
Proposal of MPI operation level checkpoint/rollback and one implementation

Yuan Tang
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
superTangcc@yahoo.com

Graham E. Fagg
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
fagg@cs.utk.edu

Jack J. Dongarra
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
dongarra@cs.utk.edu

Abstract

With the increasing number of processors in modern
HPC(High Performance Computing) systems, there are two
emergent problems to solve. One is scalability, the other
is fault tolerance. In our previous work, we extended the
MPI specification on handling fault tolerance by specifying
a systematic framework for the recovery methods, commu-
nicator, message modes etc. that define the behavior of MPI
in case an error occurs. These extensions not only specify
how the implementation of the MPI library and RTE (Run
Time Environment) handle failures at the system level, but
provide the normal HPC application developers with vari-
ous recovery choices with varying performance and cost. In
this paper, we continue the work on extending the MPI’s ca-
pability in this direction. Firstly, we are proposing an MPI
operation level checkpoint/rollback library to recover the
user’s data. More importantly, we argue that the future gen-
eration programmingmodel of a fault tolerant MPI applica-
tion should be recover-and-continue against the more tradi-
tional stop-and-restartmodel. Recover-and-continuemeans
that in case an error occurs, we just re-spawn the failed
processes. All the remaining living processes stay in their
original processors mapping on memory. The main benefits
of recover-and-continue are much less cost for system re-
covery and the opportunity of employing in-memory check-
point/rollback techniques. Compared with stable or local
disk techniques, which are the only choices for stop-and-
restart, doubtlessly, the in-memory approach significantly
reduces the performance penalty in checkpoint/rollback.
Additionally, it makes it possible to establish a concurrent
multiple level checkpoint/ rollback framework. With the
progress of our work, a picture of the hierarchy of future

generation fault tolerant HPC system will be gradually un-
veiled.

1 Background

The main goal of HPC is pursuing high performance.

Confined by the performance that could be possibily

achieved on single processor, HPC systems have progressed

from single to multiple processor, and this trend will con-

tinue [10] [11]. Today’s number 1 in the top500 list, the
IBM BlueGene/L, is composed of 65536 processors. And
100K processor systems are in development [2]. With this

trend of increasing the number of processors in one system

, there are two emergent problems. One is scalability, i.e.

whether the performance of HPC system could increase at

the same pace as the increasing number processors. The

other is fault tolerance. Concluding from the current expe-

riences on top-end machines, a 100, 000 processor machine
will experience multiple process failures every hour.

The current MPI Specification 1.2, the most popular par-

allel programming model, especially for large scale HPC

systems, has not specified an efficient and standard way to

process failures. Currently, MPI gives the user the choice

between two possibilities of how to handle failures. The

first one, which is also the default mode of MPI, is to im-

mediately abort the application. The second possibility is

just return the control back to the user application without

requiring that subsequent operations succeed, nor that they

fail. In short, according to the current MPI specification, an

MPI program is not supposed to continue in case of error.

While most systems currently are much more robust, even

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

though partial node failure/unavailability are much more

frequent, in most cases they will be recovered and brought

back to the whole system quickly. So, there is a mismatch

between hardware and the (non fault tolerant) programming

model of MPI. There is a requirement for the programming

model of MPI to include the handling of partial processes

failure/unavailability.

In our previous work [5], we extended theMPI specifica-

tion in this direction by specifying a systematic framework

for the recovery procedures, communicatormodes, message

modes etc., i.e.

1. Define the behavior of MPI in case an error occurs.

That is, FT-MPI, will recover the MPI objects and the

execution context of the user application (NOT user

data) in case a failure occurs.

2. Give the application the possibility to recover from a

process failure. In addition to the standard ABORT,

FT-MPI provides three more recovery/communicator

modes.

• REBUILD: re-spawn processes to the number be-
fore failures;

• BLANK: just leave the failed/unavailable pro-
cesses as holes in the system;

• SHRINK: re-arrange the ranks of still living pro-
cesses and pack them into a more compact re-

built MPI COMM WORLD.

