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Abstract

Clustering fMRI time series has emerged in recent years as a possible alternative to parametric modelling approaches [2].
In any clustering problem, a good solution depends on two components: the choice of the clustering metric and the clustering
algorithm itself. In this paper, we consider a modified version of a common fMRI clustering metric obtained by the cross-
correlation of the fMRI signal with the experimental protocol signal. To address a perceived deficiency of this signal-to-
protocol metric, we devise a signal-to-signal metric by modifying the cross-correlation of two fMRI signals. In addition, we
apply three different clustering algorithms (kmeans, spectral clustering and stochastic clustering) to the problem at hand. We
shall demonstrate the superiority of our novel metric when applied to real fMRI data.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) signal changes
allows assessment of brain activity via local hemodynamic variations over time ([3],[9]). However, traditional methods,
such as the 2-sample t-test or the general linear model (GLM)can only at most evaluate the level of activation of individual
voxels1.

Analyzing possible relations between different active voxels has the potential of elucidating biological relationships be-
tween the different functional areas of the brain and therefore motivates our investigation of fMRI clustering. By defining a
similarity measure between different time series, we hope to group voxels with similar time series. The underlying assump-
tion is that voxels with similar time series correspond to cells belonging to the same functional regions of the brain. Wecan
then analyze inter- or intra- group relations after successful clustering.

In this paper, we modify a common metric used in fMRI clustering to improve the chance of physically-close voxels to
be grouped together. This is justified by the biological factthat the brain is divided into active regions. Therefore physically-
close voxels most likely correspond to cells within the samefunctional regions - and given our motivation in the previous
paragraph - we would like to group them together. However, wehave to be careful not to set too high a bias, or we risk voxels
being grouped together simply because of their physical distance. In addition, we will define a new metric that addresses
another perceived problem of the common metric (see 2.2) that is related to our intuition of similarity between time series. We
shall also evaluate three clustering algorithms, Kmeans (standard and adapted), spectral clustering (2n and K) and stochastic
clustering on artificially generated fMRI signals.

2 Metric

A clustering algorithm can only be as good as the similarity metric used. The problem at hand is to meaningfully quantify
the similarity between two fMRI time series. The first similarity metric we shall modify is the one commonly used by the
fMRI clustering community. It is only “semi-model” becauseit makes some prior assumptions about the fMRI signals.

Before we define the similarity between two time series, we first have to do the following pre-processing:

1. We first apply a second-order low pass filter on the time series to improve its SNR. Typical fMRI SNR ranges from 0.2
to less than 1. Actual SNR depends on the fMRI machine, imaging procedures as well as voxel resolution.

2. We standardize each filtered time course by subtracting the mean and dividing it by its standard deviation. In the
absence of standardization, cross-correlation between two signals could be dominated by similar signal variances
rather than similar patterns [1].

More sophisticated pre-processing can be performed ([1], [2], [5], [7], [8]), but we will not indulge in them since they are not
our focus.

1Voxel is the basic unit of composition of a 3D image.
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2.1 Semi-model Based Metric

A commonly used semi-model based metric is the signal-to-protocol metric [2]. The time series of a voxel,f [n] is cross-
correlated with the experimental protocols[n] resulting inz[n]. s[n] is a square wave which takes value of zero when the
subject is resting and value of one when the subject is presented a stimulus. Hencez[n] =

∑
m f [m]s[n + m]. The peak

value,P and its delay,L of z[n] are taken as the features of the time series. The peak difference,Pij and delay difference,Lij

of two voxels,i andj, are defined asPij = |Pi − Pj | andLij = |Li −Lj |. Unlike Goutte [2], we will include the euclidean
distance between two voxels,Eij in the similarity metric. Utilising all possible pairs of voxels, we then standardize the three
measures,Pij , Lij andEij separately, resulting in̂Pij , L̂ij andÊij . Note that after standardization, certainP̂ij , L̂ij andÊij

will become negative. The distance and affinity between the time series of two voxels, are therefore respectively definedas:

D(i, j) = P̂ij + L̂ij + cÊij ; A(i, j) = e−D(i,j) (1)

wherec is a positive constant. Including the euclidean distance inthe similarity metric increases the chance of voxels in
similar regions of the brain to be grouped together. Ifc is too big, we risk voxels being grouped together simply because they
are physically close. From our experiments, we find thatc = 0.5 provides the satisfactory trade-off.

