
978-1-5386-6859-7/18/$31.00 ©2018 IEEE

Modeling Alzheimer’s disease progression using deep
recurrent neural networks

Minh Nguyen1,2, Nanbo Sun1,2, Daniel C. Alexander3, Jiashi Feng2, B.T. Thomas Yeo1,2,4,5,6 for the Alzheimer's Disease Neuroimaging Initiative*

1 Clinical Imaging Research Centre Singapore Institute for Neurotechnology, National University of Singapore, Singapore
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore

3 Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
4 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA

5 Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
6 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore

Abstract — Multi-step prediction, predicting values multiple

steps ahead, is a difficult problem because of the accumulation of
error after successive predictions. Recurrent neural networks
(RNN) have been applied successfully to multi-step prediction
problems such as language modeling where training data are
abundant and regular. However, applying RNN to problems in
healthcare is still challenging as RNN requires large, feature
complete training data in which intervals between time points are
fixed which are not reflective of healthcare data. To overcome
these problems, we propose strategies to train RNN using missing
data which involve using the RNN to fill in the incomplete or
missing time points online. The strategies enables the efficient use
of training data as well as the adoption of RNN in problems
where the variables in a multivariate time series are recorded at
irregular intervals or at different frequencies, where there are a
lot of missing data. We train RNN using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database to model the monthly
progression of Alzheimer’s disease for seven years into the future
which is a multi-step prediction problem. We show that RNN
outperforms baseline models.

Keywords — disease progression modeling, multi-step
prediction, recurrent neural networks, missing data imputation

I. INTRODUCTION

Alzheimer’s disease (AD) is a devastating
neurodegenerative disease. There is significant interest in
predicting AD progression [1, 2, 3] which would be clinically
useful for improving diagnosis, monitoring disease progression
and identifying individuals for clinical trials [4]. Most of prior
works only consider the problem of single-step prediction, i.e.,
predicting the variables of interest once at a fixed time horizon
in the future. In this paper, we consider the harder multi-step
prediction problem where the models need to predict multiple
disease markers of an individual every month, up to seven
years into the future.

Proposed approaches for multi-step prediction include
independent prediction (whereby future values are predicted
independently) and multi-stage prediction (whereby next values
are predicted based on current values) [5]. Multi-stage
prediction is prone to accumulation of error, leading to
inaccurate distant predictions while the output of independent
prediction may lack temporal coherence. Besides, the presence
of missing data, i.e., data entries with missing time points or
missing features, in healthcare datasets also makes multi-step

disease progression modeling difficult as predictive models are
usually trained using complete data. Missing data arises due to
various reasons such as the nature of data collection
procedures, subjects' dropping out of studies or mistakes in data
collection. For example, the ADNI protocol dictates that
subjects from different categories undergo different tests at
different time points.

RNN can be used for multi-step prediction following the
multi-stage prediction approach. RNN have been applied to
single-step prediction problems in healthcare [6, 7, 8, 9].
However, the adoption of RNN in healthcare is still rare due to
many problems. As healthcare datasets are expensive to collect,
they are often small in size. Without sufficient training data,
RNN overfit easily and do not generalize as well as simple
linear models [10]. Besides, RNN need complete data for
training so missing data is discarded making datasets even
smaller. In addition, RNN require fixed durations between time
points. This assumption is usually invalid in healthcare data
since different tests are conducted at different frequencies.

We propose strategies to apply RNN the multi-step
prediction problem of modeling AD progression such that the
RNN can be trained using missing data, which is common in
real-world data, but is mostly ignored in the literature [1, 2].
One of the strategies involves using the RNN itself to
interpolate and extrapolate the missing data during training,
enabling efficient use of training data. The strategies are also
used to fill in data between time points, allowing the duration
between model to be fixed but much shorter than duration
between time points. Our result shows RNN outperform
baseline models.

II. METHOD

A. Recurrent Neural Networks

The RNN architecture is shown in Figure 1. The Long
Short-Term Memory variant [11] of RNN is used because it is
more effective in modeling long sequences. Given a subject’s
state at time t, the RNN predicts the subject state at time t+1.
The state at time t includes a categorical variable and multiple
continuous variables. The categorical variable is the diagnosis
of the subject at time t, i.e., whether the subject is normal
control (NC), mild cognitive impairment (MCI) or AD patient.
The continuous variables include potential AD markers such as

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

ADAS-Cog13 and MMSE score, ventricles and hippocampal
volume, CSF amyloid and tau. The choice of markers and the
design of the model were inspired by the TADPOLE challenge
[12] which aims to identify people at risk of developing AD
symptoms within five years.

