
Fast Localization and Tracking using Event Sensors

Wenzhen Yuan 1 and Srikumar Ramalingam2

Abstract— The success of many robotics applications hinges
on the speed at which the underlying sensing and inference
tasks are carried out. Many high-speed applications such as
autonomous driving and evasive maneuvering of quadrotors
require high run time performance, which traditional cameras
can seldom provide. In this paper we develop a fast localization
and tracking algorithm using an event sensor, which produces
on the order of million asynchronous events per second at
pixels where luminance changes. The events are usually fired
at the high gradient pixels (edges), where luminance changes
occur as the sensor moves. We develop a fast spatio-temporal
binning scheme to detect lines from these events at the edges.
We represent the 3D model of the world using vertical lines,
and the sensor pose can be estimated using the correspondences
from 2D event lines to 3D world lines. The inherent simplicity
of our method enables us to achieve a run time performance
of 1000 Hertz.

I. INTRODUCTION

Conventional cameras see the world as a sequence of
frames. This frame-based representation is a very inefficient
and redundant encoding of the world, which results in
wastage of power and time. In addition, each pixel has the
same exposure leading to difficulty in imaging scenes that
contain high dynamic range, i.e., scenes containing very dark
and very bright regions. Dynamic vision sensors (DVS) [16],
[17], [6], [3] on the other hand, are inspired by human
retina [7]. These sensors do not send entire image frames
at fixed rates. Instead, they only send pixel-level changes as
ON and OFF events (similar to ON and OFF retinal ganglion
cells) at exactly the time they occur. As a result, the events
are transmitted at microsecond time resolution.
Event-based sensing in robotics and vision : Several
applications, which were commonly solved using frame-
based cameras, are now being developed using event-based
sensors. The Lucas-Kanade tracking algorithm was extended
for DVS sensor for computing the optical flow [1]. Certain
registration methods such as iterative-closest-point (ICP)
have been extended for event sensors to control micro-
grippers [21]. DVS has been shown to be useful for evasive
maneuvering of quadrotors [19]. In their work, a pair of
DVS sensors are used as a stereo camera for reconstructing
objects thrown at a quadrotor for predicting and avoiding the
collision.

In the case of asynchronous event-based cameras, the
concept of epipolar geometry can not be directly used. Epipo-
lar geometry provides a relationship between corresponding

1 Wenzhen Yuan is with Department of Mechanical Engineering, and
Computer Science and Artificial Intelligence Laboratory(CSAIL), MIT,
Cambridge, MA 02139, USA yuan wz@csail.mit.edu

2 Srikumar Ramalingam is with Mitsubishi Electric Research Labs
(MERL) ramalingam@merl.com

(a) (b)

(c) (d)

Fig. 1. We solve the classic problem of pose estimation using an event
sensor (a) A scene with cuboids and DAVIS240B event sensor. (b) The
intensity image (used only for visualization) and events data are denoted
by magenta dots. (c) Detected vertical lines from the events data. (d) Top
view of the blocks and the sensor pose. We match 2D vertical lines from
the events data to the 3D vertical lines in the world. Using these matches,
we compute three degrees of freedom (DOF) planar pose.

points in a pair of images captured from different viewpoints.
Recently, a general version of epipolar geometry applicable
for asynchronous event-based stereo-configuration has been
developed [2]. The stereo-matching is also computed using
event histograms and the estimated depth has been used for
the task of gesture recognition [15]. Beyond stereo, there
have been methods that use as many as six synchronized
event sensors for 3D reconstruction [4].

