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Abstract

Pochoir is a compiler for a domain-specific language embedded

in C++ which produces excellent code from a simple specifica-

tion of a desired stencil computation. Pochoir allows a wide

variety of boundary conditions to be specified, and it automat-

ically parallelizes and optimizes cache performance. Bench-

marks of Pochoir-generated code demonstrate a performance

advantage of 2–10 times over standard parallel loop implemen-

tations. This paper describes the Pochoir specification language

and shows how a wide range of stencil computations can be

easily specified.

1. INTRODUCTION
Stencil computations [2, 4–6, 8, 9, 14–16, 20–22, 24, 27] are

frequently used in scientific computing, image processing, and

geometric modeling. A stencil defines the value of a grid point

in a d-dimensional spatial grid at time t as a function of neigh-

boring grid points at recent times before t. A stencil compu-

tation computes the stencil repeatedly for each grid point over

many time steps.

It is hard to write efficient stencil computations. Program-

mers typically implement them as loop nests. This popular

method results in poor performance on modern multicore ar-

chitectures, however, because it is not cache-friendly and fails

to use multiple processing cores. Frigo and Strumpen [8] in-

troduced “trapezoidal decompositions” as a way of coding ef-

ficient cache-oblivious [7] algorithms for stencil computations.

In later work [9], they showed how 1D stencils could be par-

allelized by cutting the spatial dimension into certain num-

ber of black and gray subtrapezoids, where subtrapezoids of

the same color can be executed in parallel. They also indi-

cated how their methodology might be extended to arbitrary d-

dimensional stencils. Unfortunately, although their method can

substantially reduce cache-miss ratios, it is complicated, and as

with other cache-oblivious algorithms, good performance can

This work was supported in part by a grant from Intel Corporation and
in part by the National Science Foundation under Grants CCF-0937860
and CNS-1017058.
Yuan Tang is an Assistant Professor of Computer Science at Fudan
University in China and a Visiting Scientist at MIT CSAIL. Chi-Keung
Luk is a Senior Staff Engineer at Intel Corporation and a Research
Affiliate at MIT CSAIL. Rezaul Chowdhury is a Research Scientist at
Boston University and a Research Affiliate at MIT CSAIL. Charles E.
Leiserson is a Professor of Computer Science and Engineering at MIT
CSAIL.

USENIX HotPar’11 May 26–27, 2011, Berkeley, California, USA.

be hard to achieve due to unpredictable branches [4,14,15,21].

In [25], we introduced Pochoir (pronounced “PO-shwar”), a

domain-specific compiler automatically parallelizing and opti-

mizing stencils. The stencil is specified using the Pochoir spec-

ification language, which is embedded in C++. After specifying

a stencil computation in the Pochoir specification language, the

user first compiles the program any native C++ compiler with

the Pochoir template library. The point of this first phase of the

Pochoir methodology is to check the functional correctness of

the stencil specification. The code produced using the Pochoir

template library is not intended to be fast. Rather, it allows

the programmer to debug the program using a comfortable na-

tive C++ tool chain without the complications of the Pochoir

compiler. In addition, the Pochoir template library tests for

inconsistencies in the specification. After validating the cor-

rectness of the specification in the first phase, the programmer

recompiles the program with the Pochoir compiler. This second

phase of the Pochoir methodology produces a highly efficient

Cilk Plus [13] parallel code which typically performs at least

as well as an expert hand-optimized stencil code. The Pochoir

compiler automatically tunes the code without requiring the

programmer to make any manual annotations or to insert any

compiler-specific pragmas.

The Pochoir methodology greatly simplifies the implementa-

tion of the Pochoir compiler. The compiler need not type-check

or even parse much of the C++ code that makes up a user’s

stencil specification. Instead, it relies on the first-phase na-

tive C++ compilation with the Pochoir template library to type-

check and catch any inconsistencies in the specification. The

two phases are linked semantically by the following promise:

The Pochoir Guarantee: If the stencil program compiles and

runs with the Pochoir template library during Phase 1, no er-

rors will occur during Phase 2 when it is compiled with the

Pochoir compiler or during the subsequent running of the opti-

mized binary.

