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Abstract — Multi-step prediction, predicting values multiple 

steps ahead, is a difficult problem because of the accumulation of 
error after successive predictions. Recurrent neural networks 
(RNN) have been applied successfully to multi-step prediction 
problems such as language modeling where training data are 
abundant and regular. However, applying RNN to problems in 
healthcare is still challenging as RNN requires large, feature 
complete training data in which intervals between time points are 
fixed which are not reflective of healthcare data. To overcome 
these problems, we propose strategies to train RNN using missing 
data which involve using the RNN to fill in the incomplete or 
missing time points online. The strategies enables the efficient use 
of training data as well as the adoption of RNN in problems 
where the variables in a multivariate time series are recorded at 
irregular intervals or at different frequencies, where there are a 
lot of missing data. We train RNN using the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database to model the monthly 
progression of Alzheimer’s disease for seven years into the future 
which is a multi-step prediction problem. We show that RNN 
outperforms baseline models. 
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I. INTRODUCTION 

Alzheimer’s disease (AD) is a devastating 
neurodegenerative disease. There is significant interest in 
predicting AD progression [1, 2, 3] which would be clinically 
useful for improving diagnosis, monitoring disease progression 
and identifying individuals for clinical trials [4]. Most of prior 
works only consider the problem of single-step prediction, i.e., 
predicting the variables of interest once at a fixed time horizon 
in the future. In this paper, we consider the harder multi-step 
prediction problem where the models need to predict multiple 
disease markers of an individual every month, up to seven 
years into the future.  

Proposed approaches for multi-step prediction include 
independent prediction (whereby future values are predicted 
independently) and multi-stage prediction (whereby next values 
are predicted based on current values) [5]. Multi-stage 
prediction is prone to accumulation of error, leading to 
inaccurate distant predictions while the output of independent 
prediction may lack temporal coherence. Besides, the presence 
of missing data, i.e., data entries with missing time points or 
missing features, in healthcare datasets also makes multi-step 

disease progression modeling difficult as predictive models are 
usually trained using complete data. Missing data arises due to 
various reasons such as the nature of data collection 
procedures, subjects' dropping out of studies or mistakes in data 
collection. For example, the ADNI protocol dictates that 
subjects from different categories undergo different tests at 
different time points.  

RNN can be used for multi-step prediction following the 
multi-stage prediction approach. RNN have been applied to 
single-step prediction problems in healthcare [6, 7, 8, 9]. 
However, the adoption of RNN in healthcare is still rare due to 
many problems. As healthcare datasets are expensive to collect, 
they are often small in size. Without sufficient training data, 
RNN overfit easily and do not generalize as well as simple 
linear models [10]. Besides, RNN need complete data for 
training so missing data is discarded making datasets even 
smaller. In addition, RNN require fixed durations between time 
points. This assumption is usually invalid in healthcare data 
since different tests are conducted at different frequencies. 

We propose strategies to apply RNN the multi-step 
prediction problem of modeling AD progression such that the 
RNN can be trained using missing data, which is common in 
real-world data, but is mostly ignored in the literature [1, 2]. 
One of the strategies involves using the RNN itself to 
interpolate and extrapolate the missing data during training, 
enabling efficient use of training data. The strategies are also 
used to fill in data between time points, allowing the duration 
between model to be fixed but much shorter than duration 
between time points. Our result shows RNN outperform 
baseline models. 

II. METHOD 

A. Recurrent Neural Networks 

The RNN architecture is shown in Figure 1. The Long 
Short-Term Memory variant [11] of RNN is used because it is 
more effective in modeling long sequences. Given a subject’s 
state at time t, the RNN predicts the subject state at time t+1. 
The state at time t includes a categorical variable and multiple 
continuous variables. The categorical variable is the diagnosis 
of the subject at time t, i.e., whether the subject is normal 
control (NC), mild cognitive impairment (MCI) or AD patient. 
The continuous variables include potential AD markers such as 

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, 
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report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 



ADAS-Cog13 and MMSE score, ventricles and hippocampal 
volume, CSF amyloid and tau. The choice of markers and the 
design of the model were inspired by the TADPOLE challenge 
[12] which aims to identify people at risk of developing AD 
symptoms within five years. 

 

Specifically, let st, and gt be vectors containing values of the 
diagnosis and AD markers at time t of a subject respectively. 
The input to the RNN at time t is et which is the concatenation 
of vectors st and gt (Equation 1). Given the subject's present 
state et, the RNN updates the hidden vector ht and cell vector ct 
(Equations 2 - 7) and predict the subject's future state êt+1. 

 et = [ st, gt ] 


 it = σ ( W(i) et + U(i) ht-1 ) (2) 
 ft = σ ( W(f) et + U(f) ht-1 ) (3) 
 ot = σ ( W(o) et + U(o) ht-1 ) (4) 
 ut = tanh ( W(u) et + U(u) ht-1 ) (5) 

 
 ct =  it ʘ ut  +  ft ʘ ct-1 (6) 
 ht = ot ʘ tanh ( ct ) (7) 

 
 ŝt = softmax ( W(s) ht ) (8)
 ĝt = hardtanh ( W(g) ht ) (9) 

 
 hardtanh ( ◦ ) = min ( max ( ◦ , 0 ), 1 ) (10) 
 êt = [ ŝt, ĝt ] 

The σ symbol represents the sigmoid function. The ʘ 
symbol represents the element-wise product. it, ft, ot are the 
input gate, forget gate, output gate of the RNN. These gates 
form the gating mechanism of the RNN, controlling the 
information stored in the hidden vector [11]. 