3. base it on MPI 1.2 (plus some MPI 2 features) with a

fault tolerant model similar to what was done in PVM.

That is, FT-MPI, working with the underlying HAR-

NESS system [3], provides the failure detection and

failure notification. Based on the user’s choices, FT-

MPI decides what are the necessary steps and options

to start the recovery procedure and therefore change

the state of the processes back to no failure

These extensions not only specify how the imple-

mentations of MPI library handles failures at system

level, but provide the normal MPI application de-

velopers various recovery choices in between perfor-

mance and cost. Also, an implementation of this ex-

tension, which is named FT-MPI [4], is available at

http://icl.cs.utk.edu/ftmpi.
The main difference between FT-MPI’s approach and a

lot of other fault tolerant parallel systems is that FT-MPI

adopts a programmingmodel of recover-and-continue other
than stop-and-restart, which is the tradition in lots of other
fault tolerant parallel systems [1] [15] [7] [9] [16].

The main points of recover-and-continue are, when
some processes are found failed/unavailable, the other still

alive processes neither exit nor migrate. Instead, they stay

in their original processor/memory mappings and will try

re-spawning failed processes and re-building the communi-

cator. From the system point of view, this approach sig-

nificantly reduces the cost of RTE recovery (see [6] and

Table 1). Also, it provides the opportunity to employ in-

memory checkpoint/rollback techniques. More importantly,

we could establish a framework of concurrentmultiple level

checkpoint/rollback on recover-and-continue.
But this previous work did not cover the users’ data. In

order to fully utilize the fault tolerant features of FT-MPI,

user should write their own checkpoints and be responsible

for rolling them back after the failure recovery of RTE (Run

Time Environment).

2 Introduction

In this paper, we are continuing our efforts in extending

the fault tolerant capability of MPI.

We are proposing an MPI operation level check-

point/rollback standard, which, in our opinion, is a trade-

off approach in between traditional system level automatic

checkpointing and user level manual checkpointing.

The main rationals for MPI operation level check-

point/rollback are:

• Portability: the user fault tolerant application writ-
ten by this interface could be guaranteed to run cor-

rectly across different platforms without any changes

to their source code. This is the main drawback of tra-

ditional user level manual checkpointing because not

all the checkpoint/rollback techniques are available on

all platforms.

• Software re-use: the implementor of the MPI library
could integrate various checkpoint/rollback techniques

in the library for all the applications to share. This is

also themain drawback of traditional user level manual

checkpointing, which requres every application to re-

implement the checkpoint/rollback techniques repeat-

edly.

• High performance: the user specifies which data to
checkpoint and which data could be computed from

the data to checkpoint. The total size of the checkpoint

is significantly reduced, which will doubtlessly outper-

form any system level automatic approach.

• Software hierarchy: All the future changes in process-
ing checkpoint/rollback will be limited to the MPI li-

brary and the end user could focus solely on their spe-

cial problem area.

Also, we argue that the programming model of the fault

tolerant MPI application should be recover-and-continue.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

In recover-and-continue, when some failure occurs, only
the failed processes will be re-spawned and might be mi-

grated to other processors. Other still alive processes nei-

ther exit nor migrate. Instead, they stay in their original pro-

cessor/memory mappings . From the point view of check-

pointing, this model provides the opportunity of employing

in-memory (diskless [14]) checkpoint/rollback techniques,

more importantly, the opportunity for establishing a frame-

work of concurrent multiple level [17] checkpoint/rollback.

In summary:

1. The specification proposal is based on MPI. The im-

plementation is currently based on FT-MPI [5];

2. It provides a standardized method and uniformed in-

terface for end users to write their fault tolerant MPI

applications.