Censi and Scaramuzza built a visual odometry algorithm
using a DVS sensor and a CMOS camera [5]. They developed
a novel calibration algorithm to spatio-temporally calibrate
the DVS sensor and the CMOS camera. Their approach
estimates the relative motion of the DVS events with respect
to the previous CMOS frame. They show high accuracy on
the rotation estimates, whereas translation measurements are
shown to be noisy. In this work, we focus on using only
the event sensor to achieve very high speed. We believe
that for certain applications the use of CMOS camera would
provide complementary benefits, but the algorithm has to
be designed in such a manner that the low frame rate of
CMOS camera would not be a bottleneck. DVS solutions
have been proposed for particle-filter based localization and

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 4564

mapping [23], [24], [11]. It is possible to build a mosaic of
a scene solely using a DVS sensor without any additional
sensor. This is achieved by tracking the camera motion and
using the estimated motion for registering and integrating
the events data [13]. In a closely related work [20], a four-
sided square is detected and used for estimating the pose
of a camera at micro-second resolution. In our work, we
use only vertical lines and we can obtain poses from more
general scenes.
Absolute pose estimation methods: In this work, we show
a fast and accurate absolute pose estimation method using
an event sensor. The events are fired mainly at the high
gradient pixels, which are connected set of edge pixels. In
order to achieve very high speed, we restrict our focus to
man-made scenes with line features. We show a method
to detect vertical lines from images at a very high speed
(more than 1000 detections per second) using a simple
binning scheme. We also develop a novel absolute pose
estimation algorithm that uses correspondences between 2D
lines from events data and 3D world lines. We use the
inertial measurement unit (IMU) to measure absolute roll and
pitch angles and thus align the sensor’s view to the world’s
vertical direction. In a related work [8], IMU was used to
compute the rotation and stabilize event based sensors. Using
point features, relative [10], [12] and absolute pose [14]
estimation methods with known vertical direction have been
been developed before in the context of regular cameras.
Despite the simplicity of our approach, the vertical line-based
pose estimation problem has not been solved before.

II. DYNAMIC AND ACTIVE PIXEL VISION SENSOR

In this work, we use dynamic and active pixel vision
sensor (DAVIS 240B). This sensor comes with both intensity
image (APS) and events data (DVS) along with IMU on
board. The resolution of the APS frame is 240×180 and the
dimensions of the events data is 190× 180. The APS frame
rate is 23 Hz and the IMU operates at 2300Hz. The IMU
provides acceleration and angular velocity in 6 dimensions.
In this work, we don’t rely on APS data for our algorithm
and it is only used to illustrate the results. We rely on IMU
data to only align the camera in the vertical direction.

The dynamic vision sensor (DVS) denotes the pixel-
level brightness changes using only two states. Each pixel
asynchronously emits an ON event if the log-compressed
light intensity increases by a fixed amount and an OFF event
when it decreases. An event E is noted as tuple < x, y, t, s >
where (x, y) is the pixel location, t is the time-stamp and s
is the event polarity: 1 for ON signals and 0 for OFF. The
sensor generates on the order of million events per second.
We used jAER software [9] to record the original data and
our algorithm is implemented in C++.

As with any sensor, the event sensor produces noisy
data that requires careful understanding to obtain useful
information. We briefly show illustrations of the events data
for simple 3D scenes to better appreciate the practical issues
of events data in Figure 2. When walking in the corridor,
for a time-slice of 100 ms, we obtain 34792 events out of

which 10318 events are the ones with positive polarity and
the remaining 24474 events are negative ones. In general,
we observed more noisy points to have negative polarity.
The average time interval between two consecutive events is
2.85 microseconds and the shortest time between two events
is 0.13 microseconds. In regions with strong contrast, we see
multiple firings and we show the events with various time-
intervals between firings in Figure 2(d).

(a) (b)

(c) (d)

Fig. 2. (a) An image of a corridor scene. (b) The generated events
while walking in the corridor. The red points show events with polarity
+1 and green ones denote events with polarity −1. (c) The color-coded
timestamps of the first events in different pixel locations. (d) The color-
coded time difference between two events at individual pixels. When the
intensity change is large, the same point will provoke multiple events, and
the time difference between the two events on the same point indicates the
strength of the contrast.