This paper illustrates how the Pochoir language can be used

to specify a variety of stencil computations. A full descrip-

tion of the Pochoir compiler and the algorithm behind it can

be found in [25]. Section 2 provides a specification of the

Pochoir embedded language. Section 3 describes a stencil for a

3-dimensional wave equation for seismic imaging. Section 4

gives the example of pairwise sequence alignment for com-

putational biology. Section 5 describes the lattice Boltzmann

method for theoretical physics. Section 6 compares the per-

formance of the Pochoir-generated code with serial loops and

parallel loops. Section 7 offers some concluding remarks.



2. THE POCHOIR SPECIFICATION

LANGUAGE
This section describes the formal syntax and semantics of

the Pochoir language, which was designed with a view to of-

fer as much expressiveness as possible without violating the

Pochoir Guarantee. Since we wanted to allow third-party de-

velopers to implement their own stencil compilers that could

use the Pochoir specification language, we avoided to the ex-

tent possible making the language too specific to the Pochoir

compiler, the Intel C++ compiler, and the multicore machines

we used for benchmarking.

The static information about a Pochoir stencil computation,

such as the computing kernel, the boundary conditions, and the

stencil shape, is stored in a Pochoir object, which is declared

as follows:

• Pochoir_dimD name ( shape );

This statement declares name as a Pochoir object with dim spa-

tial dimensions and computing shape shape, where dim is a

small positive integer and shape is an array of arrays which

describes the shape of the stencil as elaborated below.

We now itemize the remaining Pochoir constructs and ex-

plain the semantics of each.

• Pochoir_Shape_dimD name [] = {cells}

This statement declares name as a Pochoir shape that can hold

shape information for dim spatial dimensions. The Pochoir

shape is equivalent to an array of arrays, each of which con-

tains dim+ 1 integer numbers. These numbers represent the

offset of each memory footprint in the stencil kernel relative to

the space-time grid point 〈t,x,y, · · ·〉. For example, suppose that

the computing kernel employs the following update equation:

ut(x,y) = ut−1(x,y)

+
α∆t

∆x2
(ut−1(x−1,y)+ut−1(x+1,y)−2ut−1(x,y))

+
α∆t

∆y2
(ut−1(x,y−1)+ut−1(x,y+1)−2ut−1(x,y)) .

The shape of this stencil is {{0,0,0}, {−1,1,0}, {−1,0,0},
{−1,−1,0}, {−1,0,1}, {−1,0,−1}}.
The first cell in the shape is the home cell, whose spatial co-

ordinates must all be 0. During the computation, this cell cor-

responds to the grid point being updated. The remaining cells

must have time offsets that are smaller than the time coordinate

of the home cell, and the corresponding grid points during the

computation are read-only.

The depth of a shape is the time coordinate of the home cell

minus the minimum time coordinate of any cell in the shape.

The depth corresponds to the number of time steps on which a

grid point depends. For our example stencil, the depth of the

shape is 1, since a point at time t depends on points at time

t − 1.. If a stencil shape has depth k, the programmer must

initialize all Pochoir arrays for time steps 0,1, . . . ,k−1 before

running the computation.

• Pochoir_Array_dimD(type, depth) name(sizedim−1,
. . . ,size1,size0)

This statement declares name as a Pochoir array of type type

with dim spatial dimensions and a temporal dimension. The

size of the ith spatial dimension, where i ∈ {0,1, . . . ,dim}, is
given by sizei. The temporal dimension has size k+1, where k

is the depth of the Pochoir shape, and are reused modulo k+1

as the computation proceeds. The user may not obtain an alias

to the Pochoir array or its elements.

• Pochoir_Boundary_dimD(name,array, idxt ,
idxdim−1, . . . , idx1, idx0)

〈definition〉
Pochoir_Boundary_End

This construct defines a boundary function called name that

will be invokeda to supply a value when the stencil compu-

tation accesses a point outside the domain of the Pochoir ar-

ray array. The Pochoir array array has dim spatial dimen-

sions, and 〈idxdim−1, . . . , idx1, idx0〉 are the spatial coordinates
of the given point outside the domain of array. The coordi-

nate in the time dimension is given by idxt . The function body

〈definition〉) is C++ code that defines the values of array on its

boundary. A current restriction is that this construct must be

declared outside of any function, that is, the boundary function

is declared global.

