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The human cortex possesses a reconfigurable
dynamic network architecture that is disrupted in
psychosis
Jenna M. Reinen1, Oliver Y. Chén1, R. Matthew Hutchison2, B.T.Thomas Yeo3,4, Kevin M. Anderson1,

Mert R. Sabuncu4,5, Dost Öngür6, Joshua L. Roffman7,8, Jordan W. Smoller7, Justin T. Baker6 &

Avram J. Holmes1,4,7,9

Higher-order cognition emerges through the flexible interactions of large-scale brain net-

works, an aspect of temporal coordination that may be impaired in psychosis. Here, we map

the dynamic functional architecture of the cerebral cortex in healthy young adults, leveraging

this atlas of transient network configurations (states), to identify state- and network-specific

disruptions in patients with schizophrenia and psychotic bipolar disorder. We demonstrate

that dynamic connectivity profiles are reliable within participants, and can act as a fingerprint,

identifying specific individuals within a larger group. Patients with psychotic illness exhibit

intermittent disruptions within cortical networks previously associated with the disease, and

the individual connectivity profiles within specific brain states predict the presence of active

psychotic symptoms. Taken together, these results provide evidence for a reconfigurable

dynamic architecture in the general population and suggest that prior reports of network

disruptions in psychosis may reflect symptom-relevant transient abnormalities, rather than a

time-invariant global deficit.
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The human cortex is organized into large-scale networks with
complex patterns of functional coupling1–3. While sub-
stantial progress has been made delineating aspects of this

intricate architecture, research in this domain has traditionally
relied on static analytic approaches that assume stable patterns of
connectivity across time4. However, the brain is not a static organ,
and time-varying profiles of network connectivity are evident across
a broad range of task states5,6 and during periods of unconstrained
rest7–9, (but see 10,11). Variability in the expression of dynamic
brain states links to cognition12–15, learning, and the presence of
psychiatric illnesses like schizophrenia16–18 that are characterized
by a breakdown in cortical information processing. Despite the
importance of understanding the relations that link temporal
descriptions of brain function with behavior, the core features of
dynamic network organization, the stability of individually specific
signatures of time-resolved connectivity, and their associated rele-
vance to the disease, remain unclear.

Patterns of spontaneous brain activity and connectivity have
been a focused topic of study in electrophysiological recordings at
the level of cells, local fields, and surface electroencephalograms
(EEGs)8. While formal biophysical models linking the activity of
neuronal populations with large-scale brain systems have yet to
be established19, features of oscillatory neural activity, such as
those observed at high temporal resolutions, may be reflected in
hemodynamic fluctuations20. Transient quasi-stable patterns
detected in EEGs (microstates), for example, spatially correlate
with network patterns observed through intrinsic functional
connectivity magnetic resonance imaging21–23. Although macro-
scale network dynamics have been linked with changes in arou-
sal13, attention14,15, and autonomic activity24, the biological bases
and behavioral significance of these spontaneous fluctuations
remain unresolved. There are at least two reasons for this lack of
consensus. First, prior studies of functional network dynamics
have largely focused on single clustering solutions in isolation,
choosing a fixed number of temporal states a priori. As a result, a
functional atlas of transient network configurations, or brain
states, that are present throughout the population has not been
fully characterized. Second, analyses of transient network func-
tion have principally focused on establishing the existence of a
general architecture of dynamic connectivity shared across the
population. Static patterns of intrinsic connectivity are heri-
table25,26 and act as a trait-like fingerprint that can accurately
identify specific people from a large group27–29. There is a reason
to believe that a substantial portion of the dynamic connectome
may be unique to each individual. Despite the importance of
establishing if time-resolved network function acts as an indivi-
dual specific signature, the extent to which dynamic connectivity
profiles possess intra-subject reliability and capture inter-subject
variability has yet to be determined.

Although time-resolved analyses of network organization have
largely focused on the study of healthy populations, there is
preliminary evidence to suggest that network dysfunction in
psychosis may emerge through alterations in the core dynamic
architecture of the brain16–18. Psychotic illnesses (including
schizophrenia, schizoaffective disorder, and bipolar disorder with
psychotic features) are marked by broad disruptions across cor-
tical association networks, potentially contributing to widespread
changes in information processing30–34. By one view, impaired
network connectivity in patient populations might be time-
invariant, emerging through stable deficits in brain function. An
alternate possibility is that aspects of the functional impairments
observed in psychosis reflect transient abnormalities pre-
ferentially evident during the expression of particular network
configurations17,35. Converging evidence suggests that aberrant
oscillatory activity may link to core symptoms of schizophrenia,
including the presence of hallucinations35. Patients with

schizophrenia exhibit reduced dynamism, spending longer peri-
ods of time within single brain states and demonstrating a less-
variable repertoire of dynamic network configurations36. Relative
to healthy populations, patients with schizophrenia dwell more in
network configurations typified by reduced large-scale con-
nectivity, while also showing muted cross-network negative cor-
relations, for instance, between default and other networks18.
Dynamic analyses of network function may distinguish clinical
groups, providing information that is inaccessible through static
connectivity analysis17. The incorporation of time-resolved ana-
lyses of network function could provide a more sensitive or
specific marker of the disease than static approaches, potentially
associating with the illness course and/or the presence of distinct
symptom profiles. As impairments in attention, learning, and
executive functioning are common across neuropsychiatric dis-
orders32, research in this domain could provide novel insights
into the biology of illness as we work to predict the onset, track
disease states, and optimize treatment response.

Here, we applied a sliding-window approach to characterize
the reconfigurable architecture of large-scale brain networks in a
sample of healthy young adults and individuals with psychotic
illness37. Among healthy adults, we demonstrate that the resulting
dynamic connectivity profiles are reliably expressed across scans
and visits, acting as a biological signature that can identify specific
individuals within a larger group. Patients with psychotic illness
exhibited intermittent disruptions within cortical association
networks previously associated with the disease. Individual con-
nectivity profiles within specific brain states predicted the pre-
sence of active psychotic symptoms, operationalized as meeting
clinician-rated symptomatic diagnostic criteria with the presence
of delusions and/or hallucinations in the past month38. This
property of dynamic network function generalized to a held-out
sample of patients. These collective results suggest a key role for
functional network dynamics in human cognition, and highlight
how specific breakdowns in time-varying profiles of network
connectivity may link with the presence of distinct symptom
profiles in psychiatric illnesses.