III. ALGORITHM

We use vertical lines as the feature to estimate the pose of
an event sensor given a 3D model of the world. Considering
the nature of the events data, it would be difficult to develop
a keypoint detector like SIFT. By ignoring the height, the 6
DOF localization problem is simplified to a 3 DOF problem.
This 3 DOF (planar location and yaw rotation) is more
important in localization of on-road vehicles and mobile
robots, while the remaining variables (height, roll, pitch
angles) can be obtained using IMU and other ways. Detecting
only the vertical lines also makes the feature extraction much
faster than finding all lines with different orientations. Our
algorithm comprises of the following steps:

A. Camera alignment using IMU

The IMU information is used to rotate the event data to
align the vertical direction in the sensor’s view to the world’s.
This ensures that the vertical lines the sensor ‘sees’ are also
vertical lines in the world, regardless of the sensor’s attitude.
The gyroscope has large and time-dependent drift, and thus
we applied AHRS algorithm introduced in [18] to get the
sensor’s attitude in the world coordinate system. Since the
accelerometer only measures the gravity vector, the algorithm
does not get precise yaw angle when the sensor is static or at

4565

low speed. Thus we only use the roll and pitch angles from
the IMU.

Based on the attitude measured by IMU, we obtain R to
denote the rotation to align the sensor’s view and the world’s
vertical direction. The relation between the pixel p′(x′, y′)
in the rotated image and its position p(x, y) in the original
image is x′

y′

1

 = sKRK−1

 x
y
1

 (1)

Here K is the camera matrix for the event sensor, and s is
the scale factor that denotes that the relation is up to a scale.

B. Fast line-detection using spatio-temporal binning

We use a simple voting algorithm based on event’s loca-
tions and timestamps to detect vertical lines from the IMU-
rotated image. After the rotation based on IMU data, the
vertical lines in the world coordinate will also be vertical
in the camera image, so that most of the events on the line
will be located in a strip area on the image from (xi, 1) to
(xi+dx, ymax). We denote the area as Vdx(xi). Additionally,
points on one edge provokes multiple events, especially when
the intensity contrast is large. The time interval ∆t between
two events firing on the same position measures the contrast
intensity, as a smaller ∆t indicates more event firings, thus
a higher contrast on an edge. We use a bin Vdx,dt(xi,∆tj)
to denote the pixels that is within Vdx(xi) and has a firing
interval between ∆tj and ∆tj + dt.

The events come as a sequence instead of a frame-based
images like other cameras provide, so the ‘frame’ for the
event sensor is manually decided. We choose a ∆T as
the ‘frame interval’, which differs according to the sensor’s
approximate speed, and consider the events fired within the
time interval to be of one frame. Then we count the events
in each bin Vdx,dt(xi,∆tj). The bins are in an overlapping
set of spatial and temporal intervals to ensure a better
localization, as shown in Figure 3(c). We consider a bin
Vdx,dt(xi,∆tj) to contain a vertical line if it satisfies the
following conditions:

1) Vdx,dt(xi,∆tj) > T1
2) The spatial neighbors have fewer votes as given by the

following constraints:
Vdx,dt(xi,∆tj) > Vdx,dt(xi±1,∆tj)
Vdx,dt(xi,∆tj) > Vdx,dt(xi±2,∆tj) + T2

3) There is no other bin Vdx,dt(xi,∆tk) satisfying the
above threshold conditions if ∆tk < ∆tj .

Here T1 and T2 are empirical parameters chosen to distin-
guish the lines. Condition 3 is to ensure the high contrast
lines are of higher priority in the choice.

C. Pose Estimation using vertical lines

We make use of an Inertial Measurement Unit (IMU) to
get the known vertical direction and thus solve a 3-point pose
estimation problem for recovering three unknown motion
parameters (two translation parameters and one rotational
angle). Once we recover these 3 degrees of freedom, we

(a) (b)

(c) (d) (e)

Fig. 3. The basic idea behind the vertical line detection is illustrated.
(a) We show a scene with blocks, and the associated events are shown as
blue dots. The image is divided into vertical strips, and events on the same
vertical line are likely to fire in the same strip. (b) The detected lines using
our spatio-temporal binning scheme. (c) A schematic diagram showing our
spatio-temporal binning for detection of vertical lines. The positive and
negative events are addressed individually. (d) Histogram of V(xi,∆tj)
for positive events. We show the peaks while detecting lines as shown by
A, B, D and F . (e) Histogram of V(xi,∆tj) for negative events. Lines
are obtained from the peaks associated with lines C and E.

already know the 5 unknown motion parameters out of the
total of 6 unknowns. We can easily recover the remaining un-
known using some non-vertical line. In this paper we mainly
focus on extracting the 3 important motion parameters that
will allow us to localize and track the event sensor in a scene
with dominant vertical structures.