• Pochoir_Kernel_dimD(name,array, idxt , idxdim−1,
. . . , idx1, idx0)

〈definition〉
Pochoir_Kernel_End

This construct defines a kernel function named name for up-

dating a stencil on a spatial grid with dim spatial dimen-

sions. The spatial coordinates of the point to update are

〈idxdim−1, . . . , idx1, idx0〉, and idxt is the coordinate in time di-

mension. The function body 〈definition〉 may contain arbitrary

C++ code to compute the stencil. Unlike boundary functions,

this construct can be defined in any context.

• name.Register_Array(array)

A call to this member function of a Pochoir object name in-

forms name that the Pochoir array array will participate in its

stencil computation.

• name.Register_Boundary(bdry)

A call to this member function of a Pochoir array name as-

sociates the declared boundary function bdry with name. The

boundary function is invoked to supply a value whenever an

off-domain memory access occurs. Each Pochoir array is as-

sociated with exactly one boundary function at any given time,

but the programmer can change boundary functions by regis-

tering a new one.

• name.Run(T,kern)

This function call runs the stencil computation on the Pochoir

object name for T time steps using computing kernel function

kern.

After running the computation for T steps, the results of

the computation can be accessed by indexing its Pochoir ar-

rays at time T + k− 1, where k is the depth of the stencil

shape. The programmer may resume the running of the sten-

cil after examining the result of the computation by calling

name.Run(T ′,kern), where T ′ is the number of additional steps

to execute. The result of the computation is then in the compu-

tation’s Pochoir arrays indexed by time T +T ′+ k−1.

3. 3D WAVE EQUATION
This section illustrates a Pochoir specification of a stencil

computation through the example of solving a 3D wave equa-

tion. We use a finite-difference (3DFD) discretization of the

wave equation, which gives rise to a 3-dimensional, 4th-order,



25-point stencil [19]. This stencil has practical applications in

seismic imaging [1,17], and it illustrates how periodic and non-

periodic boundary conditions can be specified in Pochoir.

1 Pochoir_Boundary_3D(fd_bv_3D , arr, t, z, y, x)
2 return 0.0;
3 Pochoir_Boundary_End

4 Pochoir_Shape_3D fd_shape_3D[] = {{1,0,0,0},
{0,0,0,0}, {0,0,0,1}, {0,0,0,-1},
{0,0,1,0}, {0,0,-1,0}, {0,1,0,0},
{0,-1,0,0}, {0,0,0,2}, {0,0,0,-2},
{0,0,2,0}, {0,0,-2,0}, {0,2,0,0},
{0,-2,0,0}, {0,0,0,3}, {0,0,0,-3},
{0,0,3,0}, {0,0,-3,0}, {0,3,0,0},
{0,-3,0,0}, {0,0,0,4}, {0,0,0,-4},
{0,0,4,0}, {0,0,-4,0}, {0,4,0,0},
{0,-4,0,0}};

5 Pochoir_3D fd_3D(fd_shape_3D);

6 Pochoir_Array_3D(float) pa(Nz, Ny, Nx);
7 pa.Register_Boundary(fd_bv_3D);
8 fd_3D.Register_Array(pa);

9 Pochoir_Kernel_3D(fd_3D_fn , t, z, y, x)
10 float div = c0*pa(t,z,y,x) + c1*(pa(t,z,y,x

+1) + pa(t,z,y,x-1) + pa(t,z,y+1,x) + pa
(t,z,y-1,x) + (pa(t,z+1,y,x) + pa(t,z-1,
y,x)) + c2*(pa(t,z,y,x+2) + pa(t,z,y,x
-2) + pa(t,z,y+2,x) + pa(t,z,y-2,x) + pa
(t,z+2,y,x) + pa(t,z-2,y,x)) + c3*(pa(t,
z,y,x+3) + pa(t,z,y,x-3) + pa(t,z,y+3,x)
+ pa(t,z,y-3,x) + pa(t,z+3,y,x) + pa(t,

z-3,y,x)) + c4*(pa(t,z,y,x+4) + pa(t,z,y
,x-4) + pa(t,z,y+4,x) + pa(t,z,y-4,x) +
pa(t,z+4,y,x) + pa(t,z-4,y,x));