Results
Core dynamic network configurations. The human brain can
exhibit a multitude of possible transient connectivity patterns
comprised of varying network configurations. As an initial step in
understanding temporal shifts in this dynamic architecture over
time, we aimed to identify a core or canonical set of transient
brain states conserved across individuals. First, we coupled a
population atlas of large-scale cortical networks39 and a sliding-
window approach (11 time points; width= 33 s7,8,40–42) to esti-
mate time-varying connectivity profiles within resting-state scans
from 1919 healthy young adults (Fig. 1; see Methods for infor-
mation on data acquisition and preparation)43. These data were
collapsed across participants before we applied k-means cluster-
ing to estimate solutions yielding from 2 to 20 brain states. Note
that the brain states defined through k-means clustering do not
necessarily have sharp boundaries, cleanly separating them from
other network configurations. Rather, k-means clustering identi-
fies sets of time-varying network configurations with common
features, grouping them into clusters that are more similar to each
other than to configurations in other clusters. The associated
groupings can vary across clustering solutions as their complexity
increases, revealing intermediate network configurations between
more geographically separated states. To estimate the viability of
the resulting solutions, we analyzed the population-level con-
sistency of each clustering algorithm39,44,45. Consistent with an
expansion in the solution space, the clustering became less stable
as the number of estimated brain states increased (Fig. 1d and
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Supplementary Figure 1). Analyses indicated relative stability in
state solutions 2–8, with 2-, 4-, 5-, and 8-state solutions displaying
points of increased stability. The stable nature of the observed
state solutions was robust to changes in data quality (see Meth-
ods, Noise constraints). As such, our analyses going forward focus
on clustering solutions containing 2–8 dynamic states to provide

a broad survey of the solution space. In the present data, these
solutions captured significant aspects of dynamic variation in
network connectivity. However, the focus on 2–8 brain states
should not be taken to imply that meaningful properties are
absent in alternative solutions.

Brain states exhibit hierarchical features. Previous studies of
functional network dynamics have largely focused on single
clustering solutions in isolation, choosing a fixed number of states
a priori. The relations between these isolated dynamic network
configurations and other possible solutions remain unclear. To
address this question, we employed a matching analysis exam-
ining the preservation or fractionation of individual brain states
as the complexity of our clustering solution increased. An
exhaustive search was performed exploring the scenario that two
states in solution S+ 1 were subdivisions of a state within solu-
tion S. Hungarian matching (Supplementary Figure 2) was used
to determine which two-state combination in S+ 1 was best
matched to the S-state solution by minimizing network dissim-
ilarity. As solution complexity increased, a hierarchical structure
was observed, with some network configurations preserved across
levels (Fig. 2; see Methods, Hierarchy analysis) and selected
hybrid states in solution S breaking into substates within solution
S+ 1. A single state, termed state A, was evident across state
solutions 2 through 7, not splitting to produce a hybrid substate
until the solution complexity increased to eight states. These
analyses demonstrate the stable expression of canonical network
configurations across a variety of state solutions (2–8). Of note,
when larger numbers of states were considered, increasing solu-
tion complexity was reflected in the hierarchical fractionation of
particular states into substates.

Static analyses of network function suggest that heteromodal
association cortices are more functionally variable than the
unimodal cortex across the population46. These aspects of the
cortex, and its associated networks, are implicated in a host of
complex cognitive functions47 and overlap with regions that
predict individual differences in behavioral performance46. We
then explored if the heteromodal association cortex also exhibits
heightened dynamic variability, as reflected in fluctuating
connectivity configurations over time. Analyses examining the
variance of mean network connectivity across the state solutions
revealed evidence for dissimilar patterns of network expression
across the dynamic states (ANOVA of coefficient of variance with

Fig. 1 Detecting multiple functional connectivity states using a sliding-
window approach. a The functional network organization of the human
cerebral cortex is revealed through intrinsic functional connectivity. Colors
reflect regions estimated to be within the same network determined based
on the 17-network solution from Yeo et al.39. The map is displayed for
multiple views of the left hemisphere in Caret PALS space79. b Correlation
matrices are computed across regions from windowed portions (width=
33 s) of each participant’s component time series (n= 1919), and
aggregated across the full sample. c K-means clustering was applied to
identify repeated patterns of connectivity (brain states). d Instability of the
clustering algorithm is plotted as a function of the number of estimated
states (2–20). As expected based on increasing solution space
(complexity), instability was greater with increasing the number of
estimated states per solution. The local minima of the graphs observable at
the 2-, 4-, 5-, and 8-state solutions indicate the number of states that can
be stably estimated by the selected clustering algorithm with the present
data. Resampling over time (sliding windows) and across space (regions of
interest) yields comparable results (see Supplementary Figure 1). In this
article, we focus on state solutions 2 through 8 to provide a broad survey of
the solution space
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state solutions treated as repeated measures, F15= 44.11,
p ≤ 0.001). Consistent with reports of heightened time-resolved
network flexibility within the association cortex13, the greatest
between-state variability was found in aspects of default,
attention, and control networks (Supplementary Figure 3).

Evidence for an attractor state. In addition to characterizing
the profiles of network connectivity across clustering solutions,
brain dynamics can be studied in terms of the relative likelihood
of transitions occurring among locally stable states over
time7,16,17. To assess this feature of temporal organization, we
examined the probability that participants would shift from a
given state S to a different state (transition probability), as well as
the probability that they would remain in state S. Window-by-
window estimates were created for each state solution by
matching the participant-specific connectivity matrices to the
group atlas of brain states. This generated a vector of 110
expressed states for each participant. As solution complexity
increased, participants were more likely to transition into (ps ≤
0.001), and remain in state A (all test states 2–5 ps ≤ 0.001; states
6–8 ps ≥ 0.05; Fig. 3), termed the “attractor state.” Dwell time was
calculated as the percent of the total time a given participant
expressed state S relative to the total time in states not-S. Across

the clustering solutions, the observed brain states exhibited quasi-
stable expression, with all states maintaining nonzero dwell times
(ps ≤ 0.001). Reflecting the transition probability analyses detailed
above, dwell times were nonuniform across brain states. Partici-
pants dwelled most in attractor state A (ps ≤ 0.001) relative to all
other states.

Several core patterns that distinguish brain states across
clustering solutions were evident. For ease of interpretability,
the four-state solution was selected to characterize these features
of dynamic connectivity (Fig. 4). As noted in the Hungarian
matching analyses detailed above (Fig. 2), state A4 most closely
resembled the global state revealed through traditional static
analyses of network function. Across network configurations,
state A was typified by a relatively flattened profile of connectivity
(Fig. 4a). In line with this muted connectivity profile, the
expression of state A became increasingly frequent in the second
relative to the first half of the scan across each clustering solution
(2–8 states; ts1919 ≥−6.07, ps ≤ 0.001), potentially linking with
shifts in arousal and vigilance14,15.

The remaining states varied markedly from the state A4

connectivity pattern with differences evident across states both
within and between functional networks (Fig. 4b). Relative to
state A4, states B4, C4, and D4 were characterized by increased
expression of default A (see Fig. 1a for network topographies),
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with state B4 also marked by heightened within-network visual
system and default B connectivity. State B4 notably differed from
other network configurations in its recruitment of dorsal
attention network A. Conversely, states C4 and D4 displayed
increased correlations within the ventral attention network. There
was also striking variation in the coupling of the frontoparietal
network, with state C4 primarily characterized by increased
connectivity in the control B network.

