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Abstract

Clustering fMRI time series has emerged in recent years assilge alternative to parametric modelling approachgs [2
In any clustering problem, a good solution depends on twapmorants: the choice of the clustering metric and the clurger
algorithm itself. In this paper, we consider a modified vamsbf a common fMRI clustering metric obtained by the cross-
correlation of the fMRI signal with the experimental pratbsignal. To address a perceived deficiency of this sigmal-t
protocol metric, we devise a signal-to-signal metric by ifyadg the cross-correlation of two fMRI signals. In addit, we
apply three different clustering algorithms (kmeans, spéclustering and stochastic clustering) to the probl¢head. We
shall demonstrate the superiority of our novel metric whapliad to real fMRI data.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) based on 8l6xygenation Level Dependent (BOLD) signal changes
allows assessment of brain activity via local hemodynanaigations over time ([3],[9]). However, traditional mettg
such as the 2-sample t-test or the general linear model (Glav)only at most evaluate the level of activation of indiatiu
voxels'.

Analyzing possible relations between different activeelexhas the potential of elucidating biological relatiapstbe-
tween the different functional areas of the brain and tlweemotivates our investigation of fMRI clustering. By défima
similarity measure between different time series, we hoggoup voxels with similar time series. The underlying asgu
tion is that voxels with similar time series correspond tissdeelonging to the same functional regions of the brain.dake
then analyze inter- or intra- group relations after sudoéstustering.

In this paper, we modify a common metric used in fMRI clustgrio improve the chance of physically-close voxels to
be grouped together. This is justified by the biological thet the brain is divided into active regions. Thereforegitaily-
close voxels most likely correspond to cells within the sdometional regions - and given our motivation in the prewou
paragraph - we would like to group them together. Howevehaue to be careful not to set too high a bias, or we risk voxels
being grouped together simply because of their physicéhdé®. In addition, we will define a new metric that addresses
another perceived problem of the common metric (see 2.2ighelated to our intuition of similarity between time sexi We
shall also evaluate three clustering algorithms, Kmeaas¢srd and adapted), spectral clusteriziggnd K) and stochastic
clustering on artificially generated fMRI signals.

2 Maetric

A clustering algorithm can only be as good as the similarigtna used. The problem at hand is to meaningfully quantify

the similarity between two fMRI time series. The first simitya metric we shall modify is the one commonly used by the

fMRI clustering community. It is only “semi-model” becausenakes some prior assumptions about the fMRI signals.
Before we define the similarity between two time series, wat fiave to do the following pre-processing:

1. We first apply a second-order low pass filter on the timeesdd improve its SNR. Typical fMRI SNR ranges from 0.2
to less than 1. Actual SNR depends on the fMRI machine, intgpgincedures as well as voxel resolution.

2. We standardize each filtered time course by subtractiagrtban and dividing it by its standard deviation. In the
absence of standardization, cross-correlation betweensignals could be dominated by similar signal variances
rather than similar patterns [1].

More sophisticated pre-processing can be performed @L][3]. [7], [8]), but we will not indulge in them since theyanot
our focus.

1voxel is the basic unit of composition of a 3D image.



2.1 Semi-model Based Metric

A commonly used semi-model based metric is the signal-tdegnl metric [2]. The time series of a voxél[n] is cross-
correlated with the experimental protoegh| resulting inz[n]. s[n] is a square wave which takes value of zero when the
subject is resting and value of one when the subject is presenstimulus. Henceln] = 3 = f[m]s[n + m]. The peak
value,P and its delay[ of z[n] are taken as the features of the time series. The peak diffe(B,; and delay differencd,;;

of two voxels,; andj, are defined a®;; = |P, — P;| andL;; = |L; — L;|. Unlike Goutte [2], we will include the euclidean
distance between two voxels;; in the similarity metric. Utilising all possible pairs of ¥els, we then standardize the three
measuresP;;, L;; and E;; separately, resulting ift;;, L;; and E;;. Note that after standardization, certdiy), L;; and £

will become negative. The distance and affinity betweenithe series of two voxels, are therefore respectively defased

D(i,j) = Py + Lij + cEij ; A(i,j) = e P09) )
wherec is a positive constant. Including the euclidean distanceénsimilarity metric increases the chance of voxels in

similar regions of the brain to be grouped togethet.if too big, we risk voxels being grouped together simply bnseahey
are physically close. From our experiments, we find that0.5 provides the satisfactory trade-off.