11 pa(t+1,z,y,x) = 2*pa(t,z,y,x) - pa(t+1,z,y,x)
+ vsq[z*Nxy + y*Nx + x]*div;

12 Pochoir_Kernel_End

13 /* Initialize the Pochoir array pa */
14 for (int z = 0; z < Nz; ++z)
15 for (int y = 0; y < Ny; ++y)
16 for(int x = 0; x < Nx; ++x) {
17 float r = abs((float)(x - Nx/2 + y - Ny/2 + z

- Nz/2) / 30);
18 r = max(1 - r, 0.0f) + 1;
19 pa(0, z, y, x) = r;
20 }

21 fd_3D.Run(T, fd_3D_fn);

22 /* Output the final results */
23 for (int z = 0; z < Nz; ++z)
24 for (int y = 0; y < Ny; ++y)
25 for(int x = 0; x < Nx; ++x) {
26 cout << pa(T, z, y, x);
27 }

Figure 1: A Pochoir specification for solving a wave equation on a 3D
spatial grid with a nonperiodic boundary condition.

Figure 1 shows the Pochoir source code for the 3D wave

equation with a nonperiodic boundary condition. Line 4 is

the computation shape of the 3D wave equation. Line 5 de-

clares a Pochoir object named fd_3D having that shape. The

Pochoir object will contain all states necessary to perform the

stencil computation. Each triple in the array fd_shape_3D cor-

responds to a relative offset from the space-time grid point

(t,z,y,x) that the stencil kernel (declared in lines 9–12) will

access. The compiler cannot infer the stencil shape from the

kernel, because the kernel can be arbitrary code, and accesses

to the grid points can be hidden in subroutines.

Line 6 declares pa as a Nx×Ny×Nz Pochoir array of single-

precision floating-point numbers representing the spatial grid.

Lines 1–3 define a function fd_bv_3D which is called when the

kernel function accesses grid points outside the computing do-

main, that is, if it tries to access pa(t,z,y,x), where (z,y,x) /∈
[0,Nz)× [0,Ny)× [0,Nx). For this nonperiodic boundary con-

dition, fd_bv_3D supplies a value 0 when an off-domain ac-

cess occurs. Line 7 associates the boundary function with the

Pochoir array pa. Each Pochoir array has exactly one boundary

1 #define mod(r, m) ((r)%(m) + ((r) < 0) ? (m) : 0)

2 Pochoir_Boundary_3D(fd_bv_3D , a, t, z, y, x)
3 return a.get(t, mod(z, a.size(2)), mod(y, a.

size(1)), mod(x, a.size(0)));
4 Pochoir_Boundary_End

Figure 2: Specifying the boundary function for a 3D torus.

function at any given time. Line 8 registers the Pochoir array

pa with the fd_3D Pochoir object. A Pochoir array can be reg-

istered with more than one Pochoir object, and a Pochoir object

can have multiple Pochoir array registered.

Lines 9–12 define fd_3D_fn as a kernel function, which

specifies how the stencil is computed for every grid point. The

kernel can be an arbitrary piece of C++ code, but accesses to the

registered Pochoir arrays must respect the declared shape(s).

Finally, we are ready to initialize and run the computation.

Lines 14–20 initialize the Pochoir array pa with values for time

step 0. If more than 1 previous time step is needed for updating

the current time step, the user is responsible for initializing the

corresponding number of time steps before running the stencil.

Finally, line 21 executes the stencil object fd_3D for T time

steps, specifying the kernel function fd_3D_fn. Lines 23–27 is

the example code of how to extract the value out of the Pochoir

array after the computation is done.

Figure 2 shows how to specify the boundary function

fd_bf_3D for a periodic boundary, causing the computation to

operate on a 3D torus having “wrap-around,” as opposed to a

terminating boundary. Line 1 defines a modulo operation for

indices, and line 3 obtains and returns the required entry based

on the new indices. Due to the current limitation in Intel C++

compiler (as discussed in rationale of Section 2), the boundary

function has to be declared as a global function and outside the

scope of any other functions.