For subjects in the ADNI study, the duration between visits 
is six months. However, some subjects did not turn up at the 
designated examination date so the actual duration between 
time points varies. As RNN requires the duration between visits 
to be uniform, one could assign the time of the visits to the 
nearest sixth month and model changes after every six months. 
However, this jitter in sampling may affect modeling accuracy.  
Instead, we model the changes with a temporal resolution of 
one month, i.e., the duration between t and t+1 is one month so 
that there is less sampling jitter. This, however, results in a lot 
of time points with missing observations. 

 

The training strategy with missing data is shown in Figure 
2A. For time points such as t+1 where only some features are 
missing, only the missing values are imputed. In the figure, 
e*

t+1 denotes the imputed input while et+1 denotes the original 
input with missing features. For missing time points such as 
t+2, all the features are imputed. Section 2B outlines how data 
imputation is done. During training, gradients of the errors 
between predicted and true values are back-propagated to 
update the RNN parameters. The error (loss) function is only 
evaluated at time points where observations are available (e.g., 
et, et+3, et+4) and not at time points where observations are 
imputed (e.g., e*

t+2). 

 Figure 2B shows how the RNN is used to predict the 
progression of Alzheimer's disease in a subject. The RNN 
makes prediction of the next observations êt based on the 
current observations et and use this prediction as input 
observations as the subsequent step (i.e.,  et+1 =  êt ). 

B. Imputing missing data 

There are many variants to the longitudinal data imputation 
in Section 2A. In this paper, we explore two of the variants 
namely forward-filling and model-filling. 

1) Forward-filling 
Figure 3A shows how forward-filling in time is used to fill 

in missing input features. This method was originally proposed 
in [8] for single-step classification. In this example, there are 
two input features A and B. The values of feature A at time t = 
2, 3, 4 is filled using the last observed value of feature A (at 
time t = 1). Similarly, the value at t = 7, 8 of feature A is filled 
using value at t = 6 when it was last observed.  

2) Model-filling 
Figure 3B shows the RNN model is used together with 

linear interpolation to fill in missing data. For time points 
where there is at least one feature with ground truth data, such 
as when t = 3, the value of feature A is filled using linear 
interpolation. At time t = 2, 4, 6, the values of feature A is filled 

 
Figure 1: Model architecture 

 
Figure 2: Training and prediction 



using the prediction from the recurrent neural network. For 
example, the predicted value of feature A at t = 6, obtained 
from the RNN using input features at t = 5, is used as input to 
predict values at t = 7. The RNN can be used to extrapolate 
features that “terminate early”. At time t = 9, the RNN is used 
to extrapolate the missing data. This maximizes the use of 
available data. 

 

III. EXPERIMENT 

A. Data and Setup 

We used the TADPOLE dataset which is derived from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.lonu.usc.edu). We generated ten random splits of the data. 
Each split consists of a training set, a development set, and a 
test set. For each random split, grid-search was used for hyper-
parameter search using result on the development set. Each 
training set has about 1500 subjects while each development set 
and test set has about 100 subjects. Each subject has from 1 to 
7 time points which are roughly 6 months apart. Values of 
continuous variables are normalized to [0, 1] range. Value of 
the categorical variable at each time point can be one of NC, 
MCI and AD. The extent of missing data varies from variables 
to variables and ranges from 30% of data missing for the best 
variable to 80% of the data missing for the worst variable [12]. 

B. Metrics 

We evaluated the models based on the diagnosis 
classification accuracy and ADAS-Cog13 score and ventricles 
volume regression accuracy. Classification accuracy is 
evaluated using multiclass area under the operating curve 
(mAUC; higher the better) and balanced class accuracy (BCA; 

higher the better). Regression accuracy is evaluated using mean 
absolute error (MAE; lower the better). There is a separate set 
of hyper-parameters for each of the metrics. 

C. RNN model 

The RNN model is implemented using Pytorch [1]. It has 
one hidden layer of size 256. The bias term of the forget gate of 
the RNN is initialized to a large positive value similar to [13]. 
The other model parameters are initialized to small random 
values. Variational dropout [10] and L2 weight regularization 
are used to prevent overfitting. The RNN model is trained using 
ADAM [14] for 100 epochs. The loss function is the 
unweighted sum of cross-entropy loss of the categorical 
variable and MAE loss of the continuous variables. 