2.2 Data-driven Metric

Consider three time serie§[n], f2[n] = —fi[n] and f3[n] = 0. Then according to the signal-to-protocol metrjg[n)
and f2[n] is more similar tofs;[n] than with each other (if we ignore the delay), becaltse = |P, — P| = 2|P;| while
P35 = P35 = |Py|. This is counter-intuitive, since a positive signal shoodédconsidered more similar to a negative signal
than to no signal. We are also uncomfortable with the use @fpttotocol,s[n] because that is implicitly assuming the
temporal extent of the hemodynamic response is at most tigghef the stimulus. We therefore define our signal-to-aign
metric:

1. Consider two time serie§[n] and f;[n]. Thenz;;[n] = >, film]f;[n +m].
2. Definezj;[n], such that:/;[n] = z;;[n] whenz;;[n] > 0 andz{;[n] = —k x z;;[n] whenz;;[n] < 0, wherek is a
positive constant, which we set to be 0.5 in our implemeaorati

3. HenceP;; = max(z{;[n]) andL;; = arg maw,z;;[n]. After standardization, we have:

D(i,j) = =Py + Lij + cEij ; A(i,j) = e~ P09) )

where there is a minus sign in front #f; because in this case, the higher the valu®gf the more similar voxels
andj are. Note that there is an intuitive meaning behind the vafue By settingk to be 0.5, we are saying that we
believe a negative peak is as good as a positive peak halféts s

3 Clustering Algorithms

In this section, we describe the clustering algorithms westigate: Kmeans (normal and adapted), Spectral Clogt@
and K) and Stochastic Clustering.

3.1 Adapted Kmeans

K-means is an iterative method for locating clusters in acdatnlabeled data while minimizing the total within cluster
variance. It is known that Kmeans approximates the Expeltaximization (EM) of a mixture of gaussians when the
covariance matrices of the gaussians is close to a scaledacdrof the identity matrix and the diagonals approach.zero
At each iteration, a point is assigned to the cluster withdlesest cluster center. We then update the center of eacly new
defined cluster by averaging the features of the points lg@grto the cluster.

Unfortunately, our data-driven metric (see eq. 2) only mes us with a pairwise distance matri(i, ). There is no
notion of the actual coordinates of each point. Setting thster center to be the average time series of the clustalyox
wrong since the averaged time series might no longer beltigetspace of fMRI signals. Therefore, in this case, Kmeans
cannot be applied directly. To overcome this problem, wengetfie distance of a poink; to a cluster(, as the following:

D(P.C) = 7 3 Dliod) 3)

J€Cs

where|C,,| is the cardinality ofC, from the last iteration. Like regular Kmeans, adapted Krsedarinitialized with K
random centers, and the remaining points are assigned foltsest” cluster centers. For subsequent iterationg, paints
are assigned to the nearest clusters according to (3).



3.2 Spectral Clustering Families

In spectral clustering, clustering is viewed as a graphtmariproblem. The graph nodes correspond to the data poutite
the weights of the edges reflect similarity between the notles Nx N affinity matrix, A therefore completely characterises
aN-nodes graph wherg;; is the weight (or affinity) between nodend nodgj.

Spectral clustering algorthms are based on the eigen-deasition of the normalized affinity matrity, = Q~'/24Q /2
(Q is a diagonal matrix@Q;; = Zj A;;) and rely on the assumption that the subspace spannat lsyeigenvectors is more
stable than that spanned By4’s columns. Weiss [6] proved that the eigenvectors\of corresponding to thé largest
eigenvalues are piecewise linear if the data giving ris& tocomes fronk well-separated clusters. However, if the clusters
overlap or are close to one another, the subspace spannbd fisst k eigenvectors become less stable according toxmatri
pertubation theory [11].