4. PAIRWISE SEQUENCE

ALIGNMENT
We now consider an example from computational biology,

namely, an algorithm for computing the optimal cost of align-

ing a pair of DNA or RNA sequences. Sequence alignments

play a central role in biological-sequence comparison and can

reveal important relationships among organisms [11, 26]. We

use this example to show how to specify stencil computations

in Pochoir when (1) grid cells in time step t depend on data

points in time steps deeper than t−1, and/or (2) each grid cell

consists of multiple fields. The example also demonstrates how

Pochoir handles stencil computations with spatial grids whose

size and shape may change with each time step.

Our example is specifically Gotoh’s algorithm [10] for global

pairwise sequence alignment with affine gap penalty. When

two sequences are aligned they may become fragmented and

gaps may arise. Given a gap open cost go and a gap extension

cost ge, a run of k gaps in either sequence incurs a total cost

of go+ ge× k. Moreover, each mismatched aligned character

pair incurs a given mismatch cost m. Gotoh’s algorithm finds

an alignment of the given sequences such that the total cost of

gaps and mismatches is minimized.

Gotoh’s algorithm solves three interdependent recurrences

that update three different fields — D, I, and G — on a 2D

rectangular grid (see [3,10] for details). This grid cannot be di-

rectly evaluated as a stencil because of the dependence of each

cell on cells in the same row/column. Nevertheless, it can be

transformed as shown in Figure 3 to obtain a diamond-shaped



Figure 3: Transforming the PSA dynamic program [10] to a stencil.
(a) The PSA grid, where each cell (i, j), where i, j > 0, depends on
cells (i, j− 1), (i− 1, j) and (i− 1, j− 1). (b) Sliding the columns of
the PSA grid upward to form a staircase so that no cell depends on cells
on the same row, and thus give it a proper stencil shape.

grid that can be evaluated as a stencil. We obtain the follow-

ing set of transformed recurrences for computing the optimal

alignment cost between sequences X [1 . . .nX ] and Y [1 . . .nY ]:

D(t, j) =

{

G(t, j)+ge if t = j > 0 ,
min{G(t−1, j)+go,D(t−1, j)}+ge if t > j > 0 ;

I(t, j) =

{

G(t, j)+ge if t > j = 0 ,
min{G(t−1, j−1)+go, I(t−1, j−1)}+ge if t > j > 0 ;

G(t, j) =











0 if t = j = 0 ,
go+ tge if t = j > 0

or t > j = 0 ,
min{G(t−2, j−1)+mδ,D(t, j), I(t, j)} if t > j > 0 .

where δ = 1 if X [t − j] = Y [ j] and δ = 0 otherwise. The op-

timal alignment cost is given by min{G(nX + nY ,nY ),D(nX +
nY ,nY ), I(nX+nY ,nY )}. A Pochoir implementation of the sten-

cil computation is shown in Figure 4.

Pochoir provides two ways of specifying stencil computa-

tions that update multiple fields. The method used in Figure 4

is to create a C++ structure that contains three fields, as is done

in line 1. Another option (not shown) is to use three differ-

ent arrays for the three different fields. In this case each array

must be registered with the Pochoir object. Performance results

indicate, however, that the first solution has better locality, be-

cause the three fields for the same index are packed together

and loaded into the cache simultaneously. In our experiments

the structure-based solution ran slightly faster than the solution

based on multiple arrays.

Observe from the recurrence for G that G(t, j) depends on
G(t−2, j−1). This depth of dependence in the time dimension

is inferred from the Pochoir shape psa_shape, which is needed

for a Pochoir-object declaration in line 7. When a Pochoir array

is registered with a Pochoir object, as in line 9, all the shape

information associated with the Pochoir object is transferred to

the Pochoir array.