RNN hyper-parameters are shown in Table I. For each set 
of hyper-parameters, we train ten RNN using ten random seeds 
and pick five seeds which result in the lowest training error. 
The RNN models of the top five random seeds produce five 
different predictions for each subject in the development set. 
The predictions are averaged and then evaluated against the 
ground truth. This is to reduce the variance of the prediction as 
well as to ensure the model performance is robust against 
random initialization.  

TABLE I.  RNN AND LSS'S HYPER-PARAMETERS 

Model RNN LSS 

Learning  rate 1e-3 1e-5  

No. hidden layers 1 

Hidden layer size 256 

Input dropout 0 or 0.1 or 0.2 

Recurrent dropout 0 or 0.2 or 0.5 

L2 regularization 0 or 1e-6 or 1e-5 

 

After picking the best hyper-parameters, the RNN model is 
retrained using data from both the training set and the 
development set. Ten different random seeds are used and the 
predictions of the top five seeds are averaged. The averaged 
prediction is evaluated against the ground truth. 

The RNN is paired with imputation strategies described in 
Section 2B, resulting in two variants of the same model. The 
RNN with forward-filling is referred to as RNN-FF while the 
RNN with model-filling is referred to as RNN-MF. The size of 
the models are limited at 1 recurrent of size 256 memory cells 
to prevent overfitting due to the limited amount of training 
data. 

D. Baselines 

The RNN were compared against linear baselines such as 
constant prediction model, Support-Vector Machine (SVM), 
Support-Vector Regression (SVR) and linear state-space (LSS) 
model. The input features of the RNN and the baseline models 
are the same. 

1)  Constant Prediction Model 
The constant prediction model predicts all future values to 

be the last observed values. This model does not need training. 

 [1] http://pytorch.org 
                                                                                                                    

Figure 3: Handling missing data 



2) SVM-SVR Model 
SVM is used to predict future diagnosis while SVR is used 

to predict future AD markers. Adopting the independent 
prediction strategy, 84 SVM and 84 SVR models are trained 
for 84 time horizons. Linear interpolation is used to impute 
missing features in the training data. The models are 
implemented using scikit-learn[1] library. The possible hyper-
parameters are shown in Table II. 

TABLE II.  SVM AND SVR'S HYPER-PARAMETERS 

 SVM SVR 

Kernel Linear or RBF 

Epsilon NA 1e-3, 1e-2, 1e-1 

Penalty 1e-2, 1e-1, 1, 1e1, 1e2 

Gamma 1e-2, 1e-1, 1, 1e1, 1e2 

3) Linear State-Space Model 
The LSS baseline model was implemented as a simplified 

RNN model. Equations (12) - (13) show how the LSS update 
its hidden vector and make prediction. Apart from the update 
equations, the training scheme, optimizer, regularization 
scheme of the LSS model are similar to that of the RNN model. 
The LSS baseline also utilizes the data imputation strategies 
discussed in section II, resulting in two variants of LSS: LSS-
FF and LSS-MF. The hyper-parameters used for the LSS model 
is shown in Table I. 

 ht = W(h) et + U(h) ht-1 (12) 
 ŝt = W(s) ht (13)
 ĝt = W(g) ht (14)

E. Results 

Table III shows the mean and standard deviation of 
different evaluation metrics on the ten random splits. The RNN 
with forward-filling strategy (RNN-FF) model achieves the 
highest accuracy in prediction of diagnosis (mAUC 0.86 and 
BCA 0.79). The RNN with model-filling strategy (RNN-MF) 
model achieves the best accuracy for predicting ADAS-Cog13 
(MAE 5.2) and ventricles volume (MAE 3.1e-3). 

TABLE III.  EVALUATION ON TEN DIFFERENT RANDOM SPLITS 

IV. CONCLUSION 

We propose a strategy to use RNN that can handle missing 
data which is common in healthcare data. We applied it to the 

multi-step prediction task of modeling AD progression within a 
seven-year period. The RNN models were more accurate than 
the baseline models.  
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Model ADAS13 
MAE 

Ventricles 
MAE (*1e-3) 

Diagnosis 
BCA 

Diagnosis 
mAUC 

Baselines 

Constant 5.6 ± 0.31 4.0 ± 0.24 0.68 ± 0.015 0.73 ± 0.016  

SVM-SVR 7.6 ± 0.47 10.1 ± 0.97 0.51 ± 0.010 0.55 ± 0.009 

LSS-FF 7.9 ± 1.57 4.4 ± 2.05 0.74 ± 0.026 0.85 ± 0.026  

LSS-MF 7.6 ± 1.48 10.5 ± 1.32 0.74 ± 0.022  0.82 ± 0.033  

Proposed 

RNN-FF 7.2 ± 1.95 11.1 ± 7.50 0.79 ± 0.035 0.86 ± 0.032 

RNN-MF 5.2 ± 0.45 3.1 ± 0.59 0.74 ± 0.042 0.83 ± 0.035 