3.21 2™ Spectral Clustering

In 2™ spectral clustering, we recursively divide the clustethvtite highest intra-cluster variance (defined to be the geera
intra-cluster weights) into two by performing an elemeytgrectral cluster split. We stop when the desired numbdusters

is achieved. Each elementary spectral cluster split isopedd by applying Kmeans (with 2 clusters) on the eigenvecto
corresponding to the second highest eigenvalue of theetlsistormalized affinity matrix)V4.

2" spectral clustering is effectively equivalent to Shi'suesive 2-way normalized cuts [10] as shown by Weiss [12].
But as Shi pointed out himself [10], recursive 2-way cutssargceptible to prematurely breaking up a “should-be-caftér
cluster into two. He suggested using the recursive noredlauts to oversegment the data iktfo> £ clusters and then
either greedily merge th&’ clusters intok clusters, or treat thé’ clusters as the meta-nodes of a new graph and repeat
recursive normalized cuts. Note that in our implementatib®™ spectral clustering, we stop the iterations okagusters
are reached. In light of this problem, a potentially bettaywf producingk clusters is K Spectral Clustering [6].

3.2.2 K Spectral Clustering

While 2™ spectral clustering recursively divides data into two gr@based on the second eigenvector, K spectral cluster-
ing [6] simultaneously separates data into K groups usiegethenvectors corresponding to the K largest eigenvales.
outline the algorithm below:

1. ConstructX = [z, 2, ...71], z; is the eigenvector corresponding to tielargest eigenvalue.
2. Normalize each row ok, resulting inY’, whereY;; = X;; /(3" Xi;)'/2.
3. Treating each row df as a point inR*, cluster them into k clusters via Kmeans.

4. Assign original pointpP; to cluster j if and only if row i ofY is assigned to cluster |.

Weiss [6] provides another perspective about K spectrateiing. He shows that if the data comes frbwell-separated
clusters, then there will be k mutually orthogonal pointstiea surface of the unit k-sphere around whicls rows will
cluster. Furthermore, these clusters correspond exacthettrue clustering of the original data. Unfortunatetg accuracy
of K spectral clustering can suffer from its dependence erirthial random cluster centers of Kmeans (step 3).

3.3 Stochastic Clustering

We shall consider the stochastic clustering algorithmeamesd by Gdalyahu [14]. Like spectral clustering, stodbadus-
tering views clustering as a graph partition problem. If wasider the graph-partitioning problem as a search throiugh
hypothesis space of feasible partitions, most clusteriggrithms, including spectral clustering, simply retuenpoint from

the hypothesis space. On the other hand, stochastic ¢hegstdtempts to induce a probability distribution over tlypbthesis
space and returns an average solution [14]. This is achieyegnerating randomized-cuts in the graph and computing an
“average” cut. Therefore, unlike most deterministic gragititioning algorithms, it is more robust against accidéadges
and small spurious outliers. A second advantage is thatekfiowledge of the number of clusters is not required. Imstea
stochastic clustering returns a nested sequence of pagijt” (V, E') , whose significance is correlated with a defined mea-
sure,6T'(r). This is attractive because the usual aim of clustering titoover hidden data structures using as little prior
assumptions as possible. These two advantages of stactlastiering will be illustrated in the synthetic fMRI datacsion
(see section 4.2)



3.3.1 Algorithm Outline

Consider the grapli(V, E'). A partition of V' into r disjoint clusters ¥3,...,V;.) is called ar-way cut. By combining all
edges between two clusters (via adding their weights) suahthere is at most meta-edge between any two clusters, we
can imagine the nodes of each cluster as a single meta-n@meetiwe can obtain a-{1)-way cut from ar-way cut simply

by contracting a meta-edge between two meta-nodes and combining theinekteeta-edges.

We define a contraction sequence as taking the original gGH F) (which is a|V|-way cut) and at each iteration,
contract the graph by combining 2 meta-nodes, until a singlssive cluster(= 1) remains. The probability of combining
two meta-nodes is directly proportional to the edge betvileemn. We repeat this contraction sequehté&mes. We estimate
p;;» the probability of node and nodej being in the same cluster in a randerway cut, to be the percentage of times out
of M contraction sequences, that nadend nodg are in the same cluster inraway cut. For clarity, we list the steps below.