Finally, observe that Figure 4 does not define a bound-

ary function, and all boundary conditions are checked inside

the kernel function. This choice was made because currently

Pochoir’s boundary functions do not handle spatial boundaries

that change with time. The kernel traverses a rectangular re-

gion, and the checks inside it ensure that the stencil is eval-

uated only inside the required diamond-shaped region within

the rectangle. Future research should enable us to improve

Pochoir’s performance even further by eliminating the over-

head of traversing outside the computing domain and reducing

or eliminating the boundary checks inside the kernel.

1 typedef struct { int D, I, G; } OPT_COST;

2 Pochoir_Boundary_1D(psa_bdry , a, t, i)
3 printf("Access Pochoir_Array opt(%d, %d)\n",

t, i);
4 Pochoir_Boundary_End
5 int PSA( int nX, char *X, int nY, char *Y,

int go, int ge, int m ) {

6 Pochoir_Shape_1D psa_shape[]
= { {0,0}, {-1,0}, {-2,-1}, {-1,-1} };

7 Pochoir_1D psa(psa_shape);
8 Pochoir_Array_1D( OPT_COST ) opt;
9 psa.Register_Array( opt );
10 opt(0,0).G = 0;

11 Pochoir_Kernel_1D( psa_fn , t, j )
12 if ( t >= j && t <= j + nX )
13 if ( t > j && j > 0 ) {

14 int c = (X[t - j] == Y[j]) ? 0 : m;
15 opt(t,j).D = min(opt(t-1,j).G + go,

opt(t-1,j).D) + ge;
16 opt(t,j).I = min(opt(t-1,j-1).G + go,

opt(t-1,j-1).I) + ge;
17 opt(t,j).G = min(opt(t-2,j-1).G + c,

opt(t,j).D, opt(t,j).I);
18 } else {
19 int G_tj = go + t * ge;

20 if ( t > j || j > 0 ) opt(t,j).G = G_tj;
21 if ( t > j ) opt(t,j).I = G_tj + ge;
22 if ( j > 0 ) opt(t,j).D = G_tj + ge;
23 }
24 Pochoir_Kernel_End

25 int t = nX + nY;
26 psa.Run( t, psa_fn );
27 return min(opt(t,nY).G,opt(t,nY).D,opt(t,nY).I);
28 }

Figure 4: Pochoir specification for computing optimal pairwise se-
quence alignment cost with affine gap penalty.

5. LATTICE BOLTZMANNMETHOD
In this section we use the lattice Boltzmann method (LBM)

as an example of a stencil with a heavyweight computing ker-

nel. We implemented LBM as a 3D 19-point stencil with 19

floating-point fields per grid cell [18]. The kernel requires more

than 250 floating-point operations to update each point [21].

The example also illustrates the use of multiple kernels with

the same Pochoir object. It also exposes a limitation of the

current version of Pochoir to fully optimize kernels containing

function calls and explains how macros can be used to work

around this problem.

The lattice Boltzmann method (LBM) computes the finite-

difference approximation of discrete velocity Boltzmann equa-

tion [23], where each cell in a uniform 3D grid is updated in

each time step using information from a subset of neighboring

cells. Each cell represents a volume element of the fluid, and

consists of a collection of fluid particles. Each time step con-

sists of two phases: the streaming/propagation phase and the

collision phase. The baseline version of LBM we used is the

one in SPEC’06 [12].

Figure 5 shows a Pochoir specification of LBM, which illus-

trates several interesting aspects of Pochoir. First, although the

user arrays srcGrid and dstGrid are padded by ghost cells,

the corresponding Pochoir array pa employs a boundary func-

tion lbm_bdry, defined in lines 4–11, to supply the value of

the ghost cell whenever an access to the padded ghost cells

occurs. Line 18 associates the boundary function lbm_bdry

with the Pochoir array pa. Second, the initial values of the

Pochoir array are copied from the user arrays (in lines 26–

27) and the final values are copied back to the user arrays (in

lines 32–33). Third, there are two kernels (lbm_kernel_0 and

lbm_kernel_1 defined, and the one to be used depends on the

input argument simType at runtime. Finally, both kernels share



1 #define DFL1 (1.0/3.0)
2 #define DFL2 (1.0/18.0)
3 #define DFL3 (1.0/36.0)
4 Pochoir_Boundary_3D(lbm_bdry , a, t, z, y, x)
5 PoCellEntry result;
6 result._C = DFL1;
7 result._N = result._S = result._E = result._W =

result._T = result._B = DFL2;
8 result._NE = result._NW = result._SE = result.