Fig. 4. On the left, we show the projection of lines from a cube
to the image plane. On the right, we show the top view of the pro-
jection where vertical lines in the scene are denoted by 3D points
(X1, Z1), (X2, Z2), (X3, Z3) and vertical lines in the image are de-
noted by 2D points (x1, z1), (x2, z2), (x3, z3). We show a schematic
diagram of the projection of three 3D points to three 2D points on a
plane. Let us denote the 3D points in the world coordinate frame to
be (Xw

1 , Zw
1), (Xw

2 , Zw
2), (Xw

3 , Zw
3) that can be transferred to camera

coordinate frame using transformation (R, t).

As shown in Figure 4, the transformation between a
vertical line in the world and its corresponding image line is
shown below.

4566

(
xi

zi

)
= si

(
cosθ −sinθ Tx

sinθ cosθ Tz

) Xw
i

Zw
i

1

 (2)

We rearrange the above equation, eliminate the scale
variable si and stack the equations for three 3D to 2D
correspondences to obtain the linear system AX = 0, where
A and X are given below:

A =

z1 −x1 (−z1Z

w
1 − x1X

w
1) (z1X

w
1 − x1Z

w
1)

z2 −x2 (−z2Z
w
2 − x2X

w
2) (z2X

w
2 − x2Z

w
2)

...

 (3)

X =

 Tx

Tz

sinθ
cosθ

 (4)

When there are 3 lines, the solution will typically be
unique. Using the reduced row-echelon form we obtain the
following linear system from the above equation:

 1 0 0 α
0 1 0 β
0 0 1 γ

 Tx

Tz

sinθ
cosθ

 =

 0
0
0
0

 (5)

where α, β and γ are constants obtained while computing
the reduced row echelon form for matrix A. Using the
above linear system we compute the three unknown motion
parameters θ, Tx and Tz as follows:

θ = tan−1(−γ)

Tx = −αcos(tan−1(−γ))

Tz = −βcos(tan−1(−γ))

Given a set of n 2D to 3D line correspondences, where n is
greater than 3, we can form a linear system AX = 0 using all
correspondences and solve the motion variables using least
squares.

D. Correspondence Search using View Angle

The pose estimation algorithm requires 2D to 3D line
correspondences in order to estimate the pose using the
method in Section III-C. We use a spatial search method to
find the correspondences, in order to reduce the computation
complexity. We are given the 3D model of the world (in terms
of vertical lines). We pre-process and synthesize all possible
images of the lines from various viewpoints. We compare
the synthesized images with real events data to identify the
sensor location and orientation.

In this method, the vertical lines are represented by
viewing angles in the x-y plane. In the camera im-
age, as shown in Figure 5(a), we show a set of points
{q1, q2, q3, q4} denoting the vertical lines on the image,
and {0, θ1, θ2, θ3} denoting their viewing angles; in the
world coordinate, as shown in Figure 5(b), 3D vertical
lines are represented as {P1, P2, P3, P4, P5}, and when
viewing from location (x, y) the corresponding viewing
angles are {0, ϕ1, ϕ2, ϕ3, ϕ4}. When the lines on the cam-
era image match the lines in the world, their relative
viewing angles shall be the same. Figure 5(c) shows

a possible correspondence between {q1, q2, q3, q4} and
{P1, P2, P3, P4, P5}, that supposing q1 matches P1. Here
we have the correspondences:{(q1, P1), (q2, P2), (q4, P3)} as
their viewing angles are close. We calculate the matching
cost as abs(θ2−ϕ2)+abs(θ4−ϕ3). Searching the best cor-
respondence means finding the largest set of correspondences
with minimum matching cost. In the complete search area,
we search for correspondences in each grid and pick the best
one. Let m and n be the number of lines in the sensor plane
and the world respectively, and let nx and ny be the two
dimensions of the spacial grid for searching. In this case, the
overall complexity of the searching is O(nxnynm), which
is significantly lower than a brute-force search strategy.