1. Create a 3-D matri%];, initializing the components to zero.

2. We perform the graph contraction sequenédimes, each time contracting the gra@gtiV, E) (|V|-way cut) until
only one meta-node remaink-{vay cut).

3. At each stage of the contraction, we takeitheay cut and update th§]; matrix, settings;; < S7; + 1 if nodes and
node; belong to the same meta-node.

4. We then estimatg]; to beS;7; /M.
It can be shown that i/ > 0.35%“55%, thenPr(3i, j s.t. |pij — pij| > €) < d [14]. In our implementation, we
set bothe and4 to be0.05. After estimatingp;;, we can now generate the nested sequence of partitions:

1. For each value of, we generate a new graghi (V, E) from G(V, E) by removing edges between nodeand if
pi; < 0.5.

2. For each reduced grap&; (V, E), we find its connected components (or clusterg),, (..,A;). Note that the number
of connected components,< r (from experiences << r) but increases monotonically with This is becausg;;
decreases monotonically asncreases, hend@” (V, E) always has at least as many edge&as! (V, E).

3. For eachr, we calculatd'(r) = T(G"(V, E)) — T(G"~Y(V, E)), where

T(G"(V,E)) = ﬁ Z N;N; (4)

N = |Ag| denoting the number of nodes in th&: cluster. Hencel (G™(V, E)) measures the number of inter-cluster
edges in the-partition relative to the total number of edges in the caetgbraph.

4. Typically, the partition&:” (V, E') corresponding to consecutive valueg afre very similar, and therefol® G (V, E))
tends to remain relatively stable aghanges. However, abrupt changedifG” (V, E)) do occur and these tend to
correspond to significant changes in the structure of thetgpartition. Hence we output the graph partition only when
0T (r) > threshold. The algorithm is not very sensitive to the exact value ofttiieshold (see figures 4b and 7), and
in our implementation, we arbitarily set thereshold to be0.01.

3.3.2 Implementation Issues

It turns out that implementing the stochastic clusterirgpathm is not trivial, because of both space and runtimeess
Since we encountered many implementation problems, weéishklde a short discussion here.

Consider the matri¥;;. Suppose we are interested in clustervg= 1000 points, the space for storing the f$lf; matrix
would bel0° x sizeof (int) bytes of memory! We therefore make the assumption [14] tieaverage cut is not sensitive
to thep;; of an edge whose original weight;; is zero. Note that even though; is zero,p;; will be non-zeros for some's
(assuming the random walk associated with the graph is erpde to transitive relations via other nodes. The justtfan
for the assumption is that sinpg, is completely due to transitive relations, we can rely oiséheery same transitive relations
in the formation of connected components in the second sifathye algorithm. With this assumption, the space requirgme
for S} would drop drastically fromiV3 x sizeof (int) bytes tof non-zero edges sizeof (int) bytes.

From here, we depart from Gdalyahu’s implementation. Wgléurther approximateg}; using histograms and speeded
up the algorithm using trees, we implemented the completgiore using matlab. Even with the heavy reduction of the
size of S;, stochastic clustering is still really slow. Clusteringd4foints (see section 4.1) takes more than 12 hours. A
significant portion of the runtime is concentrated in the glimy stage of the algorithm. Because of the repeated sampli
and contraction, there aifer loops that cannot be avoided in matlab. For future work, em@nting stochastic clustering in
C++ would definitely be more rewarding. 4



4 Results
41 TheWindmill of Gaussians

We test our clustering algorithms on artificially genera®edimensional mixture of 4 gaussians. All the algorithms ar
reasonably successful. As we pointed out in the previousssethe performance of K spectral clustering can be sigadib
the random initialization of Kmeans (fig. 1e). Note thatspectral clustering can also become slightly unstabledlite ise
of Kmeans in the elementary spectral split. However, siheesecond eigenvector consists of 1-dimensional datagyoiwet
can easily use a deterministic algorithm to split the eigetor into two instead of using Kmeans. For example, we csailtd
the eigenvector, and find the pivot element that minimizeswbrmalized-cut criterion. The stochastic clusteringatgm
generates a series of partitions (fig. 1f), of which one isxshibere. Notice how outliers are relabeled as separatesctust