2.2 Data-driven Metric

Consider three time seriesf1[n], f2[n] = −f1[n] andf3[n] = 0. Then according to the signal-to-protocol metric,f1[n]
andf2[n] is more similar tof3[n] than with each other (if we ignore the delay), becauseP12 = |P1 − P2| = 2|P1| while
P13 = P23 = |P1|. This is counter-intuitive, since a positive signal shouldbe considered more similar to a negative signal
than to no signal. We are also uncomfortable with the use of the protocol,s[n] because that is implicitly assuming the
temporal extent of the hemodynamic response is at most the length of the stimulus. We therefore define our signal-to-signal
metric:

1. Consider two time seriesfi[n] andfj[n]. Thenzij [n] =
∑

m fi[m]fj[n + m].

2. Definez′ij [n], such thatz′ij [n] = zij [n] whenzij [n] ≥ 0 andz′ij [n] = −k × zij [n] whenzij [n] < 0, wherek is a
positive constant, which we set to be 0.5 in our implementation

3. Hence,Pij = max(z′ij [n]) andLij = arg maxnz′ij [n]. After standardization, we have:

D(i, j) = −P̂ij + L̂ij + cÊij ; A(i, j) = e−D(i,j) (2)

where there is a minus sign in front of̂Pij because in this case, the higher the value ofP̂ij , the more similar voxelsi
andj are. Note that there is an intuitive meaning behind the valueof k. By settingk to be 0.5, we are saying that we
believe a negative peak is as good as a positive peak half its size.

3 Clustering Algorithms

In this section, we describe the clustering algorithms we investigate: Kmeans (normal and adapted), Spectral Clustering (2n

and K) and Stochastic Clustering.

3.1 Adapted Kmeans

K-means is an iterative method for locating clusters in a setof unlabeled data while minimizing the total within cluster
variance. It is known that Kmeans approximates the ExpectedMaximization (EM) of a mixture of gaussians when the
covariance matrices of the gaussians is close to a scaled constant of the identity matrix and the diagonals approach zero.
At each iteration, a point is assigned to the cluster with theclosest cluster center. We then update the center of each newly
defined cluster by averaging the features of the points belonging to the cluster.

Unfortunately, our data-driven metric (see eq. 2) only provides us with a pairwise distance matrix,D(i, j). There is no
notion of the actual coordinates of each point. Setting the cluster center to be the average time series of the cluster voxels is
wrong since the averaged time series might no longer belong to the space of fMRI signals. Therefore, in this case, Kmeans
cannot be applied directly. To overcome this problem, we define the distance of a point,Pi to a cluster,Cx as the following:

D(Pi, Cx) =
1

|Cx|

∑

j∈Cx

D(i, j) (3)

where|Cx| is the cardinality ofCx from the last iteration. Like regular Kmeans, adapted Kmeans is initialized withK
random centers, and the remaining points are assigned to the“closest” cluster centers. For subsequent iterations, data points
are assigned to the nearest clusters according to (3).
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3.2 Spectral Clustering Families

In spectral clustering, clustering is viewed as a graph partition problem. The graph nodes correspond to the data points, while
the weights of the edges reflect similarity between the nodes. TheNxN affinity matrix,A therefore completely characterises
aN -nodes graph whereAij is the weight (or affinity) between nodei and nodej.

Spectral clustering algorthms are based on the eigen-decompositionof the normalized affinity matrix,NA = Q−1/2AQ−1/2

(Q is a diagonal matrix,Qii =
∑

j Aij ) and rely on the assumption that the subspace spanned byNA’s eigenvectors is more
stable than that spanned byNA’s columns. Weiss [6] proved that the eigenvectors ofNA corresponding to thek largest
eigenvalues are piecewise linear if the data giving rise toNA comes fromk well-separated clusters. However, if the clusters
overlap or are close to one another, the subspace spanned by the first k eigenvectors become less stable according to matrix
pertubation theory [11].