States B4, C4, and D4 showed marked departures from the off-
diagonal coupling evident in state A4 and the global state (Fig. 2).
The negative correlations between the default and somatomotor
networks were attenuated in state B4 and were more evident in
states C4 and D4. While states B4 and C4 displayed heightened
correlations linking default and control networks, state D4

exhibited increased connectivity between default and the salience,
attention, and somatomotor systems. Additionally, state C4, and
to a lesser extent state D4, displayed increased cross-network
connectivity between the attention, somatomotor, and visual
networks. Together, these varying network configurations
demonstrate nonrandom departures from connectivity patterns
observed in the global state. There is a strong correspondence
between the structure of intrinsic and extrinsic (task-evoked/
coactivation) networks of the human brain, suggesting that the
topological characteristics of the brain at rest are closely linked to
cognitive function12,48. The transient expression of integrated
network configurations may enable fast and accurate cognitive
task performance49. Emerging evidence suggests that an indivi-
dual’s unique profile of dynamic network connectivity could
provide novel insights into the study of behavioral variability
across both health and disease. In this regard, a crucial step is the
characterization of intra-subject reliability and inter-subject
variability of the observed profiles of time-varying brain
organization across the population.

Network dynamics are a marker of individual differences. Static
descriptions of brain functional organization act as a biological
fingerprint that can identify specific individuals within a larger
group27–29. We aimed to determine whether the observed
dynamic states were reliably expressed in a manner that would
allow us to characterize unique within-subject profiles of transient
network organization. To this end, we first assessed within-
session reliability. For participants with two bold runs (n= 1341)
in the same scanning session, correlation matrices were con-
catenated for each individual brain state, and a Pearson correla-
tion was generated for run 1 relative to run 2. T-tests were used to
compare the distributions of the resulting r values within and
across individuals. For each state, we observed greater within-
participant similarity for same-day scans (rs ≥ 0.49) compared to
between participants (rs ≤ 0.23, 2–8 states; ps ≤ 0.001; see Meth-
ods, Individual identification analyses; Supplementary Figure 4).
We then examined a cohort of participants with two scan visits
collected on different days (≤6 months apart; mean= 63.35 ±
48.10 days; n= 79). Analyses demonstrated consistent within-
subject dynamic state expression across visits (Fig. 5a; ps ≤ 0.001).
Suggesting relatively stable intra-subject reliability across time,
the observed within-participant similarity of the expressed brain
states (Fig. 5a) did not vary as a function of the number of days
between participant visits (absolute value of rs ≤ 0.21; ps ≥ 0.09).

Permutation tests27 were used to assess if dynamic connectivity
profiles act as a signature that can accurately identify individual
participants from a larger group. Correlation matrices from visit 1
and visit 2 were iteratively shuffled across participant labels and
examined relative to their correct pairing. Identification was
considered correct if the true visit 1 and 2 pair were maximally
similar to each other. Correct identification was evident within
participants relative to the shuffled list across all state solutions
(ps ≤ 0.01; see Fig. 5b), suggesting that it is possible, with high
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accuracy, to identify an individual from a large group of
participants solely on the basis of their dynamic connectivity
profile. Dwell time was also more similar within, relative to
between, participants for scans on the same day and across visits
(all ps ≤ 0.01). These findings provide the first evidence to suggest
that, like static characterizations of intrinsic connectivity, an
individual’s dynamic brain function represents a unique and
reliable biological signature, highlighting the potential use of
intrinsic network dynamics as a neural marker of individual
differences across both health and disease.

Preferential state and network disruptions in psychosis.
Impairments in the integration and processing of information
across large-scale distributed brain networks are thought to mark
psychotic disorders (including schizophrenia, schizoaffective
disorder, and psychotic bipolar disorder)30,50,51. Converging
evidence suggests that these disruptions may reflect alterations in
the temporal dynamics of brain function8,16,17,35. We next
examined the expression of time-varying network configurations
in a cohort of patients with psychosis (n= 179) and a demo-
graphically and data-quality-matched comparison sample (n=
369). To evaluate the integrity of dynamic brain functions in these
groups, we created windowed correlation matrices for each

participant. For simplicity, we only consider the four-state solu-
tion, focusing on four states due to the stability of the associated
clustering solution (Supplementary Figure 1) and the relatively
high within-participant reliability (Fig. 5 and Supplementary
Figure 4). Importantly, while we discuss the four-state solution,
meaningful properties are likely present in other dynamic net-
work configurations. We matched each windowed participant-
specific matrix to the dynamic states established in our previous
analyses and calculated mean correlation matrices across both
groups. Following the correction for nuisance variables (motion,
age, sex, handedness, and scanner bay), group differences were
calculated for each of the four states for dwell times and network
connectivity [false-discovery rate (FDR), α ≤ 0.05].

Altered intrinsic connectivity in patients with psychosis
observed in traditional static analyses may reflect both impaired
functions within a specific brain state and the reduced tendency
to enter particular network configurations over time. Analyses of
dwell times did not reveal group variability in state A4 (t537=
1.12, p= 0.26; Fig. 6a). However, patients displayed increased
dwell time in state B4 (t537=−2.8, p ≤ 0.005) and nominally
significant increases in state D4 (t537=−2.13, p ≤ 0.03). Notably,
patient dwell times were reduced in state C4 (Fig. 5; t537= 2.98,
p ≤ 0.003), which is characterized by increased frontoparietal
control network connectivity relative to other states (Fig. 4).
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Analyses of region-to-region correlation strength across the
four-state solution yielded sparse group differences in states B4

and D4. Conversely, widespread group differences were observed
in states A4 and C4 (Fig. 6). Analyses of state A4 revealed reduced
within-network correlations across the cortex, including in
default and frontoparietal networks. The largest-magnitude
differences in state C4 were localized to the frontoparietal control
network (Figs. 6 and 7). Replicating prior reports18, states A4 and
C4 were associated with less negative, or muted, correlations
linking the aspects of the association cortex to other networks in
psychotic illness.

Follow-up analyses of state A4 and C4 revealed evidence for
both state-general and state-preferential impairments in network
connectivity (Fig. 7 and Supplementary Table 1). Within the
frontoparietal control network, patients exhibited distributed
deficits across states A4 (state A4 control B and C: ts535 ≥ 4.12,
ps ≤ 0.001) and C4 (state C4 control B: t513= 4.85, p ≤ 0.001;
Fig. 8a–b). All other subnetworks failed to pass multiple-
comparison correction (Bonferroni p ≤ 0.05; ps ≥ 0.01). Conver-
sely, reduced default network connectivity in psychosis was
observed in default B in state A4 (state A4 default B: ts535= 6.08,
p ≤ 0.001; default A, C, and D: ts535 ≤ 1.69, ps ≥ 0.09; Fig. 8c–d).
No group differences in the default network survived correction
for multiple comparison when considering state C4 (state C4

default B: ts535= 2.91, p ≥ 0.01; default A, C, and D: ts535 ≤ 1.31,
ps ≥ 0.19). These analyses suggest that prior observations of
default and control network disruptions in psychosis may reflect
temporally specific impairments, preferentially manifesting dur-
ing the expression of transient configurations that recruit the
function of these networks.