4.2 Result on SyntheticfMRI data

We generate synthetic fMRI data using hemodynamic respiumstions provided by ([4]). We create simulated hemody-
namic signals for selected voxels ir6& x 64 image. Each signal consists of 108 time points with “on” aaffperiods
corresponding to that of a real fMRI experiment (see seci8h We then add gaussian noise tadlk 64 voxels. However,

it appears from the affinity matrices of the synthetic fMRtalthat the signal-to-protocol metric is better at handlower
SNR (note that this is not true with real fMRI data - see secfi8). Hence depending on our metric, we generate data with
different SNR.

4.2.1 Evaluating Adapted Kmeans and Spectral Clustering using Signal-to-Signal Metric

Consider figure 2a. The hemodynamic response within eacinembblock is constant, with SNR 1. The signals from the
blue pixels are similar to those from the yellow pixels wtithe signals from the red and cyan blocks are similar (fig. 2d).
We select the 800 activated voxels and an extra 100 unaativatxels (the brown pixels) for clustering. We see that sethp
Kmeans is unable to separate the diagonal blocks even wétleticlidean constraints (fig. 2c). Both types of spectral
clustering are unable to separate the diagonal blocks ufitttee euclidean constraint (fig. 2b), but are successfulnwhe
the constraint is imposed (fig. 2e, only results frotnspectral clustering shown).

4.2.2 Evaluating Normal Kmeansand Spectral Clustering using Signal-to-Protocol Metric

We set SNR= 0.3 (fig. 3a, c). Like adapted Kmeans, normal Kmeans is unablegarsite the diagonal blocks even with the
euclidean constraints (figures not shown). This time, B8tand K spectral clustering are able to separate the diagtotwdd
even without the euclidean constraints (fig 3b, d, only tsfubm2” spectral clustering shown). However, we observe that
without the euclidean constraint, there is some corrupdicnoss the diagonals, with some brown pixels labeled aswell
(and vice versa), as well as some cyan pixels labeled as red.

4.2.3 Stochastic Clustering

We tested stochastic clustering using the signal-to-$imgeéric, but with a smaller data set (300 activated and 4@tiveted
pixels) to accommodate its slower runtime. Consider figareldke before, the hemodynamic response within each cdlore
block is constant with SNR= 2. The SNR is set higher this time because we decide to use wailgissignals in all three
blocks. Without this higher SNR, the affinity matri®, shows that the blocks are indistinguishable.

As promised, stochastic clustering generates a seriegtitignas, of which the two corresponding to the largest ealof
0T (r) are displayed (fig. 4c, d). Just before the first majb(r), all the activated pixels are grouped into a single cluster,
with most of the unactivated pixels separated from this rgaiup. At the first major peak, the top two clusters are sepdra
from the bottom one, and at the second peak, the top two ciuste separated.

For visualization purposes, clusters that contain onlyxglgiare grouped together and displayed as a single colticeNo
that these usually correspond to unactivated pixels (ogf. 4a and d). Hence, stochastic clustering is clever at iggor
outliers, rather than forcefully clustering them. In pregef we could take these single pixels and either discam thretry to
incorporate them back into the main clusters depending ooloective.

4.3 Result onreal fMRI data

The fMRI scans were obtained during an auditory “two-bacldrdvexperiment. Each experiment consisted of five rest
epochs and four task epochs, each epoch la8tirsgeconds. In the rest condition, the subjects were instluoteoncentrate

on the noise of the scanner and not move. In the task condttiensubjects were presented with a series of pre-recorded
single-digit numbers, three seconds per number. The dshjere asked to tap their index finger on the thumb when hgarin
a number that was the same as the one spoken two numbers. iEefperiments were repeated ten times for each subject.