3. The implementation is Two-level [17]. It employs the

imem-m-rep algorithm (subsection 5.2) preparing for
at mostm, wherem ≤ (n−1) number of simultaneous
failures. We use a much longer periodic stable-disk al-
gorithm to prepare for multiple copies of checkpoint

as well as the rare, but fatal n total process failures.

The implementation allows the user to specify the ra-

tio of the percentage of checkpoints taken in-memory

and the percentage stored on stable disk, while the ac-

tual switch between these two levels are dynamic and

transparent to the user.

4. It supports all MPI data types.

5. Since FT-MPI is responsible for recovering the RTE,

MPI objects, and internal message queues, this MPI

operation level checkpoint/ rollback library covers

only the users application data.

6. With the current implementation based on FT-MPI, we

have performed some performance tests, which pro-

vide a good and quantified reference for writing fault

tolerant applications.

3 MPI operation level checkpoint and roll-
back

Before starting the detailed description of our efforts, we

will define and clarify the exact meaning of some frequently

used terms in the rest of this paper.

• n: is the total number of processes in system, including

both dead and alive processes.

• m: is the number of failures we are going to tolerate

simultaneously, ie. within the period of one round of

recovery. Additionally, we assume the conditionm ≤
n − 1 always holds.

• nof : number of failures, equalsm.

• imem-m-rep: The algorithm of ”in memory m replica-
tion”, which will be discussed in subsection 5.2.

• stable-disk: The checkpoint/rollback algorithm of
writing to and reading back from a stable disk system.

• old process: The process which has experienced at
least one round of recovery and is still currently alive.

• new process: The newly re-spawned process.

• RTE: Run Time Environment.

3.1 Specification Proposal

In order to provide a standard method and uniformed

interface for an MPI application developer to write check-

points and roll back , the FT library should provide:

1. MPI Ckpt open(MPI Ckpt options * options): Initial-
ize the necessary data structure and do some prepara-

tion work for checkpoint and rollback. And this func-

tion should be called after MPI Init().

• The idea here is to make checkpoint and roll-
back as easy and standard as reading or writ-

ing a normal UNIX file. Also, the separation of

MPI Ckpt

open() fromMPI init() is to give the user a choice

of not to introduce the checkpoint and rollback

interface and cost into their applications.

• The data structure MPI Ckpt options allows the
library implementor some freedom for providing

implementation specific options and choices. For

example, which algorithm or level they prefer,

how many failures he plans for the system to tol-

erate simultaneously, the ratio for two (2)-level

switching, etc. In order to maintain consistency,

the options specified inMPI Ckpt options should

have global effect. That is, if the user speci-

fies one particular checkpoint algorithm, this al-

gorithm will work on all the data to be check-

pointed; if the user specifies the ratio of 2 levels,

the ratio will remain a global constant until it is

explicitly changed by another function call, etc.

2. MPI Ckpt close(): Counterpart of MPI Ckpt open().

3. MPI Ckpt(void * data needs ckpt, long length, MPI
Datatype datatype, int tag): This is a registration func-
tion. The user could use it to mark which data to

checkpoint and separating it from the data could be

easily computed from the data to checkpoint. Thus

the size of the checkpoint could be controlled. Also,

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

the checkpoint and rollback library should support any

MPI data types.

4. MPI Ckpt here(): This function is the one which will
do the actual work. Users call this function at some

synchronized points in their program to checkpoint all

the data previously registered by MPI Ckpt(...). The

idea is to let the user make the decision where to check-

point :

• We have the general rule: the user knows his ap-
plication the best. This is also the foundation of

lots of user manual fault tolerant algorithms.

• The operation or algorithm (e.g. like

Chandy / Lamport) to get a global synchronous

status is very expensive.

• Due to the fact that an MPI application might do
no synchronous work after its call to MPI Init(),

the global synchronous status from the system

point of view might still be different from the

user application’s point of view.

5. MPI Rollback(void * data rollback, long length, MPI
Datatype datatype, int tag): Users call this function
after RTE recovery to rollback the data from the latest

complete checkpoint copy. Also, he has the freedom

to rollback those data in random order.