3.2.1 2n Spectral Clustering

In 2n spectral clustering, we recursively divide the cluster with the highest intra-cluster variance (defined to be the average
intra-cluster weights) into two by performing an elementary spectral cluster split. We stop when the desired number of clusters
is achieved. Each elementary spectral cluster split is performed by applying Kmeans (with 2 clusters) on the eigenvector
corresponding to the second highest eigenvalue of the cluster’s normalized affinity matrix,NA.

2n spectral clustering is effectively equivalent to Shi’s recursive 2-way normalized cuts [10] as shown by Weiss [12].
But as Shi pointed out himself [10], recursive 2-way cuts aresusceptible to prematurely breaking up a “should-be-coherent”
cluster into two. He suggested using the recursive normalized cuts to oversegment the data intok′ > k clusters and then
either greedily merge thek′ clusters intok clusters, or treat thek′ clusters as the meta-nodes of a new graph and repeat
recursive normalized cuts. Note that in our implementationof 2n spectral clustering, we stop the iterations oncek clusters
are reached. In light of this problem, a potentially better way of producingk clusters is K Spectral Clustering [6].

3.2.2 K Spectral Clustering

While 2n spectral clustering recursively divides data into two groups based on the second eigenvector, K spectral cluster-
ing [6] simultaneously separates data into K groups using the eigenvectors corresponding to the K largest eigenvalues.We
outline the algorithm below:

1. ConstructX = [x1, x2, ...xk], xi is the eigenvector corresponding to theith largest eigenvalue.

2. Normalize each row ofX , resulting inY , whereYij = Xij/(
∑

j Xij)
1/2.

3. Treating each row ofY as a point inRk, cluster them into k clusters via Kmeans.

4. Assign original point,Pi to cluster j if and only if row i ofY is assigned to cluster j.

Weiss [6] provides another perspective about K spectral clustering. He shows that if the data comes fromk well-separated
clusters, then there will be k mutually orthogonal points onthe surface of the unit k-sphere around whichY ’s rows will
cluster. Furthermore, these clusters correspond exactly to the true clustering of the original data. Unfortunately, the accuracy
of K spectral clustering can suffer from its dependence on the initial random cluster centers of Kmeans (step 3).

3.3 Stochastic Clustering

We shall consider the stochastic clustering algorithm presented by Gdalyahu [14]. Like spectral clustering, stochastic clus-
tering views clustering as a graph partition problem. If we consider the graph-partitioning problem as a search throughthe
hypothesis space of feasible partitions, most clustering algorithms, including spectral clustering, simply returnsa point from
the hypothesis space. On the other hand, stochastic clustering attempts to induce a probability distribution over the hypothesis
space and returns an average solution [14]. This is achievedby generating randomized-cuts in the graph and computing an
“average” cut. Therefore, unlike most deterministic graphpartitioning algorithms, it is more robust against accidental edges
and small spurious outliers. A second advantage is that a foreknowledge of the number of clusters is not required. Instead,
stochastic clustering returns a nested sequence of partitions,Gr(V, E) , whose significance is correlated with a defined mea-
sure,δT (r). This is attractive because the usual aim of clustering is todiscover hidden data structures using as little prior
assumptions as possible. These two advantages of stochastic clustering will be illustrated in the synthetic fMRI data section
(see section 4.2)
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3.3.1 Algorithm Outline

Consider the graphG(V, E). A partition of V into r disjoint clusters (V1,...,Vr) is called ar-way cut. By combining all
edges between two clusters (via adding their weights) such that there is at most1 meta-edge between any two clusters, we
can imagine the nodes of each cluster as a single meta-node. Hence, we can obtain a (r-1)-way cut from ar-way cut simply
by contracting a meta-edge between two meta-nodes and combining their external meta-edges.