(a) Vertical lines in sensor plane
and their viewing angles, on vertical
view.

(b) Vertical lines in the scene and
their viewing angles based on a
given sensor location (x, y), on ver-
tical view.

(c) For the sensor location at (x, y) we match the viewing angles of
sensor lines and the world lines.

Fig. 5. The view angles of the sensor lines and the world lines are used
to identify the correspondences between them.

Note that the order of the vertical edges in the world may
change when viewing from different sensor positions, if the
edges are not on a single plane. Visibility of edges at different
locations is also considered in the pre-processing.

We encountered a few challenges while using this search
method: missing or spurious lines in the line detection; the
modeling of the world is not accurate enough; repetitive
scene geometry in the real world, especially while con-
sidering vertical lines. As a result, a good solution may
have a higher matching cost than a wrong one. We resolve
these issues by preferring solutions closer to previous ones,
as further discussed in Section III-E. This strategy was
necessary to get accurate pose estimates for handling some
complicated scenes, like the outdoor building scene discussed
in Section IV-C.

4567

E. Pose Estimation: Initialization and Update

After extracting the vertical lines, if we know the previous
pose, we update the current pose. If we don’t have a
reliable previous pose, we do a complete correspondence
search for initialization. In the pose update case, we use the
transformation matrix from the previous pose to project the
world lines to the image plane, and compare them to the
measured lines. We obtain the correspondences by simply
looking at nearby lines.

In the pose initialization procedure, a complete correspon-
dence search for the measured lines and world lines is done.
We treat a pose unreliable in the following cases:

• There are too few line matches.
• The measured pose is too far from the previous reliable

pose.
• A continuous sequence of previous poses have large re-

projection errors.
On an average, the initialization takes about 20 ms whereas

the pose update takes about 1 ms. If the pose estimation is
stable, pose initialization is scarcely done, and the average
estimation time is very short. When the scene or motion is
complex, pose initialization is called many times leading to
a gradual degradation in the run time performance.

IV. EXPERIMENTS

We used three different experimental setups to test the
accuracy and computational speed of the proposed methods:

• Boards - a pair of planar boards with black and white
stripes,

• Blocks - a table top scene with toy blocks,
• Building - an outdoor scene of a building containing

two perpendicular walls with many windows.
The blocks and boards correspond to indoor experiments,
where we use a motorized linear stage and precision tripods
for quantitative analysis of rotation and translation errors.
In the outdoor case (building), we performed a qualitative
analysis of the poses. In all the cases, we studied the
computation time of the proposed algorithms on Intel Core
i7-4790K, 4.00GHz processor and 32 GB RAM. In the
supplementary materials, we show a video illustrating the
setup and pose estimates.

A. Boards scene

As shown in Figure 6, we use two planar boards each
containing black and white stripes of varying widths. The
angle between the boards is 105◦.

Fig. 6. The boards scene and the motorized rail to translate the sensor.

Translation: We use a motorized linear stage as shown in
Figure 6 to generate a pure translation. We move the sensor at
a uniform speed for 1 meter and move it back to the starting
position. The estimated poses and trajectories are shown in
Figure 7. On the left, we show the events and detected lines.
On the right, we show the estimated poses and trajectory. It
can be seen that the estimated trajectory is close to a straight
line.

Fig. 7. The boards scene: We show the estimated poses for pure translation.
On the left, we show the intensity image, the events (blue dots), the detected
lines, and the associated line indices (in green). On the right, we show the
top view of the geometry of the scene. Black line segments denote stripes
and blue points denote the trusted sensor positions, whereas the red points
denote unreliable ones that do not follow a smooth trajectory. The blue
cross-mark show the current sensor position and orientation, and the red-
to-yellow set of marks shows the very recent poses.