Specifically, let st, and gt be vectors containing values of the
diagnosis and AD markers at time t of a subject respectively.
The input to the RNN at time t is et which is the concatenation
of vectors st and gt (Equation 1). Given the subject's present
state et, the RNN updates the hidden vector ht and cell vector ct
(Equations 2 - 7) and predict the subject's future state êt+1.

 et = [st, gt]

 it = σ (W(i) et + U(i) ht-1) (2)
 ft = σ (W(f) et + U(f) ht-1) (3)
 ot = σ (W(o) et + U(o) ht-1) (4)
 ut = tanh (W(u) et + U(u) ht-1) (5)

 ct = it ʘ ut + ft ʘ ct-1 (6)
 ht = ot ʘ tanh (ct) (7)

 ŝt = softmax (W(s) ht) (8)
 ĝt = hardtanh (W(g) ht) (9)

 hardtanh (◦) = min (max (◦ , 0), 1) (10)
 êt = [ŝt, ĝt]

The σ symbol represents the sigmoid function. The ʘ
symbol represents the element-wise product. it, ft, ot are the
input gate, forget gate, output gate of the RNN. These gates
form the gating mechanism of the RNN, controlling the
information stored in the hidden vector [11].

For subjects in the ADNI study, the duration between visits
is six months. However, some subjects did not turn up at the
designated examination date so the actual duration between
time points varies. As RNN requires the duration between visits
to be uniform, one could assign the time of the visits to the
nearest sixth month and model changes after every six months.
However, this jitter in sampling may affect modeling accuracy.
Instead, we model the changes with a temporal resolution of
one month, i.e., the duration between t and t+1 is one month so
that there is less sampling jitter. This, however, results in a lot
of time points with missing observations.

The training strategy with missing data is shown in Figure
2A. For time points such as t+1 where only some features are
missing, only the missing values are imputed. In the figure,
e*

t+1 denotes the imputed input while et+1 denotes the original
input with missing features. For missing time points such as
t+2, all the features are imputed. Section 2B outlines how data
imputation is done. During training, gradients of the errors
between predicted and true values are back-propagated to
update the RNN parameters. The error (loss) function is only
evaluated at time points where observations are available (e.g.,
et, et+3, et+4) and not at time points where observations are
imputed (e.g., e*

t+2).

 Figure 2B shows how the RNN is used to predict the
progression of Alzheimer's disease in a subject. The RNN
makes prediction of the next observations êt based on the
current observations et and use this prediction as input
observations as the subsequent step (i.e., et+1 = êt).

B. Imputing missing data

There are many variants to the longitudinal data imputation
in Section 2A. In this paper, we explore two of the variants
namely forward-filling and model-filling.

1) Forward-filling
Figure 3A shows how forward-filling in time is used to fill

in missing input features. This method was originally proposed
in [8] for single-step classification. In this example, there are
two input features A and B. The values of feature A at time t =
2, 3, 4 is filled using the last observed value of feature A (at
time t = 1). Similarly, the value at t = 7, 8 of feature A is filled
using value at t = 6 when it was last observed.

2) Model-filling
Figure 3B shows the RNN model is used together with

linear interpolation to fill in missing data. For time points
where there is at least one feature with ground truth data, such
as when t = 3, the value of feature A is filled using linear
interpolation. At time t = 2, 4, 6, the values of feature A is filled

Figure 1: Model architecture

Figure 2: Training and prediction

using the prediction from the recurrent neural network. For
example, the predicted value of feature A at t = 6, obtained
from the RNN using input features at t = 5, is used as input to
predict values at t = 7. The RNN can be used to extrapolate
features that “terminate early”. At time t = 9, the RNN is used
to extrapolate the missing data. This maximizes the use of
available data.

III. EXPERIMENT

A. Data and Setup

We used the TADPOLE dataset which is derived from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.lonu.usc.edu). We generated ten random splits of the data.
Each split consists of a training set, a development set, and a
test set. For each random split, grid-search was used for hyper-
parameter search using result on the development set. Each
training set has about 1500 subjects while each development set
and test set has about 100 subjects. Each subject has from 1 to
7 time points which are roughly 6 months apart. Values of
continuous variables are normalized to [0, 1] range. Value of
the categorical variable at each time point can be one of NC,
MCI and AD. The extent of missing data varies from variables
to variables and ranges from 30% of data missing for the best
variable to 80% of the data missing for the worst variable [12].