_SW = result._NT = result._NB = result._ST
= result._SB = result._ET = result._EB =

result._WT = result._WB = DFL3;
9 result._FLAGS = 0.0;
10 return result;
11 Pochoir_Boundary_End

12 void RunLbm(MAIN_SimType simType , LBM_Grid
srcGrid , LBM_Grid dstGrid , int numTimeSteps)

13 {
14 Pochoir_Shape_3D lbm_shape[] = { {1,0,0,0},

{0,0,0,0}, {0,0,1,0}, {0,0,-1,0},
{0,1,0,0}, {0,-1,0,0}, {0,0,0,1},
{0,0,0,-1}, {0,1,1,0}, {0,-1,1,0},
{0,1,-1,0}, {0,-1,-1,0}, {0,0,1,1},
{0,0,1,-1}, {0,0,-1,1}, {0,0,-1,-1},
{0,1,0,1}, {0,1,0,-1}, {0,-1,0,1},
{0,-1,0,-1}};

15 Pochoir_3D lbm(lbm_shape);

16 Pochoir_Array_3D(PoCellEntry) pa(SIZE_Z , SIZE_Y
, SIZE_X);

17 lbm.Register_Array(pa);
18 pa.Register_Boundary(lbm_bdry);

19 Pochoir_Kernel_3D(lbm_kernel_0 , t, z, y, x)
20 HandleInOutFlow(t, z, y, x);
21 PerformStreamCollide(t, z, y, x);
22 Pochoir_Kernel_End

23 Pochoir_Kernel_3D(lbm_kernel_1 , t, z, y, x)
24 PerformStreamCollide(t, z, y, x);
25 Pochoir_Kernel_End

26 CopyLbmGridToPochoirGrid(srcGrid , pa, 0);
27 CopyLbmGridToPochoirGrid(dstGrid , pa, 1);

28 if (simType == CHANNEL)
29 lbm.Run(numTimeSteps , lbm_kernel_0);
30 else
31 lbm.Run(numTimeSteps , lbm_kernel_1);

32 CopyPochoirGridToLbmGrid(srcGrid , pa, 0);
33 CopyPochoirGridToLbmGrid(dstGrid , pa, 1);
34 }

Figure 5: Pochoir specification for a lattice Boltzmann method.

the stream and collide phases, and so it is naturally to code these

two phases as functions PerformStreamCollidewhich can be

called by both kernels.

LBM presents a challenge to the current Pochoir compiler. In

order to maximize the performance, the Pochoir compiler must

inspect the code in the kernel (otherwise, Pochoir has to em-

ploy a more conservative strategy which doesn’t always yields

the best performance). Since Pochoir currently does not per-

form interprocedural analysis, however, it cannot understand

how the accesses to the Pochoir array are performed within

PerformStreamCollide and HandleInOutFlow, and so its

performance is hindered. Instead, if these two functions are

declared as macros, however, the Pochoir compiler can under-

stand and optimize the code effectively. Handling interproce-

dural analysis within Pochoir represents future research.

6. EMPIRICAL RESULTS
The benchmark results shown in Figure 6 indicate that stencil

codes generated by Pochoir outperforms serial- or parallel-loop

implementations. All experiments were run on a 12-core Intel

Core i7 (Nehalem) machine with a private 64KB L1-cache, a

private 256KB L2-cache, and a shared 12MB L3-cache. The

C++ compiler was the Intel C++ version 12.0.0 compiler with

Intel Cilk Plus [13]. The performance is measured in terms of

space-time grid points per second, calculated by multiplying

the volume of the spatial grid by the number of time steps and

then dividing by the overall execution time.

7. CONCLUSION
We are currently improving Pochoir’s expressiveness, find-

ing new opportunities for optimization, and employing it in

more applications. Since many users of multicore technology

do not understand parallelism and caching well, we believe that

tools such as Pochoir can allow them to exploit the capabilities

of modern multicore architectures without undergoing a steep

learning curve.
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