Figure 8 shows X and Z coordinates of the sensor position
during the motion. As we expect, these coordinates increase
and decrease linearly as we move forward and backward re-
spectively. The orientation angle fluctuates within 5 degrees,
indicating that the poses are accurate. We fit a line to the
estimated camera positions and found that the RMS error is
7.6 mm. Note that the overall size of the scene spans more
than 2 meters indicating that the translation error is less than
1% with respect to the scene size. Due to the difficulty in
estimating the ground truth camera centers, this mean square
entity is a reasonable estimate for the translation error.
Rotation: We fix the sensor’s location, and rotate it along
yaw axis using the tripod’s pan-head. The rotation is con-
trolled manually, 15◦ each time followed by a short pause.
The calculated angle is shown in Figure 9 with respect to the
time. During the pause, there is no event and the algorithm
assumes that the sensor is static. The rotation angles at the
pauses are shown in Figure 10. The RMS error for the angle
is 3.37◦.
Rotation and Translation: When the sensor moves linearly
using the motorized stage, we generate arbitrary smooth
rotations by manually rotating the tripod’s pan-head. The es-
timated poses and the trajectory are shown in Figure 11. The
rotation angles follow a smooth trajectory as we manually
rotate the pan-head smoothly, as shown in Figure 12. Note
that the trajectory is close to a straight line and the RMS
error for the line-fit is 13.1 mm, which is slightly larger than
the case of pure translation. This marginal increase in the
translation error could be due to the offset between sensor’s
optical center and the tripod’s pan-head’s center.
Computational Time: We have two modules in our algo-

4568

Fig. 8. The calculated X and Z positions and the yaw angle of the sensor
when it translates uniformly on the motor stage. The blue dots are original
data, and the red lines are smoothed estimation over a local average.

Fig. 9. Calculated position angle as time changes in the rotation experiment.

Fig. 10. Calculated sensor angles during pauses, in the rotation experiment.
The red line is the approximate ground truth, blue plots are real data.

Fig. 11. Pose estimation results and the trajectory when both translation
and rotation exist.

Fig. 12. The estimated yaw angles when the sensor is rotated manually
while translating.

rithm. When we don’t have a reliable previous pose, we
localize the sensor using a complete search for 2D to 3D line
correspondences. When we have a previous pose, we only
need to update the position for small changes. The complete
search for localization takes more time than the update. We
show the computation time in Table I.
Reprojection error: Using the estimated poses we reproject
the 3D lines to the image and measure the reprojection error.
The reprojection error for the pose estimation is shown in
Table II. As we observe, the error is generally less than 2
pixels, indicating that the pose estimates are accurate.

TABLE I
COMPUTATION TIME FOR BOARD SCENE

Average
Time

Initialization
Time

Initialization
Portion

Update
Time

Translation 0.91ms 26.5ms 0.059% ∼ 1ms
Rotation 2.26ms 28.2ms 6.6% ∼ 1ms
Joint 1 1.02ms 22.9ms 0.8% ∼ 1ms
Joint 2 1.50ms 23.6ms 2.4% ∼ 1ms

TABLE II
REPROJECTION ERROR IN PIXELS FOR THE BOARD SCENE

Translation Rotation Joint 1 Joint 2
Mean Error 2.176 2.275 2.144 2.180

B. Blocks Scene

Fig. 13. The blocks scene: An experimental setup of a table top with
cuboid blocks.

The experimental setup is shown in Figure 13. The blocks
scene is more challenging than the boards scene because of
the difficulty in establishing correspondences when the lines
lie on separate planes. At times, two or more 3D lines might
coincide to a single line in the view. These issues result
in incorrect correspondences, which will lead to inaccurate
poses. A careful check for all the visible lines for different
viewpoints before the calculation could help to reduce error.

4569

Translation: We conducted two different linear motions, and
the RMS errors are 6.1 mm and 3.9 mm respectively. The
trajectory of one linear motion is shown in Figure 14.

Fig. 14. Estimated pose and trajectory in a linear translation motion in the
blocks scene.