5



The anatomical images, T1-weighted structural, were aeddor each subject on a 1.5 Tesla GE signa clinical MR saanne
using a 3D-Spoiled Gradient Recalled sequence. EPI imagesacquired on the same scanner with imaging parameters as
follows: axial orientation, TR/TE=2500/50 msec, FA90, 484 acquisition matrix, 6mm slice-thickness, no gap, 2desli

More details on this study can be found in [13]. In this settige illustrate the detectors’ performance on one of thesth

from the study?. For our clustering experiments, we pick the top 300 voxslagia two-sided t-test from slices 18 to 22

as input into our clustering algorithms. 300 voxels coroggpto about 5% of the brain voxels in the 5 slices, meaning tha
probably a percentage of the 300 voxels picked are fals¢iyesi

4.3.1 Semi-model metric VS Data-driven metric

Although the synthetic fMRI data section (see 4.2) seemmfuyi that the signal-to-protocol metric is more resilieman
the signal-to-signal metric in the presence of noise, thieffinitely not true when we use real fMRI data.

As can be seen from the plots of the affinity matixof the signal-to-protocol metric (fig. 5a, b), the signalpimtocol
metric seems unable to discover any similarity betweenithe series of different voxels (with and without the inctusiof
the euclidean distance in the similarity metric). The pks almost completely blue (a deeper red corresponds tcharhig
affinity, while deeper blue corresponds to lower affinity). fact, when we run the clustering algorithms using the digna
to-protocol metric, the clustering results were bad wittngnemall spurious clusters whose elements are spatialtiesed,
even when the euclidean constraint was imposed (figureshoetrg. On the other hand, we can see the signal-to-signal
metric (fig. 5¢, d) is successful in revealing structures agiie voxels. The imposition of the euclidean constraidtices
the similarity between voxels that are physically far away.

The reason is because the signal-to-protocol metric asstiménemodynamic response is instantaneous with respect to
the stimuli and the temporal extent of the response is at thedength of the stimulus. When that assumption is trueh(suc
as in the synethetic fMRI data), the signal-to-protocolningierforms better than the signal-to-signal metric, lnseathis
correctprior knowledge helps to overcome poor SNR. In the real huneamo-biological systems however, it is evident that
the assumption is not wholly accurate, and we see that onaktg-signal metric is superior.

4.3.2 Clugtering Results

Because of Kmeans’ abysmal results with synthetic fMRI datits ubiquity in fMRI clustering literature, we shall éxde

it from our experiments with real fMRI data. For brevity, wédlwnly present in details the results from stochastic @tisg

(see figures 6 and 7). Note that each sequence of slices dhmskekn as a 3-d block of the brain. The five slices should be
imagined as stacking on top of each other.

Figure 6a shows clustering results using the signal-toadigetric without the euclidean constraint, correspogdinthe
maximal peak ob7'(r). As expected, at the peak, stochastic clustering gives ingke dig cluster of voxels (colored purple
in the figure). Asr increases (not shown), the voxels eventually break up iifterent groups but the number of spurious
pixels (clusters with single member) also increases sianifly. Hence, we find that without euclidean constraintglsastic
clustering is unable to convincingly separate the diffeesivated voxels into coherent groups. This is not suiqgisince
a clustering algorithm is only as good as the metric usedmRigure 5c, the large patches of orange show that most of the
voxels are very similar to each other according to the ctirgiametric we use. We therefore should not expect a reas®nab
clustering algorithm to split them up.

Figure 6b, c show clustering results with euclidean comgsacorresponding to the two highest peakéBfr). We see
that at the first peak (fig. 6b, 7), the algorithm manages tarsg¢@ a coherent group of voxels (shown as green) from the
rest of the voxels (shown as purple). At the highest peak&fig7), we see that the purple cluster in turn splits up into tw
groups (shown as cyan and purple). Note that at highleaot shown here), the cyan cluster breaks up into two: onseau
at the center of the brain and one at the side. However, marésis clusters (containing single member) are also preduc

We also test both types of spectral clustering with the reiif data (figures not shown) using 10 clusters. The results
are similar to stochastic clustering except that thereess $purious clusters (single-point clusters). Howeveragtually
see this as a major advantage of stochastic clusteringagedully eliminates outliers rather than forcefully grabpm with
otherwise coherent clusters. This prevents the outliers faltering the mean properties of these coherent clugiefer to
comments on stochastic clustering on synthetic fMRI dateition 4.2).