6. MPI Remove ckpt(int tag): If some data are no longer
in use , the user could call this function to prevent them

from future checkpointing and save the performance.

7. MPI Ckpt ctrl(MPI Ckpt options * options): If neces-
sary, user could call this function to change the global

checkpoint and rollback options. The idea here is to

make the checkpoint and rollback component as easy

to control as the UNIX file or I/O system.

4 Sample Pattern

In this section, we are providing a sample pattern (see

Figure. 1) to show how to write a fault tolerant application

on top of FT-MPI with the hope it can provide a standard

and uniformed way of integrating checkpoint and rollback

features into normal MPI applications.

5 Current Implementation of FT-MPI check-
point and rollback library

Based on the above specification proposal and current

implementation of FT-MPI, we implemented the MPI oper-

ation level checkpoint/rollback library.

void error handler(MPI Comm * pcomm, int * prc, ...){
recover comm(pcomm);

MPI Error string(*prc, errstr, &len);

longjmp(here, 1); /* escape from hell */

}
void main(){
struct data type data needs ckpt[];

struct data type data could comp[];

MPI Init();

MPI Ckpt open(MPI Ckpt options)

MPI Errhandler create();

setjmp(here); /* after recovery, longjmp here */

/* Set the error handler to the comm world */

MPI Errhandler set();

if (after recovery)

MPI Rollback(data needs ckpt,length,datatype,tag);

else/* normal startup */

MPI Ckpt(data needs ckpt,length,datatype,tag);

for(;;){
Compute(data needs ckpt);

Compute(data could comp,data needs ckpt);

MPI Ckpt here(); /* Sync point */

/* if necessary, change the ctrl options */

MPI Ckpt ctrl(MPI Ckpt options);

}
MPI Ckpt close();

MPI Finalize();

return;

}

Figure 1. Sample Pattern of integrating the
feature of checkpoint and rollback into MPI
programs

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

5.1 Possible optimizations

From [14] [12] [13] [8] and other checkpoint and roll-

back related papers, we analyzed the main performance bot-

tleneck of checkpointing and provide some possible opti-

mization methods.

1. Size of checkpoint. With MPI operation level check-

pointing, users could specify which data to checkpoint.

The size of checkpoint might be significantly reduced.

2. The internal collective communication introduced by

checkpointing. In FT-MPI, we use dynamic switch-

ing techniques to select from several known and imple-

mented collective algorithms according to the message

size, communicator mode, number of process involved

in communication, etc. So the collective, especially

the Reduce, Bcast, Allgather algorithms used in get-
ting the checkpoint, global status, and rollback have

been optimized.

3. The storage media user to store the checkpoints.

• According to the availability of local memory, re-
mote nodes, and external stable disk, the priority

of the data to checkpoint, the number of failures

to tolerate simultaneouly, the checkpoint routine

dynamically switches from storage media to me-

dia to find a tradeoff in between performance and

robustness (see Figure 4).

• Utilize the local memory or the memory of re-
mote nodes to prepare for the more frequent and

less fatal errors, and use a longer periodic write-

to-stable-disk strategy preparing for the worst

case, i.e. all processes down or an error occurs

in the middle of checkpointing. That is, an im-

plementation of the Two-Level Recovery Scheme
[17]. So a deliberate selection of the ratio of 2

level becomes very important in getting the trade-

off between costs, performance and robustness.

4. By default, there are one in-memory copy and two on-

stable-disk copies of checkpoint (all these 3 copies of

checkpoint are of different time step) co-existing in the

system for robustness.

5.2 The imem-m-rep algorithm

We implement an in-memory-m-replication algorithm to
store one copy of checkpoint in local redundant memory

on each node. This algorithm is designed to tolerate any

m, wherem ≤ n− 1 number of process failure/unavailable
simultaneously. Figure 2 demonstrates when the nof equals
2, i.e. m == 2, how the checkpoint process of imem-m-rep
works.