Rotation: We generate pure rotation by rotating the tripod’s
pan-head by hand in the same manner as in the boards case.
The estimated angles are shown in Figure 15(a), and the
angles during pauses are shown in Figure 15(b). The RMS
error for the angle is 5.6◦.

(a)

(b)

Fig. 15. The yaw angle estimation in rotation experiment in the blocks
scene, when rotating the pan-head by hand. (a) shows sensor’s angle with
respect to time and (b) shows the angles at pauses, with the ground truth
in red line.

Arbitrary motion: We perform a free-hand motion of
the sensor. The estimated positions at different times are
shown in Figure 16. We see smooth blue trajectories, despite
some occasional red points indicating incorrect poses. These
incorrect poses are due to mistakes in the 2D to 3D line
correspondences.
Computation time and error: The blocks scene contains
fewer lines and thus takes less computation time compared
to boards scene. The reprojection error is low, as shown in
the Table IV, indicating that the estimated pose is likely to
be accurate.

C. Outdoor scene
We tested our methods in an outdoor scenario where we

used a free-hand motion to capture events data from the walls

(a)

(b)

Fig. 16. The sensor view and estimated sensor poses when the sensor is
held by human and moves randomly around the scene.

TABLE III
THE COMPUTATION TIME FOR THE BLOCKS SCENE.

Average
Time

Initialization
Time

Initialization
Portion

Update
Time

Translation 1 0.48ms 10ms 4.8% ∼0.2ms
Translation 2 0.23ms 10ms 2.3% ∼0.2ms

Rotation 0.23ms 10ms 2.3% ∼0.2ms
Free Motion 0.61ms 10ms 6.1% ∼0.2ms

of a building as shown in Figure 17. We show the pose
estimation results in Figure 18. The calculation time is shown
in Table V. The mean reprojection error for the building
scene is given by 2.143.

The building contains a large number of windows pro-
viding many vertical lines necessary for our algorithm. We
encountered several challenges due to the repeated nature of
the vertical lines, large number of scene lines, illumination
changes in outdoor setting and noisy events from horizontal
lines. We used the line indices in the previous time-slice to
decide on the number of lines to match in the correspon-
dence search. This smoothness prior allowed us to detect
lines from challenging outdoor scenes. We also carefully
calibrated the line locations to reduce pose estimation error.

Fig. 17. We show a pair of images showing the L-shaped corner of an
outdoor building, which is used in our experiment.

4570

TABLE IV
REPROJECTION ERROR IN PIXELS FOR THE BLOCKS SCENE

Translation1 Translation2 Rotation Free Motion
Mean Error 0.978 0.816 1.477 1.586

Fig. 18. The sensor’s view and estimated poses and trajectory in the outdoor
experiment.

In this work, we manually built the line-based model through
measurements. In future, we plan to automate the process of
line-based modeling using approaches similar to [22]. In
general, we observed two challenging scenarios that degrade
the performance. First, when the vertical lines have error in
modeling the world, we have a large pose estimation error.
Second, two lines can project to the same location in the
image for some challenging viewpoints.

V. DISCUSSION

We showed a novel and a very efficient localization and
tracking algorithm using an events sensor and an IMU.
Our experiments showed that the translation and rotation
errors are small and the computation time is very less.
The DAVIS 240B events sensor enabled fast localization
by providing high-speed events data, without which a 1000
Hertz inference algorithm can never be demonstrated. We
have some interesting future avenues to explore. When the
sensor moves towards the scene, the translation error is much
larger than the case of parallel motion, because there are
fewer events. In general, events are not fired when the edges
are parallel to the motion direction. With more analysis of the
sensor’s motion model and better use of the previous poses,
the localization could be improved. Since we are focusing
on a line-based algorithm, dynamic humans or other objects
should not cause too much problems. In future, we would
also like to explore how robust the algorithm is with respect
to dynamic objects.

Acknowledgments: We thank the anonymous reviewers, Jay
Thornton, John Barnwell, William Vetterling, Jeroen Van
Baar, Edward Adelson, Yuichi Taguchi, Tobi Delbruck, and
Andrea Censi for useful discussions.