We define a contraction sequence as taking the original graph, G(V, E) (which is a|V |-way cut) and at each iteration,
contract the graph by combining 2 meta-nodes, until a singlemassive cluster (r = 1) remains. The probability of combining
two meta-nodes is directly proportional to the edge betweenthem. We repeat this contraction sequenceM times. We estimate
pr

ij , the probability of nodei and nodej being in the same cluster in a randomr-way cut, to be the percentage of times out
of M contraction sequences, that nodei and nodej are in the same cluster in ar-way cut. For clarity, we list the steps below.

1. Create a 3-D matrixSr
ij , initializing the components to zero.

2. We perform the graph contraction sequenceM times, each time contracting the graphG(V, E) (|V |-way cut) until
only one meta-node remains (1-way cut).

3. At each stage of the contraction, we take ther-way cut and update theSr
ij matrix, settingSr

ij ← Sr
ij + 1 if nodei and

nodej belong to the same meta-node.

4. We then estimatepr
ij to beSr

ij/M .

It can be shown that ifM > 0.35 log
2
|E|−log2δ+1

ε2 , thenPr(∃i, j s.t. |p̂ij − pij | > ε) < δ [14]. In our implementation, we
set bothε andδ to be0.05. After estimatingpr

ij , we can now generate the nested sequence of partitions:

1. For each value ofr, we generate a new graphGr(V, E) from G(V, E) by removing edges between nodesi andj if
pr

ij < 0.5.

2. For each reduced graph,Gr(V, E), we find its connected components (or clusters), (A1,...,As). Note that the number
of connected components,s ≤ r (from experiences << r) but increases monotonically withr. This is becausepr

ij

decreases monotonically asr increases, henceGr(V, E) always has at least as many edges asGr+1(V, E).

3. For each r, we calculateδT (r) = T (Gr(V, E)) − T (Gr−1(V, E)), where

T (Gr(V, E)) =
2

N(N − 1)

∑

i>j

NiNj (4)

Nk = |Ak| denoting the number of nodes in thekth cluster. Hence,T (Gr(V, E)) measures the number of inter-cluster
edges in ther-partition relative to the total number of edges in the complete graph.

4. Typically, the partitionsGr(V, E) corresponding to consecutive values ofr are very similar, and thereforeT (Gr(V, E))
tends to remain relatively stable asr changes. However, abrupt changes inT (Gr(V, E)) do occur and these tend to
correspond to significant changes in the structure of the graph partition. Hence we output the graph partition only when
δT (r) > threshold. The algorithm is not very sensitive to the exact value of thethreshold (see figures 4b and 7), and
in our implementation, we arbitarily set thethreshold to be0.01.

3.3.2 Implementation Issues

It turns out that implementing the stochastic clustering algorithm is not trivial, because of both space and runtime issues.
Since we encountered many implementation problems, we shall include a short discussion here.

Consider the matrixSr
ij . Suppose we are interested in clusteringN = 1000 points, the space for storing the fullSr

ij matrix
would be109 × sizeof(int) bytes of memory! We therefore make the assumption [14] that the average cut is not sensitive
to thepr

ij of an edge whose original weight,wij is zero. Note that even thoughwij is zero,pr
ij will be non-zeros for somer’s

(assuming the random walk associated with the graph is ergodic) due to transitive relations via other nodes. The justification
for the assumption is that sincepr

ij is completely due to transitive relations, we can rely on these very same transitive relations
in the formation of connected components in the second stageof the algorithm. With this assumption, the space requirements
for Sr

ij would drop drastically fromN3 × sizeof(int) bytes to] non-zero edges× sizeof(int) bytes.
From here, we depart from Gdalyahu’s implementation. Whilehe further approximatedpr

ij using histograms and speeded
up the algorithm using trees, we implemented the complete version using matlab. Even with the heavy reduction of the
size ofSr

ij , stochastic clustering is still really slow. Clustering 400 points (see section 4.1) takes more than 12 hours. A
significant portion of the runtime is concentrated in the sampling stage of the algorithm. Because of the repeated sampling
and contraction, there arefor loops that cannot be avoided in matlab. For future work, implementing stochastic clustering in
C++ would definitely be more rewarding.
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4 Results