Select network configurations mark active psychotic symptoms.
Together, the analyses above suggest that time-varying network
configurations capture stable aspects of inter-subject variability
(fingerprints), while also serving to mark the presence of psy-
chiatric illness. These findings suggest that dynamic approaches
may provide critical information that can help predict the pre-
sence of distinct clinical profiles within individuals, revealing
symptom-relevant features of the disease16,17. To determine
whether individual differences in time-varying profiles of con-
nectivity are relevant to clinical symptomatology, we investigated
the extent to which specific brain states can identify patients who
experienced active psychotic symptoms at the point of initial
assessment. To this end, we examined clinician reports of the
current psychotic symptoms in our patient sample, assessed
through the DSM-IV (SCID) clinician-rated presence of delusions
and/or hallucinations in the past month38, and selected partici-
pants who expressed all four brain states (n= 130). Using a
machine-learning-based framework, elastic net logistic regression,
we demonstrated that the presence of active psychotic symptoms
can be predicted based solely on the dynamic connectivity profile
of previously unseen individuals (Methods, Prediction of active
psychotic symptoms)52,53. First, training a model in 91 partici-
pants (70% of the available patient sample), we used the edge
strength from the dynamic network configurations of states A4,
B4, C4, and D4 as candidate features upon which we conducted
variable selection. The extracted features were then used to pre-
dict the presence of active psychotic symptoms in individual
participants, using leave-one-subject-out cross-validation. The
fitted model was prospectively applied to edge strength of the
dynamic network configuration from a held-out set of
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participants, and yielded a scalar probability measure for each
individual, which constituted the predicted likelihood of active
psychotic symptoms.

Consistent with an increased tendency to enter state B4 in
patients, relative to other network configurations (Fig. 6a), state
B4 specifically predicted the presence of active psychotic
symptoms in the training set (positive network predictive
network: AUC= 0.80, p ≤ 0.001, permutations= 5000;
Fig. 9a). As a comparison, the AUC values using a positive
network of states A4, C4, and D4 were 0.60 (p= 0.16), 0.68
(p= 0.05), and 0.52 (p= 0.37), respectively. A similar,
although subtler, predictive profile was observed for the negative
networks in the training set where state B4 predicted the presence
of active psychotic symptoms (AUC= 0.724, p ≤ 0.05). The
remaining negative network AUC values for states A4, C4, and

D4 were 0.39 (p= 0.74), 0.50 (p= 0.43), and 0.56 (p= 0.26),
respectively.

Next, we demonstrated that predictive symptom models
derived from dynamic network configurations can generalize to
data from novel individuals, applying the predictive network
models in the left-out patient sample (30% of the available patient
sample). Here, without further fitting or modification of the
initial models, we tested the neurological signatures identified in
the training set for the predication of active psychotic symptoms
in a held-out group previously unseen subjects (n= 39). The
negative-network models did not generalize to the held-out
sample (AUCs < 0.66, ps > 0.13). The previously identified
positive-network model for state B4 served as a generalizable
predictor of active psychotic symptoms in an independent sample
(AUC= 0.74, p ≤ 0.05, permutation n= 5000; Fig. 9b). As a
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comparison, the AUC values derived across dynamic states A4,
C4, and D4 for out-sample predication were 0.56 (p= 0.32), 0.63
(p= 0.18), and 0.29 (p= 0.92). Highlighting that dynamic
analyses may reveal information hidden in traditional static
analyses of network function, models derived from the static or
global state were not predictive of active psychosis in either the
training (positive network: AUC= 0.62, p= 0.12; negative net-
work: AUC= 0.64, p= 0.09) or test samples (positive network:
AUC= 0.49, p= 0.53; negative network: AUC= 0.24, p= 0.96).

Patients expressing active psychotic symptoms, relative to
those without, presented with increased positive (present: 19.90 ±
5.67, absent: 8.88 ± 2.20; t128= 7.91, p ≤ 0.001), negative (present:
13.98 ± 7.76, absent: 10.18 ± 3.93; t128= 1.98, p ≤ 0.05), and
general psychopathology (present: 31.46 ± 7.81, absent: 26.53 ±
7.74; t128= 2.43, p ≤ 0.05) symptoms (Supplemental Fig. 7) as
assessed through the positive and negative syndrome scale
(PANSS)54. To establish the specificity of the predictive model
for the presence of psychotic features, we examined PANSS scale
scores in the left-out patient sample. The previously identified

positive-network model for active psychosis in state B4 served as a
generalizable predictor of PANSS positive-scale symptom severity
in the independent sample (AUC= 0.72, p ≤ 0.05). The observed
effect was preferential to the state B4 network model. The
associated AUC values derived across dynamic states A4, C4, and
D4 for positive out-sample predication were 0.51 (p= 0.46), 0.66
(p= 0.10), and 0.33 (p= 0.90). As above, the negative-network
models did not generalize to the PANSS positive-scale scores in
the held-out sample (AUCs < 0.67, ps > 0.09). Suggesting a degree
of symptom specificity, the PANSS negative (positive network:
AUC= 0.41, p= 0.83; negative network: AUC= 0.52, p= 0.42)
and general psychopathology scale (positive network: AUC=
0.62, p= 0.21; negative network: AUC= 0.41, p= 0.74) scores
were not predicted by the state B4 model, or the models resulting
from the other states (positive network: AUCs < 0.51, ps > 0.48;
negative network: AUCs < 0.59, ps > 0.18). These results provide
preliminary evidence that the presence of clinical symptoms, in
this case, active psychosis, may be associated with predictable
patterns within an individual’s time-varying network profile,
suggesting that dynamic approaches have potential utility for
predicting a wide range of clinical symptoms and cognitive
abilities.

Discussion
The functional coupling of cortical regions varies in response to
explicit task demands5 and in conjunction with shifts in arou-
sal13, attention14,15, and markers of autonomic activity24. Here,
using a sliding-window approach on resting-state imaging data,
we demonstrated that cortical brain networks possess a time-
varying organizational structure with hierarchical properties.
Select network configurations fractionated into substates in an
ordered manner, and a global attractor state (termed state A) was
evident across clustering solutions (2–8 states). Suggesting that
profiles of dynamic network connectivity may link to behavioral
differences in health and disease, the observed brain states
reflected individually specific signatures, or fingerprints, of time-
resolved connectivity that were unique and reliable within par-
ticipants across both scans and independent visits separated by up
to 6 months. Extending upon prior static analyses of network
function27–29, we found that it is possible, with high accuracy, to
identify specific individuals from a large group of participants
solely on the basis of their profiles of dynamic connectivity.
Patients with schizophrenia and psychotic bipolar disorder
exhibited state-specific, intermittent disruptions within cortical
association networks believed to mark the presence of psychotic
illness. Finally, our analyses revealed that individual variability in
select network configurations (state B4) can be used to predict the
presence of active psychotic symptoms in novel participants.
Together, these results highlight the potential to discover indi-
vidualized dynamic network profiles that are predictive of cog-
nitive abilities and clinical symptoms across health and disease.

