission from ref.97, Elsevier. Part c is adapted from Kong, R . et al. Spatial topography  
of individual-specific cortical networks predicts human cognition, personality and emotion, Cereb. Cortex, 2018,  
https://doi.org/10.1093/cercor/bhy123 (ref.5), by permission of Oxford University Press.



parcellations across the human lifespan are still com-
pletely absent, even though there is no doubt that brain 
structure, function and connectivity dynamically change 
throughout the entire human lifespan.

Conclusions
In contrast to histological brain mapping, which 
has a long history and is a relatively mature field, 
imaging-based parcellation is a recent approach that has 
evolved across different dimensions, including various 
different methods, markers and evaluation approaches. 
The recent combination of local and global mapping 
techniques has raised the opportunity for parcellations 
that capture both areal and network organization. This 
double optimization might reconcile the objective of opti-
mal whole-brain representation for data compression and 
accurate representation of well-defined brain areas for 
neuroscientific inferences. Recent progress in high-field 
scanners will provide support for mapping of imaging 
properties that are closer to the microstructure, such 
as whole-brain patterns of lamination. We can expect 
that, in the future, the application of hybrid algorithms 
to high-resolution MRI data should open new vistas in 
which brain areas are delineated in vivo based on a com-
bination of information related to their microstructure  
and their integration into larger networks.

From a cartography perspective, the many markers 
offered by MRI should support robust mapping of brain 

areas by crossing partition schemes that are revealed by 
different modalities. Nevertheless, considered separately, 
the different organizational topographies revealed by 
markers reflecting different neurobiological properties 
are also likely to have a crucial role in our understand-
ing of the organizational dimensions of the brain. Given 
that these dimensions underlie the architecture of the 
human mind, characterizing the relationship between 
these topographies and behavioural functions should 
bring new insight into the understanding of the human 
mind, behaviour and dysfunction93. In addition to the 
richness of MRI markers, large MRI data sets have been 
acquired around the world and across different periods 
of the human lifespan. The availability of these data 
opens up new possibilities towards the characteriza-
tion and understanding of inter-individual variability, 
brain asymmetry and the dynamics of inter-individual 
variability and brain asymmetry across lifespan devel-
opment. Along the same lines, although parcellation in 
non-human primates is still in its infancy, it should bring 
complementary insights into brain phylogeny. Thus, 
imaging-based brain parcellation, following extensive 
developments and applications in the recent decade, 
still holds great promise for revolutionizing our under-
standing of human brain organization and its relation to 
human behaviour.
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