4.1 The Windmill of Gaussians

We test our clustering algorithms on artificially generated2-dimensional mixture of 4 gaussians. All the algorithms are
reasonably successful. As we pointed out in the previous section, the performance of K spectral clustering can be sensitive to
the random initialization of Kmeans (fig. 1e). Note that2n spectral clustering can also become slightly unstable due to its use
of Kmeans in the elementary spectral split. However, since the second eigenvector consists of 1-dimensional data points, we
can easily use a deterministic algorithm to split the eigenvector into two instead of using Kmeans. For example, we couldsort
the eigenvector, and find the pivot element that minimizes the normalized-cut criterion. The stochastic clustering algorithm
generates a series of partitions (fig. 1f), of which one is shown here. Notice how outliers are relabeled as separate clusters.

4.2 Result on Synthetic fMRI data

We generate synthetic fMRI data using hemodynamic responsefunctions provided by ([4]). We create simulated hemody-
namic signals for selected voxels in a64 × 64 image. Each signal consists of 108 time points with “on” and “off” periods
corresponding to that of a real fMRI experiment (see section4.3). We then add gaussian noise to all64×64 voxels. However,
it appears from the affinity matrices of the synthetic fMRI data that the signal-to-protocol metric is better at handlinglower
SNR (note that this is not true with real fMRI data - see section 4.3). Hence depending on our metric, we generate data with
different SNR.

4.2.1 Evaluating Adapted Kmeans and Spectral Clustering using Signal-to-Signal Metric

Consider figure 2a. The hemodynamic response within each colored block is constant, with SNR= 1. The signals from the
blue pixels are similar to those from the yellow pixels whilethe signals from the red and cyan blocks are similar (fig. 2d).
We select the 800 activated voxels and an extra 100 unactivated voxels (the brown pixels) for clustering. We see that adapted
Kmeans is unable to separate the diagonal blocks even with the euclidean constraints (fig. 2c). Both types of spectral
clustering are unable to separate the diagonal blocks without the euclidean constraint (fig. 2b), but are successful when
the constraint is imposed (fig. 2e, only results from2n spectral clustering shown).

4.2.2 Evaluating Normal Kmeans and Spectral Clustering using Signal-to-Protocol Metric

We set SNR= 0.3 (fig. 3a, c). Like adapted Kmeans, normal Kmeans is unable to separate the diagonal blocks even with the
euclidean constraints (figures not shown). This time, both2n and K spectral clustering are able to separate the diagonal blocks
even without the euclidean constraints (fig 3b, d, only results from2n spectral clustering shown). However, we observe that
without the euclidean constraint, there is some corruptionacross the diagonals, with some brown pixels labeled as yellow
(and vice versa), as well as some cyan pixels labeled as red.

4.2.3 Stochastic Clustering

We tested stochastic clustering using the signal-to-signal metric, but with a smaller data set (300 activated and 40 unactivated
pixels) to accommodate its slower runtime. Consider figure 4a. Like before, the hemodynamic response within each colored
block is constant with SNR= 2. The SNR is set higher this time because we decide to use very similar signals in all three
blocks. Without this higher SNR, the affinity matrix,A, shows that the blocks are indistinguishable.

As promised, stochastic clustering generates a series of partitions, of which the two corresponding to the largest values of
δT (r) are displayed (fig. 4c, d). Just before the first majorδT (r), all the activated pixels are grouped into a single cluster,
with most of the unactivated pixels separated from this maingroup. At the first major peak, the top two clusters are separated
from the bottom one, and at the second peak, the top two clusters are separated.

For visualization purposes, clusters that contain only 1 pixels are grouped together and displayed as a single color. Notice
that these usually correspond to unactivated pixels (c.f. fig. 4a and d). Hence, stochastic clustering is clever at ignoring
outliers, rather than forcefully clustering them. In practice, we could take these single pixels and either discard them or try to
incorporate them back into the main clusters depending on our objective.