5 Conclusions and Further Work

Our investigation of various clustering methods and mefiacilitates the study of relatonships between differantfional
areas of the brain. While™ spectral clustering and K spectral clustering producelamnesults to stochastic clustering,
stochastic clustering is more appropriate for clusterM&F time series because it gracefully excludes spuriousandive
voxels which occur due to inaccuracies in the t-test. Siheeetis no ground truth about the actual number of functional

2The original study contains nine subjects, but for the psegaf this paper, we decide to present the results for ofjecsiatzross all detectors
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clusters in the brain, stochastic clustering relieves amfhaving to specify an arbitrarily-determined number aistérs
which might lead to overfitting. Kmeans do not perform verylwath our tests and should therefore be avoided. Our
novel signal-to-signal metric outperforms the common algo-protocol metric because it does not assume instanten
hemodynamic response, which is unrealistic in neurobioldgystems. Potential future work might include:

e The study of intra- and inter-cluster relationships betwd#ferent functional regions of the brain using graphical
models, after clustering the voxels.

e Further evaluation of spectral and stochastic clusteriethods in the presence of more inactive noise voxels.

The handling of spurious clusters containing single pairgtochastic clustering.

Improvement of the metrig)7'(r) in stochastic clustering. Currenthyl’(r) only takes into account the number of
edges, but not their weights. Perha@f¥r) can be altered to be similar to the normalized cuts criterion

Improvement of the clustering metric by the incorporatibstandard detection statistics such as t-test and GLM.
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Figure 1: Clustering result for windmill mixture of Gaussidata. (a) Ground Truth (b) Adapted KmeansZ¢)Spectral
Clustering (d) K Spectral Clustering (e) misclassified lefsam K Spectral Clustering (f) Stochastic Clustering

Adapted Kmeans

Ground Truth Spectral Clustering 2"
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Figure 2: Results generated using signal to signal metomfsynthetic fMRI signals at SNR 1. (a) is the group truth
(b)(e) spectral clustering® without and with Euclidean distance constraints (c) Addgteeans clustering with Euclidean
distance constraints. (d) input noisy signal. Colors ofialg (red, blue, yellow and cyan) corresponds to respectilered

blocks in (a)



Ground Truth Spectral Clustering 2"
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Figure 3: Results generated using signal to protocol méwix synthetic fMRI signals at SNR 0.3. (a) is the group truth
(b)(d) spectral clustering™ without and with Euclidean distance constraints (c) inpuisy signal. Colors of signals (red,
blue, yellow and cyan) corresponds to respective coloreckslin (a)

Ground Truth 0.4
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r=104 clusters, &T)=0.17352

Figure 4: Stochastics Clustering with signal to signal imetsing synthetic fMRI data at SNR 2. (b) illustratess(T'(r))
(c)(d) clustering result corresponds to the two largést) with XYZ constraint.
Clusters with only 1 member are displayed as cyan and blypectisely.
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Sig-to—Pro Affinity Matrix, without Euclidean Constraints ~ Sig—to—Pro Affinity Matrix, with Euclidean Constraints
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Figure 5: (a)(b) signal to protocol affinity matrix corresyling to with and without Euclidean constraints. (c)(dnsibto
signal affinity matrix corresponding to with and without Hidean constraints.
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r =24, 3 clusters &(T) = 0.051 r=4, 3 clusters &(T)=0.13 r=10, 5 clusters &T) =0.24

(b) (c)

Figure 6: Stochastics Clustering with signal to signal metClusters with only 1 member are displayed as orange. (a)
clustering result corresponds to the largg§t) without XYZ constraint (b)(c) clustering results corresgs to the top two
§(T) with XYZ constraint.
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Figure 7:6(T) of stochastics Clustering with signal to signal metric witZ constrain
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