Figure 2. How imem-m-rep-ckpt works – As-
sume m equals 2

Figure 3. How imem-m-rep-rollback works –
Assume the Process on Node 3 is newly re-
spawned

1. When the MPI Ckpt here() routine starts, every pro-

cess (assume its rank is i) first makes a copy of the

data needs ckpt into local data copy

2. Every process i signals the background checkpoint

thread to run. Then the main thread will return the

control flow back to user

3. The background checkpoint thread of process i sends

the data from local data copy to the ckpt buf of pro-
cess (i + 1)%n

4. If m > 1, every process i will continuously send the

data received from its PREVIOUS (process (i − 1 +
n)%n) to its NEXT (process (i + 1)%n).

5. The send/receive pipeline continues until the number

of loops equalsm.

6. When the number of loops equals m, the checkpoint

thread stop working and write one bit in correspond-

ing data structure to signal the main thread that current

round of checkpoint is completed.

With this checkpoint algorithm, the rollback algorithm is

straight forward. When any up tom of the processes failed

and re-spawned,

1. All the processes step into a stage of global status

gather by MPI Allgather(). Every process, old or new,

will then know how many processes died in the last

round of failure and who is new, as well as whether

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

the last round of imem-m-rep checkpointing has com-
pleted in all the processes.

2. If the last round imem-m-rep checkpoint process has
completed in all the old processes and the number of

process failed is less than or equal to the previously set

nof,

every newly re-spawned process i will calculate who

is its NEXT old neighbour and could get its
checkpoint back. Then it post a receive request

to it.

all the old processes will employ the same calculation

algorithm to know who should be responsible for

its nearest PREVIOUS new process. Then the re-
sponsible one will post a send to the new ones.

3. Else

it will call the stable-disk rollback algorithm

4. Only every new MPI process’ nearest NEXT will
send one copy of corresponding checkpoint data in its

ckpt buf to the new ones.

5. All the other processes just rollback from its lo-
cal data copy without any communication.

The rollback procedure is illustrated in Figure 3.

Obviously, this imem-m-rep algorithm could tolerate any
m; m ≤ n − 1 number of process failures simultaneously.
The main advantage of this algorithm is the low cost dur-

ing rollback: only every newly re-spawned process and its

nearest NEXT are involved in communication. All the other
old processes could rollback by a simple memcpy() , which

is very fast. The quantified rollback differences of these

three types of process could be observed in Table 2.

The main disadvantage of this algorithm is the memory

consumption problem. Memory is very precious in large

scale scientific computing. So we employ one more algo-

rithm of writing to and reading back from stable disk.

5.3 The stable disk algorithm

The stable disk algorithm

1. Make multiple copies of checkpoint. To save mem-

ory, the imem-m-rep algorithm only has one copy of
checkpoint. So in case an error occurs in the middle of

processing the checkpoint, we should utilize the stable

disk.

2. The stable disk algorithm has two copies of checkpoint

(each copy is of different time step) for robustness.

When the rollback procedure of the stable disk is in-

voked, it will rollback from the latest coherent copy.

Figure 4. How MPI Ckpt() works

3. It makes our checkpoint/rollback system two (2) level.

The imem-m-rep algorithm is prepared for more fre-
quent and less fatalm; m ≤ n − 1 number of process
failure, while the stable-disk algorithm is always ready

for the worst.

4. Due to the much higher overhead of the stable disk

algorithm (which could be observed in Table 1

and Table 2 of section 6) by default, in our current

MPI Ckpt here() version, the ratio of stable disk al-
gorithm to imem-m-rep algorithm is set to 1 : 1000.
That is, we invoke the stable disk checkpoint rou-

tine every 1000 times of imem-m-rep. Of course, the

user has been granted the right to change this ratio

by changing the input parameterMPI Ckpt options of
MPI Ckpt open() orMPI Ckpt ctrl() functions.