4.3 Result on real fMRI data

The fMRI scans were obtained during an auditory “two-back” word experiment. Each experiment consisted of five rest
epochs and four task epochs, each epoch lasting30 seconds. In the rest condition, the subjects were instructed to concentrate
on the noise of the scanner and not move. In the task condition, the subjects were presented with a series of pre-recorded
single-digit numbers, three seconds per number. The subjects were asked to tap their index finger on the thumb when hearing
a number that was the same as the one spoken two numbers before. Experiments were repeated ten times for each subject.
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The anatomical images, T1-weighted structural, were acquired for each subject on a 1.5 Tesla GE signa clinical MR scanner
using a 3D-Spoiled Gradient Recalled sequence. EPI images were acquired on the same scanner with imaging parameters as
follows: axial orientation, TR/TE=2500/50 msec, FA90, 64 by 64 acquisition matrix, 6mm slice-thickness, no gap, 24 slices.
More details on this study can be found in [13]. In this section, we illustrate the detectors’ performance on one of the subjects
from the study2. For our clustering experiments, we pick the top 300 voxels using a two-sided t-test from slices 18 to 22
as input into our clustering algorithms. 300 voxels correspond to about 5% of the brain voxels in the 5 slices, meaning that
probably a percentage of the 300 voxels picked are false positives.

4.3.1 Semi-model metric VS Data-driven metric

Although the synthetic fMRI data section (see 4.2) seems to imply that the signal-to-protocol metric is more resilient than
the signal-to-signal metric in the presence of noise, this is definitely not true when we use real fMRI data.

As can be seen from the plots of the affinity matrixA of the signal-to-protocol metric (fig. 5a, b), the signal-to-protocol
metric seems unable to discover any similarity between the time series of different voxels (with and without the inclusion of
the euclidean distance in the similarity metric). The plotsare almost completely blue (a deeper red corresponds to a higher
affinity, while deeper blue corresponds to lower affinity). In fact, when we run the clustering algorithms using the signal-
to-protocol metric, the clustering results were bad with many small spurious clusters whose elements are spatially scattered,
even when the euclidean constraint was imposed (figures not shown). On the other hand, we can see the signal-to-signal
metric (fig. 5c, d) is successful in revealing structures among the voxels. The imposition of the euclidean constraint reduces
the similarity between voxels that are physically far away.

The reason is because the signal-to-protocol metric assumes the hemodynamic response is instantaneous with respect to
the stimuli and the temporal extent of the response is at mostthe length of the stimulus. When that assumption is true (such
as in the synethetic fMRI data), the signal-to-protocol metric performs better than the signal-to-signal metric, because this
correctprior knowledge helps to overcome poor SNR. In the real humanneuro-biological systems however, it is evident that
the assumption is not wholly accurate, and we see that our signal-to-signal metric is superior.

4.3.2 Clustering Results

Because of Kmeans’ abysmal results with synthetic fMRI dataand its ubiquity in fMRI clustering literature, we shall exclude
it from our experiments with real fMRI data. For brevity, we will only present in details the results from stochastic clustering
(see figures 6 and 7). Note that each sequence of slices shouldbe seen as a 3-d block of the brain. The five slices should be
imagined as stacking on top of each other.

Figure 6a shows clustering results using the signal-to-signal metric without the euclidean constraint, corresponding to the
maximal peak ofδT (r). As expected, at the peak, stochastic clustering gives us a single big cluster of voxels (colored purple
in the figure). Asr increases (not shown), the voxels eventually break up into different groups but the number of spurious
pixels (clusters with single member) also increases significantly. Hence, we find that without euclidean constraints, stochastic
clustering is unable to convincingly separate the different activated voxels into coherent groups. This is not surprising since
a clustering algorithm is only as good as the metric used. From figure 5c, the large patches of orange show that most of the
voxels are very similar to each other according to the clustering metric we use. We therefore should not expect a reasonable
clustering algorithm to split them up.

Figure 6b, c show clustering results with euclidean constraints, corresponding to the two highest peaks ofδT (r). We see
that at the first peak (fig. 6b, 7), the algorithm manages to separate a coherent group of voxels (shown as green) from the
rest of the voxels (shown as purple). At the highest peak (fig.6c, 7), we see that the purple cluster in turn splits up into two
groups (shown as cyan and purple). Note that at higherr (not shown here), the cyan cluster breaks up into two: one cluster
at the center of the brain and one at the side. However, more spurious clusters (containing single member) are also produced.