B. Metrics

We evaluated the models based on the diagnosis
classification accuracy and ADAS-Cog13 score and ventricles
volume regression accuracy. Classification accuracy is
evaluated using multiclass area under the operating curve
(mAUC; higher the better) and balanced class accuracy (BCA;

higher the better). Regression accuracy is evaluated using mean
absolute error (MAE; lower the better). There is a separate set
of hyper-parameters for each of the metrics.

C. RNN model

The RNN model is implemented using Pytorch [1]. It has
one hidden layer of size 256. The bias term of the forget gate of
the RNN is initialized to a large positive value similar to [13].
The other model parameters are initialized to small random
values. Variational dropout [10] and L2 weight regularization
are used to prevent overfitting. The RNN model is trained using
ADAM [14] for 100 epochs. The loss function is the
unweighted sum of cross-entropy loss of the categorical
variable and MAE loss of the continuous variables.

RNN hyper-parameters are shown in Table I. For each set
of hyper-parameters, we train ten RNN using ten random seeds
and pick five seeds which result in the lowest training error.
The RNN models of the top five random seeds produce five
different predictions for each subject in the development set.
The predictions are averaged and then evaluated against the
ground truth. This is to reduce the variance of the prediction as
well as to ensure the model performance is robust against
random initialization.

TABLE I. RNN AND LSS'S HYPER-PARAMETERS

Model RNN LSS

Learning rate 1e-3 1e-5

No. hidden layers 1

Hidden layer size 256

Input dropout 0 or 0.1 or 0.2

Recurrent dropout 0 or 0.2 or 0.5

L2 regularization 0 or 1e-6 or 1e-5

After picking the best hyper-parameters, the RNN model is
retrained using data from both the training set and the
development set. Ten different random seeds are used and the
predictions of the top five seeds are averaged. The averaged
prediction is evaluated against the ground truth.

The RNN is paired with imputation strategies described in
Section 2B, resulting in two variants of the same model. The
RNN with forward-filling is referred to as RNN-FF while the
RNN with model-filling is referred to as RNN-MF. The size of
the models are limited at 1 recurrent of size 256 memory cells
to prevent overfitting due to the limited amount of training
data.

D. Baselines

The RNN were compared against linear baselines such as
constant prediction model, Support-Vector Machine (SVM),
Support-Vector Regression (SVR) and linear state-space (LSS)
model. The input features of the RNN and the baseline models
are the same.

1) Constant Prediction Model
The constant prediction model predicts all future values to

be the last observed values. This model does not need training.

 [1] http://pytorch.org

Figure 3: Handling missing data

2) SVM-SVR Model
SVM is used to predict future diagnosis while SVR is used

to predict future AD markers. Adopting the independent
prediction strategy, 84 SVM and 84 SVR models are trained
for 84 time horizons. Linear interpolation is used to impute
missing features in the training data. The models are
implemented using scikit-learn[1] library. The possible hyper-
parameters are shown in Table II.

TABLE II. SVM AND SVR'S HYPER-PARAMETERS

 SVM SVR

Kernel Linear or RBF

Epsilon NA 1e-3, 1e-2, 1e-1

Penalty 1e-2, 1e-1, 1, 1e1, 1e2

Gamma 1e-2, 1e-1, 1, 1e1, 1e2

3) Linear State-Space Model
The LSS baseline model was implemented as a simplified

RNN model. Equations (12) - (13) show how the LSS update
its hidden vector and make prediction. Apart from the update
equations, the training scheme, optimizer, regularization
scheme of the LSS model are similar to that of the RNN model.
The LSS baseline also utilizes the data imputation strategies
discussed in section II, resulting in two variants of LSS: LSS-
FF and LSS-MF. The hyper-parameters used for the LSS model
is shown in Table I.

 ht = W(h) et + U(h) ht-1 (12)
 ŝt = W(s) ht (13)
 ĝt = W(g) ht (14)

E. Results

Table III shows the mean and standard deviation of
different evaluation metrics on the ten random splits. The RNN
with forward-filling strategy (RNN-FF) model achieves the
highest accuracy in prediction of diagnosis (mAUC 0.86 and
BCA 0.79). The RNN with model-filling strategy (RNN-MF)
model achieves the best accuracy for predicting ADAS-Cog13
(MAE 5.2) and ventricles volume (MAE 3.1e-3).