5.4 How MPI Ckpt() works

Figure 4 illustrates how our MPI Ckpt() dynamically

switches between different levels of checkpoint algorithms

and implmentations depending on the user’s input parame-

ters and the available resources in system. For example, is

there enough memory to tolerate nof number of simultane-
ous failures in imem-m-rep algorithm, etc.

6 A Preview of Testing Data

Due to page limit restrictions, we only attach some

typical and interesting test results of the FT-MPI check-

point/rollback library here.

6.1 Testing Platform – TORC

Our testing platform (TORC) is a collaborative effort be-

tween the University of Tennessee’s Innovative Computer

Laboratory in the Computer Science Department and Oak

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

Ridge National Laboratory. It is comprised primarily of

commodity hardware and software.

• Hardware:

– Myrinet 8-port switches, and PCI LANI 4.1 cards
– 2 × 16-port Fast Ethernet Switch (Bay Networks
350T)

– Compute nodes:
∗ Dual 933MHz Pentium III (256KB cache)

∗ Dell WS400 machines, using the PCI
82440FX (Natoma) chipset

∗ 512 MB RAM

∗ 3Com Fast Etherlink 905TX 10/100 BaseT
Network Interface Card (integrated)

• Software:

– Red Hat Linux (2.4.22 multiprocessing kernel)
– Gnu C/C++ (g++ 3.3.2)

6.2 Sample Testing Data

Here, we provide some explanation of Table 1 and Ta-

ble 2:

• The Sender, Recver and Normal row in Table 2 stands
for the overhead of the old process who would send

one copy of its checkpoint data to its PREVIOUS new
process, the new process who would receive one copy

of checkpoint from its nearestNEXT neighbour, and all
the other old processes who would rollback from local

”ckpt buf” without any communication, respectively.

The details of this rollback procedure could be found

in subsection 5.3. The rollback overhead of these three

types of processes varies, so they are listed separately.

• Due to the set of full buffer mode on the stable disk
file, the rollback overhead of old processes and newly

re-spawned processes differ, so only the rollback over-

head of the new processes are listed.

• In imem-m-rep algorithm, the data shown is for nof =
1.

• All the testing results in Table 1 and Table 2 are those
for four processes on four different nodes.

• The 400B, 40KB, and4MB in the most left column

of both Tables mean the corresponding row of test-

ing results are received from checkpoint size 400Bytes,

40KBytes and 4MBytes data, respectively.

Comparison between the Table 1 and Table 2, we could

conclude:

T recover T stable T ckpt T stable T rollback

loop ckpt total rollback total

400B 0.6684 0.0151 0.0185 0.0033 0.0051

OLD

400B - - - 0.0040 0.0094

NEW

40KB 0.6434 0.0295 0.0356 0.0033 0.0047

OLD

40KB - - - 0.04767 0.06037

NEW

4MB - 3.0704 3.2319 0.0380 0.0453

OLD

4MB - - - 1.5401 1.5781

NEW

Table 1. Checkpoint and rollback overhead of
stable disk algorithm

T imem T ckpt T imem T rollback

ckpt total rollback total

400B 0.0026 0.0062 0.000151 0.0016

Sender

400B - - 0.000151 0.0015

Recver

400B - - 0.000004 0.0046

Normal

40KB 0.0261 0.0269 0.000893 0.002584

Sender

40KB - - 0.001431 0.037701

Recver

40KB - - 0.000143 0.035958

Normal

4MB 0.6907 1.0701 0.353990 0.391026

Sender

4MB - - 0.344040 0.381836

Recver

4MB - - 0.022379 0.059456

Normal

Table 2. Checkpoint and rollback overhead of
imem-m-rep algorithm

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

Figure 5. Hierarchy of future generation fault
tolerant parallel system

1. Both overheads of the stable-disk algorithm and imem-
m-rep increases significantly as the size of checkpoint
increases.