We also test both types of spectral clustering with the real fMRI data (figures not shown) using 10 clusters. The results
are similar to stochastic clustering except that there are less spurious clusters (single-point clusters). However, we actually
see this as a major advantage of stochastic clustering: it gracefully eliminates outliers rather than forcefully groupthem with
otherwise coherent clusters. This prevents the outliers from altering the mean properties of these coherent clusters (refer to
comments on stochastic clustering on synthetic fMRI data insection 4.2).

5 Conclusions and Further Work

Our investigation of various clustering methods and metrics facilitates the study of relatonships between different functional
areas of the brain. While2n spectral clustering and K spectral clustering produce similar results to stochastic clustering,
stochastic clustering is more appropriate for clustering fMRI time series because it gracefully excludes spurious non-active
voxels which occur due to inaccuracies in the t-test. Since there is no ground truth about the actual number of functional

2The original study contains nine subjects, but for the purposes of this paper, we decide to present the results for one subject across all detectors
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clusters in the brain, stochastic clustering relieves us from having to specify an arbitrarily-determined number of clusters
which might lead to overfitting. Kmeans do not perform very well with our tests and should therefore be avoided. Our
novel signal-to-signal metric outperforms the common signal-to-protocol metric because it does not assume instantaneous
hemodynamic response, which is unrealistic in neurobiological systems. Potential future work might include:

• The study of intra- and inter-cluster relationships between different functional regions of the brain using graphical
models, after clustering the voxels.

• Further evaluation of spectral and stochastic clustering methods in the presence of more inactive noise voxels.

• The handling of spurious clusters containing single point in stochastic clustering.

• Improvement of the metric,δT (r) in stochastic clustering. CurrentlyδT (r) only takes into account the number of
edges, but not their weights. PerhapsδT (r) can be altered to be similar to the normalized cuts criterion.

• Improvement of the clustering metric by the incorporation of standard detection statistics such as t-test and GLM.
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Figure 1: Clustering result for windmill mixture of Gaussian data. (a) Ground Truth (b) Adapted Kmeans (c)2n Spectral
Clustering (d) K Spectral Clustering (e) misclassified result from K Spectral Clustering (f) Stochastic Clustering
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Figure 2: Results generated using signal to signal metrix from synthetic fMRI signals at SNR= 1. (a) is the group truth
(b)(e) spectral clustering2n without and with Euclidean distance constraints (c) Adapted Kmeans clustering with Euclidean
distance constraints. (d) input noisy signal. Colors of signals (red, blue, yellow and cyan) corresponds to respectivecolored
blocks in (a)
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Figure 3: Results generated using signal to protocol metrixfrom synthetic fMRI signals at SNR= 0.3. (a) is the group truth
(b)(d) spectral clustering2n without and with Euclidean distance constraints (c) input noisy signal. Colors of signals (red,
blue, yellow and cyan) corresponds to respective colored blocks in (a)
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r = 9 3 clusters,  δ(T) = 0.37153
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(c) (d)

Figure 4: Stochastics Clustering with signal to signal metric using synthetic fMRI data at SNR= 2. (b) illustratesδ(T (r))
(c)(d) clustering result corresponds to the two largestδ(T ) with XYZ constraint.
Clusters with only 1 member are displayed as cyan and blue respectively.
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Figure 5: (a)(b) signal to protocol affinity matrix corresponding to with and without Euclidean constraints. (c)(d) signal to
signal affinity matrix corresponding to with and without Euclidean constraints.
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r = 24, 3 clusters  δ(T) = 0.051 r = 4, 3 clusters  δ(T) = 0.13 r = 10, 5 clusters  δ(T) = 0.24

(a) (b) (c)

Figure 6: Stochastics Clustering with signal to signal metric. Clusters with only 1 member are displayed as orange. (a)
clustering result corresponds to the largestδ(T ) without XYZ constraint (b)(c) clustering results corresponds to the top two
δ(T ) with XYZ constraint.
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Figure 7:δ(T ) of stochastics Clustering with signal to signal metric withXYZ constrain
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