Spontaneous brain activity is constrained, but not fully deter-
mined, by structural connectivity55–59. This raises the possibility
that a quasi-stable functional architecture may anchor on ana-
tomic connectivity, with transient network configurations
reflecting the influence of momentary cognitive processes,
environmental demands, or other biological information. Sup-
porting this conjecture, while functional coupling occurs in the
absence of cognition41, under general anesthesia, brain activity
exhibits a reduction in spontaneous transitions across network
configurations60, settling into a restricted dynamical repertoire
that closely resembles a fixed network defined by structural
connectivity56. The present analyses indicate the expression of
core, or canonical, time-varying network configurations that
separate in an ordered manner across increasingly complex
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clustering solutions. Throughout the hierarchy, a multistable
dynamical system was evident, fluctuating around a global
attractor state (state A) that possesses a relatively muted con-
nectivity profile. Decreased within-network coupling is evident
when spontaneous neuronal activity adheres to fixed correlation
configurations defined by structural connectivity61,62. Although
speculative, our results suggest the presence of an attractor state
that could preferentially link to the large-scale anatomical struc-
ture of the human cerebral cortex. Future cross-modal analyses
will be necessary to explore these hypotheses and test the extent
to which patterns of spontaneous brain activity might reconfigure
around an underlying anatomical skeleton.

Regions within the association cortex display increased func-
tional flexibility, potentially serving to integrate information
across more specialized aspects of the cortex63. This profile of
malleability is reflected in static analyses of intrinsic network
function where heightened population-level variability has been
observed in association relative to unimodal cortices46. Consistent
with prior reports of marked heterogeneity in the dynamic flex-
ibility of neural regions13,64, we observed the greatest cross-state
variability within aspects of default, attention, and control net-
works. The trade-off between control and attention systems is
thought to be a central feature of many cognitive functions,
including adaptive goal pursuit, working memory, and set

shifting65. While we are unable to make direct claims regarding
the association between time-varying profiles of network function
and cognition, converging evidence suggests that broad properties
of network connectivity may be preserved across experimental
contexts (e.g., intrinsic or task-evoked)12,48 and analysis strate-
gies48. An important area of future work will be to establish the
extent to which the cortical network structure adjusts as a func-
tion of task and/or environment. One speculative possibility is
that transient periods of strong within-network coupling may
correspond to epochs of high efficiency, a property of brain
organization theorized to optimize communication across distinct
functional domains66.

Human cognition is a fluctuating process, and there is growing
evidence that functional connectivity patterns exhibit complex
spatiotemporal dynamics at multiple time scales58. Time-varying
brain states, such as those identified in the present analyses, have
been hypothesized to reflect changes in the ongoing cognitive
processes during rest7. However, the existence, putative origins,
and cognitive correlates of dynamics in resting-state fMRI remain
a topic of empirical debate10,11,19,67. While the relations linking
intrinsic time-varying network profiles with cognition remain
speculative, there are two commonly held views. First, that by
applying clustering algorithms, the brain’s dynamic architecture
can be carved at the joints, revealing discrete brain states. Second,
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that the resulting macro-level brain states index, or enable, dis-
tinct biological and cognitive processes. In the current analyses,
we apply k-means clustering to identify dissociable network
configurations in solutions from 2 to 8 brain states. Critically, we
do not claim that these configurations reflect wholly distinct brain
states separated by sharp transitions, and we are not in the
position to ascribe associated cognitive functions. Rather, the data
are consistent with the possibility that large-scale network cou-
pling gradually fluctuates around a core functional architecture.
However, the extent to which neurobiological and cognitive
mechanisms may drive the observed transient connectivity pat-
terns remains an open question.

Debates regarding the existence of discrete brain states should
not be taken to imply that temporal fluctuations in network
connectivity lack biological information. Notably, the present
analyses indicate that an individual’s profile of dynamic func-
tional connectivity is unique and stable over the course of days
and months. Patterns of connectivity defined through traditional
static analyses are heritable25,26 and function as a trait-like sig-
nature that can accurately identify participants from a large
group27–29. While prior demonstrations of cross-session identi-
fication were established when participant visits were separated
by a single day27, these data suggest that single measures of time-
averaged connectivity may provide meaningful trait-like infor-
mation about individuals. Here, we observed robust participant-
specific matching when visits were separated by up to 6 months
(mean= 63.35 ± 48.10 days apart, range= 2–151 days). Despite
some variability, identification accuracy was not limited to any
one state or clustering solution, indicating that participants may
be identified with relatively thin slices of transient brain activity.
These discoveries highlight the potential to identify associations
linking the unique dynamic functional architecture of an indivi-
dual’s brain to the integrity of large-scale corticocortical path-
ways29. The continued development of time-varying data analytic
approaches with high sensitivity to individual variability could
facilitate the discovery of meaningful biomarkers for both cog-
nitive ability and disease states.

Schizophrenia and psychotic bipolar disorder are marked by
altered intrinsic network connectivity, potentially contributing to
widespread changes in information processing30–34. A key ques-
tion facing the field is the extent to which the temporal

organization of the brain is impaired in psychotic illness8,16. The
present analyses reveal the presence of both state and network
preferential reductions in functional connectivity. Patients with
schizophrenia spend more time than healthy individuals in net-
work configurations typified by reduced large-scale connectivity,
while also showing muted negative correlations between default
and other networks18. In line with this literature, we observed a
general profile of decreased within- and increased between-
network correlations. Our analyses were also consistent with prior
work, demonstrating executive functioning and cognitive control
abnormalities in patients with psychotic illness68, revealing pre-
ferential disruptions in frontoparietal control network con-
nectivity in the attractor state (state A4) and state C4, a network
configuration marked by increased within-network frontoparietal
connectivity in healthy young adults. This profile of fluctuating
abnormalities in network connectivity was also evident in a
default network, which exhibited state-preferential impairments
in state A4. Critically, these analyses do not demonstrate selective
abnormalities in discrete network configurations that are specific
to psychotic illness. Rather, consistent with evidence for altera-
tions in dynamic brain architecture in patient populations16–18,
they suggest that broad disruptions across cortical association
networks in psychosis may emerge through transient abnormal-
ities preferentially evident during the expression of particular
network configurations17,35. Together with growing evidence
linking behavior to temporally derived network configurations12–
15, the presence of both individual specificity (fingerprints) in
brain dynamics across the population and evidence for fluctuat-
ing, network-specific impairments in patients with severe psy-
chopathology have strong implications for clinical practice. For
instance, these data suggest a potential avenue to identify distinct
symptom profiles, track time-varying disease states, responses to
environmental perturbations, or individually specific treatment
responses.

Consistent with the aim of delineating disease-relevant markers
of brain biology, the current analyses suggest that models based
on transient profiles of network function may serve as powerful,
generalizable predictors of clinical symptomatology. In a group of
patients with psychotic illness, we identified a specific time-
varying network profile whose strength predicted the presence of
active psychotic symptoms at the point of clinical assessment.
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Fig. 9 Specific brain states are predictive of distinct clinical symptoms in novel individuals. a State B4 uniquely predicted the presence of active psychosis in
patients with psychotic illness. Results from a leave-one-subject-out cross-validation elastic net logistic regression analysis comparing predicted and
observed psychotic symptoms (n= 91). The displayed area under the receiver-operating characteristic curve (AUC) reflects the scalar probability measure
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This whole-brain network model provides preliminary evidence
for meaningful, clinically relevant signals in patterns of dynamic
intrinsic connectivity. Suggesting that the clinically relevant fea-
tures of intrinsic brain dynamics are robust and generalizable,
networks defined within an initial training set successfully
predicted active psychosis in a completely independent sample.
As reflected in our analyses, a randomly selected, previously
unseen, patient with active psychosis could be distinguished
from another patient without psychosis at ~74.0% accuracy based
on their dynamic expression of selected network configurations
(state B4), demonstrating a relatively high level of precision.
Critically, these relations were not evident through traditional
static analysis. Readers should note that these analyses leverage
cross-sectional data, and are technically postdictive. Additional
research should assess if this cross-sectional/retrospective
approach generalizes to the prospective prediction of symptoms,
prior to clinical assessment.