2. When the checkpoint size is very small, such as the

400Byte row, the overhead of the stable disk algorithm
is more than ten times higher.

3. The performance of the stable disk checkpoint and
rollback algorithm is restricted by the bus or efficiency

of Parallel I/O. The power of the imem-m-rep algo-
rithm is limited by memory and network.

7 Hierarchy

With the progress of our work, a picture of the hierarchy

of future generation, fault tolerant parallel systems becomes

more and more clear as Figure 5 illustrates.

From the bottom level HARNESS [3], which is responsi-

ble for the failure detection and notification; upper level FT-

MPI, which takes a systematic procedure/steps to recover

the MPI objects, run time environment and user application

context; For upper level applications, FT-MPI provides the

MPI Ckpt/Rollback() routines. Eventually, the most upper

level user application and fault tolerant numerical library

(e.g.FT-LAPACK) will be built upon all these underlying

facilities and benefit from them.

References

[1] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster

Environment for MPI. In Proceedings of Supercomputing
Symposium, pages 379–386, 1994.

[2] J. Dongarra. An overview of high performance computers,

clusters, and grid computing. 2nd Teraflop Workbench Work-
shop, March 2005.

[3] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Harness and

fault tolerant mpi. Parallel Computing, 27(11):1479–1495,
2001.

[4] G. E. Fagg and J. Dongarra. Ft-mpi: Fault tolerant mpi,

supporting dynamic applications in a dynamic world. In

Proceedings of the 7th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 346–353, London,
UK, 2000. Springer-Verlag.

[5] G. E. Fagg, E. Gabriel, G. Bosilca, and et al. Extending

the mpi specification for process fault tolerance on high per-

formance computing systems. Proceedings of the ISC2004,
June 2004.

[6] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,

J. Pjesiva-Grbovic, and J. J. Dongarra. Process fault tol-

erance: semantics, design and applications for high perfor-

mance computing. The International Journal of High Per-
formance Computing Applications, 19(4):465–477, 2005.

[7] E. Godard, S. Setia, and E. L. White. Dyrect: Software

support for adaptive parallelism on nows. In IPDPS ’00:
Proceedings of the 15 IPDPS 2000 Workshops on Paral-
lel and Distributed Processing, pages 1168–1175, London,
UK, 2000. Springer-Verlag.

[8] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, con-

current checkpointing for parallel programs. IEEE Trans.
Parallel Distrib. Syst., 5(8):874–879, 1994.

[9] V. K. Naik, S. P. Midkiff, and J. E. Moreira. A check-

pointing strategy for scalable recovery on distributed par-

allel systems. In Supercomputing ’97: Proceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–19, New York, NY, USA, 1997. ACM Press.

[10] T. Organization. System processor

counts/systems in top500 list nov. 2004.

http://www.top500.org/lists/2004/11/charts.php?c=12,
November 2004.

[11] T. Organization. System processor

counts/systems in top500 list june 2005.

http://www.top500.org/lists/2005/06/charts.php?c=12,
June 2005.

[12] J. S. Plank. A tutorial on reed-solomon coding for

fault-tolerance in raid-like systems. Softw. Pract. Exper.,
27(9):995–1012, 1997.

[13] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial

on reed-solomon coding. Softw., Pract. Exper., 35(2):189–
194, 2005.

[14] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpoint-

ing. IEEE Transactions on Parallel and Distributed Systems,
9(10):972–??, 1998.

[15] J. M. Squyres and A. Lumsdaine. A Component Archi-

tecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, number 2840 in Lecture
Notes in Computer Science, pages 379–387, Venice, Italy,

September / October 2003. Springer-Verlag.
[16] S. S. Vadhiyar and J. Dongarra. Srs: A framework for de-

veloping malleable and migratable parallel applications for

distributed systems. Parallel Processing Letters, 13(2):291–
312, 2003.

[17] N. H. Vaidya. A case for two-level recovery schemes. IEEE
Trans. Comput., 47(6):656–666, 1998.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