REFERENCES

[1] R. Benosman, C. Clercq, X. Largorce, S.H. Ieng, and C. Bartolozzi.
Event-based visual flow. IEEE Transactions on Neural Networks and
Learning Systems, 2014.

TABLE V
POSE ESTIMATION TIME IN OUTDOOR SCENE

Avg Time Init. time Init. Portion Update Time
1.49ms 22.8ms 3.0% ∼ 1ms

[2] R. Benosman, S.H. Ieng, P. Rogister, and C. Posch. Asynchronous
event-based hebbian epipolar geometry. IEEE Trans. Neural Network,
2011.

[3] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck. A 240 180
130 db 3 s latency global shutter spatiotemporal vision sensor. IEEE
Journal of Solid-State Circuits, 2014.

[4] J. Carneiro, S.H. Ieng, C. Posch, and R. Benosman. Event-based 3d
reconstruction from neuromorphic retinas. Neural Networks, 2013.

[5] A. Censi and D. Scaramuzza. Low-latency event-based visual odom-
etry. In ICRA, 2014.

[6] T. Delbruck, B Linares-Barranco, E. Culurciello, and C Posch. Activi-
tydriven event-based vision sensors. In IEEE International Symposium
on Circuits and Systems (ISCAS), 2010.

[7] T. Delbruck and S.C. Liu. A silicon early visual system as a model
animal. Vision Research, 2004.

[8] T. Delbruck, V. Villeneuva, and L. Longinotti. Integration of dynamic
vision sensor with inertial measurement unit for electronically sta-
bilized event-based vision. In Proc. 2014 Intl. Symp. Circuits and
Systems (ISCAS), 2014.

[9] Tobi Delbruck. Frame-free dynamic digital vision. In Proceedings
of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society, pages 21–26, 2008.

[10] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles. In ECCV, 2010.

[11] R. Hoffmann, D. Weikersdorfer, and J. Conradt. Autonomous indoor
exploration with an event-based visual slam system. In Europ. Conf.
on Mobile Robots, 2013.

[12] M. Kalantari, A. Hashemi, F. Jung, and J.P. Guedon. A new solution
to the relative orientation problem using only 3 points and the vertical
direction. Journal of Mathematical Imaging and Vision, 2011.

[13] H. Kim, A. Handa, R. Benosman, S.H. Ieng, and A.J. Davison.
Simultaneous mosaicing and tracking with an event camera. In BMVC,
2014.

[14] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-form solutions to
minimal absolute pose problems with known vertical direction. In
ACCV, 2010.

[15] J. Lee, T. Delbruck, P. Park, M. Pfeiffer, C. Shin, H. Ryu, and B.C.
Kang. Gesture-based remote control using stereo pair of dynamic
vision sensors. In International Conference on Circuits and Systems
(ISCAS), 2012.

[16] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120 db 15 s
latency asynchronous temporal contrast vision sensor. In IEEE Journal
of Solid-State Circuits, 2008.

[17] S.C. Liu and T. Delbruck. Neuromorphic sensory systems. In Current
Opinion in Neurobiology, 2010.

[18] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear
complementary filters on the special orthogonal group. Automatic
Control, IEEE Transactions on, 53(5):1203–1218, 2008.

[19] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. Towards
evasive maneuvers with quadrotors using dynamic vision sensors. In
ECMR, 2015.

[20] E. Mueggler, B. Huber, and D. Scaramuzza. Event-based, 6-dof pose
tracking for high-speed maneuvers. In IROS, 2014.

[21] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier. Asyn-
chronous event-based visual shape tracking for stable haptic feedback
in microrobotics. IEEE Trans. Robotics, 2012.

[22] S. Ramalingam and M. Brand. Lifting 3d manhattan lines from a
single image. In ICCV, 2013.

[23] D. Weikersdorfer and J. Conradt. Event-based particle filtering for
robot self-localization. In Int. Conf. on Robotics and Biomimetics,
2012.

[24] D. Weikersdorfer, R. Hoffmann, and J. Conradt. Simultaneous local-
ization and mapping for event-based vision systems. In Computer
Vision Systems, 2013.

4571