Suggesting a degree of specificity for the prediction of psychotic
symptom severity, the active psychosis model served as a unique
predictor of PANSS positive-scale scores (binarized as greater or
less than one standard deviation below the sample mean) in the
left-out patient sample, with poor prediction observed for both
negative and general psychopathology symptoms. Caution is
warranted given the limited sample size; however, these data
provide evidence to suggest that dynamic network models trained
on different, yet associated, symptoms have the potential to
generalize across clinical measures. These data expand our cur-
rent knowledge regarding abnormal large-scale network function
in patients with schizophrenia and psychotic bipolar disorder,
and highlight the use of dynamic analytic approaches when
examining intrinsic connectivity across heath and disease. Taken
together, the present analyses provide a preliminary proof of
concept to suggest that the altered connectivity of specific tran-
sient network configurations may link to the expression of dis-
crete symptom profiles. Future work should focus on the
identification of relations linking functional network dynamics to
the expression of psychological and behavioral aspects of illness.

In conclusion, we demonstrated the presence of a fluctuating
and reconfigurable hierarchy across the functional connectome.
The observed dynamic network profiles were unique and reliable
within individuals over the course of months and impaired in
patients with psychotic illness. Our analyses suggest that temporal
patterns of connectivity between cortical regions link to the broad
functional capacities of individual human brains, enabling the
prediction of specific symptom profiles within patient popula-
tions. These data have important implications for the study of
behaviors and features of psychiatric illnesses that possess time-
varying patterns of expression.

Methods
Data acquisition. Native English-speaking young adults (aged 18–35) with normal
or corrected-to-normal vision were recruited from Harvard University, Massa-
chusetts General Hospital, and the surrounding Boston communities through an
ongoing large-scale study of brain imaging and genetics (n= 1919; age: 21.35 ±
3.20; female: 56.53%; right handed: 92.40%)43. History of psychiatric illness and
medication usage was assessed through a structured phone screen. On the day of
MRI data collection, participants completed additional questionnaires concerning
their physical health, past and present history of psychiatric illness, and medication
usage. Exclusion criteria included a history of head trauma, current or past Axis I
pathology, neurological disorders, current or past psychotropic medication use,
current physical illness, and current or past loss of consciousness. Participants
provided written informed consent in accordance with guidelines set by the
Partners Health Care Institutional Review Board and the Harvard University
Committee on the Use of Human Subjects in Research. For the present study, we
assessed the extent to which the dynamic network architecture of the cortex is
reliable within and across visits. To accomplish this, an additional data set (n= 79;
age at the first scan: 20.99 ± 2.93; female: 45.56%; right handed: 89.87%) was
acquired over the course of the primary collection effort. Data were collected on 2
independent days (mean= 63.35 ± 48.10 days apart; min= 2; max= 151).

Patients with psychotic illness were recruited from clinical services at McLean
Hospital (n= 170; age: 32.08 ± 11.64; female: 66.47%; right handed: 84.71%),
including 41 patients diagnosed with schizoaffective disorder, 56 with
schizophrenia, and 73 with psychotic bipolar disorder. Study procedures are
detailed in Baker et al. 201430. Briefly, exclusion criteria included neurological
illness, positive pregnancy test, electroconvulsive therapy in the last 3 months, and
history of head trauma. Reflecting the severity of the present sample, the majority
of patients (82%) reported experiencing active psychotic symptoms at the time of
their clinical assessment, as assessed through DSM-IV (SCID) clinician-rated
symptomatic diagnostic criteria, indicating the presence of delusions and/or
hallucinations in the past month38. All patients were assessed for active symptoms
within 24 h of scan using the Positive and Negative Syndrome Scale (PANSS;
positive scale: 18.46 ± 6.51; negative scale: 13.48 ± 7.47; general psychopathology
scale: 30.82 ± 7.95)54. A demographically matched healthy comparison sample was
recruited from the surrounding Boston communities (n= 369; age: 37.16 ± 14.65;
female: 62.06%; right handed: 91.33%). The McLean Hospital Institutional Review
Board approved the study, and all participants provided written informed consent.
The control group was significantly older than the patient group (t= –3.98, p ≤
0.001). No significant group differences were identified in sex, handedness, or
education (ps ≥ 0.07). The comparison sample was explicitly selected to match on
the basis data quality. The BOLD runs for the patient and comparison groups did
not differ in terms of slice-based temporal signal-to-noise ratio (comparison:
161.17 ± 46.05; patient: 158.35 ± 71.53) or the number of relative translations in 3D
space ≥0.1 mm (comparison: 31.05 ± 29.15; patient: 32.29 ± 29.66; ps ≥ 0.58). The
slice-based signal-to-noise ratio was calculated as the weighted mean of each slice’s
mean intensity over time (weighted by the size of the slice).

All imaging data were collected on 3-T Tim Trio scanners (Siemens) with a 12-
channel phased-array head coil at Harvard University, Massachusetts General
Hospital, or McLean Hospital. Structural data included a high-resolution multi-
echo T1-weighted magnetization-prepared gradient-echo image (TR= 2200 ms,
TI= 1100 ms, TE= 1.54 ms for image 1–7.01 ms for image 4, FA= 7°, 1.2 × 1.2 ×
1.2 mm, and FOV= 230). Functional data were acquired using a gradient-echo
echoplanar imaging sequence sensitive to blood oxygenation level-dependent
contrast with the following parameters: 124 time points; repetition time= 3000 ms;
echo time= 30 ms; flip angle= 85°; 3 × 3 × 3-mm voxels; FOV= 216; and 47 axial
sections collected with interleaved acquisition and no gap. Participants were
instructed to remain still, stay awake, and keep their eyes open. Although no
fixation image was used, participants with psychotic illness were monitored via eye-
tracking video to ensure compliance during functional scans. One to two runs were
acquired for each participant (70.89% of the main sample, 69.41% of patient
participants, and 46.88% of the matched comparison received a second run).
Software upgrades (VB13, VB15, and VB17) occurred during data collection.
Reported results are after partialing out variance associated with scanner and
software upgrade.