TABLE III. EVALUATION ON TEN DIFFERENT RANDOM SPLITS

IV. CONCLUSION

We propose a strategy to use RNN that can handle missing
data which is common in healthcare data. We applied it to the

multi-step prediction task of modeling AD progression within a
seven-year period. The RNN models were more accurate than
the baseline models.

ACKNOWLEDGMENT

We are currently supported by Singapore MOE Tier 2
(MOE2014-T2-2-016), NUS Strategic Research
(DPRT/944/09/14), NUS SOM Aspiration Fund
(R185000271720), Singapore NMRC (CBRG/0088/2015),
NUS YIA and the Singapore National Research Foundation
(NRF) Fellowship (Class of 2017). Our research also utilized
resources provided by the Center for Functional Neuroimaging
Technologies, P41EB015896 and instruments supported by
1S10RR023401, 1S10RR019307, and 1S10RR023043 from the
Athinoula A. Martinos Center for Biomedical Imaging at the
Massachusetts General Hospital. Our computational work was
partially performed on resources of the National
Supercomputing Centre, Singapore (https://www.nscc.sg). The
Titan Xp used for this research was donated by the NVIDIA
Corporation. Data collection and sharing for this project was
funded by the Alzheimer's Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012).

REFERENCES

[1] D. Zhang and D. Shen, “Multi-Modal Multi-Task Learning for Joint
Prediction of Multiple Regression and Classification Variables in
Alzheimer’s Disease,” NeuroImage, 2012.

[2] E. Moradi et al., “Machine learning framework for early MRI-based
Alzheimer’s conversion prediction in MCI subjects,” NeuroImage, 2015.

[3] X. Zhang et al., “Bayesian model reveals latent atrophy factors with
dissociable cognitive trajectories in Alzheimer’s disease,” Proc Natl
Acad Sci USA, 2016.

[4] S. Teipel et al., “Multimodal imaging in Alzheimer’s disease: validity
and usefulness for early detection,” The Lancet Neurology, Oct. 2015.

[5] H. Cheng et al., “Multistep-Ahead Time Series Prediction,” in Advances
in Knowledge Discovery and Data Mining, 2006.

[6] Z. C. Lipton et al., “Learning to Diagnose with LSTM Recurrent Neural
Networks,” in Proc Inter Conf on Machine Learning, 2016.

[7] Z. Che et al., “Recurrent Neural Networks for Multivariate Time Series
with Missing Values,” Scientific reports, 2018.

[8] H.-G. Kim et al., “Recurrent neural networks with missing information
imputation for medical examination data prediction,” in IEEE Inter.
Conf. on Big Data and Smart Computing (BigComp), 2017.

[9] Z. C. Lipton et al., “Modeling missing data in clinical time series with
rnns,” Machine Learning for Healthcare, 2016.

[10] Y. Gal and Z. Ghahramani, “A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks,” in Proc Inter Conf on Neural
Information Processing Systems, 2016.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, 1997.

[12] R. V. Marinescu et al., "TADPOLE Challenge: Prediction of
Longitudinal Evolution in Alzheimer’s Disease," arXiv:1805.03909,
2018.

[13] R. Jozefowicz et al., “An Empirical Exploration of Recurrent Network
Architectures,” in Proc Inter Conf on Machine Learning, 2015.

[14] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” in Proc Inter Conf on Learning Representations, 2014.

[1] http://scikit-learn.org

Model ADAS13
MAE

Ventricles
MAE (*1e-3)

Diagnosis
BCA

Diagnosis
mAUC

Baselines

Constant 5.6 ± 0.31 4.0 ± 0.24 0.68 ± 0.015 0.73 ± 0.016

SVM-SVR 7.6 ± 0.47 10.1 ± 0.97 0.51 ± 0.010 0.55 ± 0.009

LSS-FF 7.9 ± 1.57 4.4 ± 2.05 0.74 ± 0.026 0.85 ± 0.026

LSS-MF 7.6 ± 1.48 10.5 ± 1.32 0.74 ± 0.022 0.82 ± 0.033

Proposed

RNN-FF 7.2 ± 1.95 11.1 ± 7.50 0.79 ± 0.035 0.86 ± 0.032

RNN-MF 5.2 ± 0.45 3.1 ± 0.59 0.74 ± 0.042 0.83 ± 0.035