Data preprocessing. Data were processed with a series of steps common to
intrinsic connectivity analyses69–71. Preprocessing included discarding the first four
volumes of each run to allow for T1-equilibration effects, compensating for slice
acquisition-dependent time shifts per volume, and correcting for head motion
using rigid body translation and rotation. Additional steps included the removal of
constant offset and linear trends over each run, and the application of a temporal
filter to retain frequencies below 0.08 Hz. Sources of spurious variance, along with
their temporal derivatives, were removed through linear regression. These included
six parameters obtained by correction for rigid body head motion, the signal
averaged over the whole brain, the signal averaged over the ventricles, and the
signal averaged over the deep cerebral white matter. Structural data and functional
data were aligned as described in Yeo et al.39 and Buckner et al.72 using the
FreeSurfer software package. This method yields a surface mesh representation of
each participant’s cortex, which is then registered to a common spherical coordi-
nate system. Images were aligned with boundary-based registration73 from the
FsFast software. Functional and structural images were then aligned to the com-
mon coordinate system by sampling from the middle of the cortical ribbon in a
single interpolation step to reduce blurring of the functional signal across sulci and
gyri. A 6-mm smoothing kernel was applied to the functional data in the surface
space, and data were downsampled to a 4-mm mesh. Additional details on the
preprocessing procedures are detailed in Holmes et al.43 and Yeo et al.39.

Dynamic connectivity sliding-window analysis. Cortical functional coupling
matrices were computed for each participant, across all available parcels within the
17-network functional atlas of Yeo et al.39. We defined 114 regions (57 per
hemisphere) that surveyed all 17 networks. Correlation matrices were constructed
to include all region pairs arranged by network membership.

Connectivity across time was analyzed using a sliding-window approach
(width= 33 s)7,8. Prior work suggests that a sliding-window range of 30–60 s is
appropriate for dynamic connectivity analyses74. Pilot analyses (available upon
request) revealed consistent state solution stability across varying sliding-window
sizes of 33–63 s. Thirty-three-second windows were chosen in order to maximize
signal estimates, while still capturing properties of transient functional
connectivity8,40. A time series for each participant was extracted for the 57 regions
in each hemisphere. Time-course correlations across 110 windows per bold run for
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each participant (220 windows if the participant had two runs) were calculated for
each 114 × 114 region pair. To limit the redundancy across matrices and to reduce
computational load, clustering was applied to a subsample of available windowed
covariance matrices (1/10 windows). Results were consistent with the alternate
approach of subsampling along the temporal dimension to identify windowed
covariance matrices with local maxima in functional connectivity variance. The
resulting correlation matrices were then aggregated and z-transformed prior to
running the clustering analyses. The clustering analysis was iteratively applied to
define distinct state solutions for 2 through 20 brain states. Additional details on
the selected clustering approach are provided in Yeo et al.

As we did not have a priori hypotheses regarding the number of functional
connectivity states, we assessed the stability of clustering solutions for all states
2–20. To do so, we examined the stability of the clustering analyses by iteratively
and randomly splitting our data on two dimensions (sliding windows and pairwise
connectivity) and rerunning the clustering solution 30 times39. The results were
then compared using a Hungarian matching algorithm75,76, as described in the
next section. Greater instability was quantified as a greater summation of deviation
between the two cluster solutions (Supplementary Figure 1).

Hierarchy analysis. To examine the relations linking each state in solution S with
the states in solution S+ 1, we used a Hungarian matching technique75,76. Every
possible combination of states in state solution S+ 1 was compared to each state in
solution S. To illustrate this point, take the comparison of states in the three- and
four-state solutions. Each possible combination in the four-state solution is
established (A4B4, A4C4, A4D4, B4C4, B4D4, and C4D4) by calculating the mean of
each cell in the 114 × 114 × n (here, n= 4) connectivity matrix across the combined
states to create hybrid states. Next, each hybrid state is grouped along with the
other states in the four-state solution and compared to the three-state solution (A4

+ B4/C4/D4, then A4+ C4/B4/D4, then A4+D4/B4/C4, etc.). Hungarian matching
is used to determine which of the hybrid combinations in the four-state solution
most closely approximates each state in the three-state solution (so, in the first
example, the hybrid four-state solution comprised of A4+ B4/C4/D4 is matched to
states A3, B3, and C3 in the three-state solution). This comparison is repeated until
the match with the minimal cost is identified (Supplementary Figure 2).

Identifying variability across defined state solutions. To determine the extent
of network variability across brain states, we examined the variance of mean
network connectivity in state solutions 2–8 (see Supplementary Figure 3 for var-
iance with the four-state solution). We used ANOVA to assess between-state
variability (coefficient of variance) with state solutions treated as repeated mea-
sures. The results confirmed that variance differed across the networks (F15=
44.11, p ≤ 0.001). Post hoc tests revealed increased cross-state variability within
default A and B relative to the default D, control A and C, limbic, somatomotor A,
and visual B networks (Bonferroni-corrected ps ≤ 0.05, all other ps ≥ 0.5). Control B
demonstrated greater variance relative to default C and D, control A and C, limbic,
somatomotor, and visual networks (ps ≤ 0.05; all other ps ≥ 0.5). The salience/
ventral attention and dorsal attention A networks exhibited increased variance
relative to default C and D, control A and C, limbic, somatomotor, and visual
networks (ps ≤ 0.05, all other ps ≥ 0.5).

Individual identification analyses. To examine the extent to which the observed
dynamic connectivity profiles are reliably expressed across scans and visits, we first
selected participants with two bold runs (n= 1361). Next, we examined the 79
participants, set aside from the original cohort, who had two separate study visits
within 6 months of each other. To test the relations within each individual’s profile
of network dynamics for the two bold runs within the same visit, and then for the
individuals with more than one visit, we implemented the following analysis: First,
we obtained each participant’s state expression across time. To accomplish this, we
used a Hungarian matching algorithm, assigning each time point in a participant’s
windowed time-course data to individual states in the desired population-level state
solution. For instance, in the four-state solution, we found the best fit for each
window in the participant’s data and classified it as state A4, B4, C4, or D4. This
yielded a vector of states for each participant, representing the participant’s state
expression over the course of the scan. Following this, we took the average cor-
relation matrix for each window within a state. So, for participant 1, we collapsed
across all of the state A4 windows, and generated a mean for state A4, creating a
114 × 114 × S average state matrix for each participant. Participant matrices were
vectorized, and Pearson correlations were run across every participant in two
analyses for (1) bold 1 and bold 2; and every participant for (2) visit 1 and visit 2.
Analyses indicated a significant level of consistency in within-individual con-
nectivity profiles across bold runs and visits (Supplementary Figure 4). For each
state solution, we ran a t-test for within-participant rho values and between-
participant rho values. All tests revealed increased rho values within, rather than
between, participants (all ps ≤ 0.001).

Permutation tests were performed in a manner consistent with prior studies
examining functional connectome fingerprinting27. For these analyses, we
considered participants with multiple study visits (n= 79) and utilized the state-
and participant-specific connectivity vectors described above. A Pearson
correlation was calculated across an ordered list for every participant’s connectivity
vector from visit 1 compared to every other participant’s vector from visit 2. We

first established a comparison distribution from chance. For each state, the
participant vector from visit 1 was compared to a randomly permuted list of
participants from visit 2, a Pearson correlation was calculated, a matching rank was
assigned, and the identification rate was calculated. A “correct” identification was
defined in cases where the highest-ranked rho value was within a participant (visit
1–visit 2) relative to other participants (for ranking results, see Fig. 4, main text).
This was repeated 1000 times, and a t-test was performed comparing the number of
identifications of the actual order participants relative to the distribution of the
number of identifications in the permuted order of the participant list.

Noise constraints. To assess the extent to which data quality might influence on
our findings, we conducted a series of analyses aimed at detecting the differences in
motion across state solutions. To obtain motion estimates by a participant for each
window, we extracted the mean of the root mean square of relative motion for each
participant across each window. We used the Hungarian matched state vector to
classify relative motion within each TR to a state-specific window. We averaged
motion values within states for each state solution. Although the relations linking
state expression and motion were limited in size (ηp2s ≤ 0.006), state A associated
with the most motion for state solutions 2, 3, and 4 (all ps ≤ 0.05; Supplementary
Figure 5). State A showed a muted increase in motion relative to other states in
solutions 5 through 7 (five-state solution: ps ≤ 0.001 for state A5 relative to C5 and
E5, p ≤ 0.05; p ≥ 0.59 for B5 and D5; six-state solution: ps ≤ 0.01 for state A6 relative
to E6 and F6, ps ≥ 0.38 for B6, C6, and D6; seven-state solution: ps ≤ 0.001 for state
A7 relative to E7 and F7; p= 0.07 for C7, p= 0.06 for G7, and p ≥ 0.61 for B7 and
D7). In state solution 8, we found that state H8, a state that our hierarchy analyses
identified as architecturally related to state A in solutions 2–7, was associated with
more motion than all other states (ps ≤ 0.001).

Next, we examined the consistency of state stability in participants falling
within the first and fourth quartiles of the distribution for motion (low motion:
n= 424; high motion: n= 398). No group differences were identified in age, sex, or
handedness (ps ≥ 0.59). To determine the stability of our state-clustering approach,
we applied iterative k-means clustering to each group for each population-level
stable state solution (2, 4, 5, and 8 states). To estimate the viability of the resulting
solutions, data were resampled across sliding windows as described previously
(Fig. 1, main text). A t-test was performed to assess the differences in the
consistency sampling from the high and low motion groups. No differences in
consistency were observed across groups (Supplementary Figure 6; all ps ≥ 0.43).

Prediction of active psychotic symptoms. Here, we demonstrate that the
strength of functional brain networks within specific brain states predicts the
presence of active psychosis in previously unseen individuals. Elastic net logistic
regression analyses were conducted with custom R code (elasticnet by Hui Zou,
Trevor Hastie, and Robert Tibshirani). Elastic net regularization is a cross-validated
regularized log-linear regression procedure that combines LASSO (least
absolute shrinkage and selection operator) regularization and Tikhonov (ridge)
regularization77,78 The resulting log-linear regression weights were applied to
the edges (ROI to ROI correlations) of each network configuration within the four-
state solution and the associated covariates. All results were cross validated.

Model development and validation consisted of four steps. First, model features
were selected. Pearson correlation between each edge of the kth (e.g., k=A4, B4, C4,
and D4) dynamic brain state and clinical status was performed in the training set.
Note that regarding dichotomous outcomes, a mass-univariate t-test would provide
similar results as the Pearson correlation test concerning feature selection. Here, we
used the Pearson correlation approach to be consistent with previous literature27,52.
The resulting edges were separated into positive and negative groups, and
thresholded on the basis of the statistical significance (p ≤ 0.05) and signs of
correlation. Second, in the model development procedure, we first aggregated the
values of edges in each feature set as a summary statistics, Sk , or “network
strength”27 of the kth brain state, for k ¼ 1; 2; 3; 4. The network strength and
covariates (e.g., sex, age) were then entered into the model, yielding a scalar value,
the predicated conditional probability of active psychotic symptoms. Formally, for
subject i, i 2 f1; 2; � � � ; ng, we define

p̂ki :¼ P Yi ¼ 1jSk ¼ ski ;C ¼ ci
� � ¼ eβ̂

k
0þβ̂k1 s

k
i þðγ̂kÞci

1þ eβ̂
k
0þβ̂k1 s

k
i þðγ̂kÞci

where p̂ki :¼ P Yi ¼ 1jSk ¼ ski ;C ¼ ci
� �

denotes the predicted probability that
subject i has active psychosis, given their observed network strength ski during brain
state k, and covariates ci, a vector consisting of all observed covariates for subject i.
β̂k0; β̂

k
1; and γ̂kare estimated weights for brain state k from the elastic net logistic

regression, where γ̂k is a vector consisting of the estimates for each covariate in ci.
Alternatively, we could model the predicted probability that subject i does not have
psychosis as P Yi ¼ 0jSk ¼ ski ;C ¼ ci

� � ¼ 1

1þe
β̂k
0
þβ̂k

1
sk
i
þðγ̂k Þc

i
: Probability estimation was

iteratively performed using leave-one-subject-out cross-validation procedure.
During each iteration, the weights were estimated using data from (n–1, n= 91)
participants and were used to predict the probability of the remaining participant
having active psychotic symptoms. Each individual was left out once; hence, the
procedure yielded n-predicted probability scores. To evaluate the estimation
performance, we measured the area under the receiver-operating characteristic
(ROC) curve (AUC), estimated directly by conducting numerical integration of the
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ROC under all thresholds that yielded unique sensitivity/specificity values, wherein
0.5 indicates chance, and 1 is perfect discrimination.

The model development and parameter estimation were conducted only using
the training data. To evaluate the reproducibility, we applied the model obtained
from the training data, without further fitting or modification, to 39 previously
unseen participants. To access the specificity of the model in detecting positive
symptoms, we examined the positive, negative, and general psychopathology
subscales of the PANSS in the held-out sample. PANSS scores were binarized as
low (less than one standard deviation below the mean) or high (greater than one
standard deviation below the mean) for each subscale (positive scale: 18.46 ± 6.51,
cutoff= 11.95; negative scale: 13.48 ± 7.47, cutoff= 6.01; general psychopathology
scale: 30.82 ± 7.95, cutoff= 22.86). Due to the large variance in PANSS negative
scores, to thoroughly explore potential relations with this subscale, we additionally
examined alternative thresholds of <15 and of <12 selecting the optimal result
(<12) for comparison with the PANSS positive scale.

To assess the statistical significance of the sensitivity and specificity analyses, we
performed nonparametric permutation testing. During each test, we first randomly
permuted the active psychotic symptoms status or PANSS labels. Next, model
fitting was carried out using the correct dynamic signatures and covariates and
permuted (incorrect) labels. For each permutation, an AUC value was calculated.
The permutation tests were performed 5000 times for the training and testing data,
respectively. The null AUC values should be symmetrically distributed around 0.5
if the procedure is unbiased.

Data availability. The data summary statistics that support the findings of this
study are available from the corresponding author on request. As detailed in
Holmes et al.43, the Brain Genomics Superstruct Project (GSP) initial release data
set of structural, functional, and behavioral measures is available for download
(http://neuroinformatics.harvard.edu/gsp/). Step-by-step instructions detailing how
to access the release data set are available online in the “Request Access” page
(http://neuroinformatics.harvard.edu/gsp/get). The patient data are not publicly
available due to information that could compromise research participant privacy/
consent.
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