
Nested Dataflow Algorithms for Dynamic
Programming Recurrences with more than O(1)

Dependency
Yuan Tang

School of Computer Science, Fudan University
Shanghai, P. R. China

yuantang@fudan.edu.cn

Abstract—Dynamic programming problems have wide appli-
cations in real world and have been studied extensively in both
serial and parallel settings. In 1994, Galil and Park devel-
oped work-efficient and sublinear-time algorithms for several
important dynamic programming problems based on the closure
method and matrix product method. However, in the same paper,
they raised an open question whether such an algorithm exists
for the general GAP problem. In this paper, we answer their
question by developing the first work-efficient and sublinear-
time GAP algorithm based on the closure method and Nested
Dataflow method. We also improve the time bounds of classic
work-efficient, cache-oblivious and cache-efficient algorithms for
the 1D problem and GAP problem, respectively. It remains an
interesting question if we can further bound the GAP algorithm’s
space and cache bounds to be asymptotically optimal without
sacrificing work or time bounds.

Keywords-dynamic program with more than O(1) depen-
dency, closure method, cache-oblivious method, Nested Dataflow
method, work-time model

I. INTRODUCTION

Dynamic Programming (DP) is a general problem-solving
technique that solves a large problem optimally by recursively
breaking down into sub-problems and solving those sub-
problems optimally [4]. If a problem can be solved this way, it
is said to have optimal substructure. DP has wide applications
in various fields from aerospace engineering, control theory,
operation research, biology, economics, and computer science
[5], [6], [1].

By the nature, a problem solvable by the DP technique, is
usually presented by a set of recurrence equations. Equations
(1) and (2) are two such examples. In solving a set of DP
recurrences, it usually boils down to update every entries of a
multi-dimensional table by some order. It is this serial order
that prevents an efficient parallelization.

In the literature, there are two classic ways to parallelize
a DP algorithm. Based on the well-known closure method
and matrix product method, Galil and Park [1] gave out
several work-efficient and sublinear-time algorithms for DP
recurrences with more than O(1) dependency, including the
1D problem [7], the parenthesis problem which computes
the minimum cost of parenthesizing n elements [8], and the
secondary structure of RNA without multiple loops [9]. They

Shanghai Natural Science Funding (No. 18ZR1403100)

raised an open problem in their paper if there exists a better
algorithm for the general edit distance problem when allowing
gaps of insertions and deletions [5] (the GAP problem).
On the other hand, Chowdhury, Le, and Ramachandran [2],
[3], [10] developed a set of cache-oblivious parallel (COP)
and cache-efficient algorithm for DP problems with O(1) or
more than O(1) dependency. Their algorithms are usually
work-efficient but super-linear in time. Dinh et al [11], [12]
observed that the classic COP method may introduce excessive
control dependency among recursively derived sub-problems,
and that excessive control dependency actually increases the
time bound (critical-path length of its computational DAG)
of algorithm, therefore extended the method to the Nested
Dataflow (ND) method. Besides the above two big classes of
DP algorithms, we will discuss other related works in Sect. IV.
Problems: Noticing that Galil and Park’s approach does not
give an work-efficient and sublinear-time algorithm for the
general GAP problem and the latest COP approach does not
achieve a sublinear time bound, we present a new framework
for the parallel computation of DP recurrences with more than
O(1) dependency based on a novel combination of the closure
method and ND method. We demonstrate the framework by
working on the following two problems:
P1. Given a real-valued function W(·, ·) , which can be com-

puted with no memory access in O(1) time, and initial
value D[0], compute

D[j] = min
0≤i<j

D[i] + w(i, j) for 1 ≤ j ≤ n (1)

This problem was called the least weight subsequence
(LWS) problem by Hirschberg and Larmore [7]. We will
call it 1D problem following the convention of Galil and
Park [1]. Its applications include, but not limited to, the
optimum paragraph formation and finding a minimum
height B-tree. We will study the 1D problem in Sect. III-A
as a prerequisites and 1D simplification of the more
complicated GAP problem.

P2. Given w, w′, sij , which can be computed in O(1) time
with no memory access, and D[0, 0] = 0, compute

D[i, j] = min

 D[i− 1, j − 1] + sij
min0≤q<j{D[i, q] + w(q, j)}
min0≤p<i{D[p, j] + w′(p, i)}

(2)

Algorithm Work (T1) Time (T∞) Space Cache (Q1)

Galil and Park’s
O(n2) O(

√
n log n) O(n2) O(n2/B)final 1D [1]

COP 1D O(n2) O(n log n) O(n) O(n2/(BM))
space-/cache-efficient

O(n2) O(n) O(n) O(n2/(BM))ND 1D (Theorem 5)
sublinear-time

O(n2) O(
√
n log n) O(n2) O(n2/B)ND 1D (Theorem 6)

Galil and Park’s
O(n4) O(

√
n log n) O(n4) O(n4/B)final GAP[1]

COP GAP [2], [3] O(n3) O(nlog2 3) O(n2) O(n3/(B
√
M))

space-/cache-efficient
O(n3) O(n log n) O(n2) O(n3/(B

√
M))ND GAP (Theorem 11)

sublinear-time
O(n3) O(n3/4 log n) O(n3) O(n3/B)ND GAP (Theorem 13)

Fig. 1: Main results of this paper, with comparisons to typical prior works.

Notation Explanation

DP Dynamic Programming
COP Cache-Oblivious Parallel
ND Nested Dataflow
n problem dimension
p # of cores
εi small constant
M cache size
B cache line size
T1 work
T∞ time (span, depth, critical path length)
T1/T∞ parallelism
Q1 serial cache complexity
a ‖ b task b has no dependency on a
a ; b task b has full dependency on a
a b task b has partial dependency on a

Fig. 2: Acronyms & Notation

for 0 ≤ i ≤ m and 0 ≤ j ≤ n. We assume that m
and n are of the same order of magnitude. This is the
problem of computing the edit distance when allowing
gaps of insertions and deletions [5]. We will call it GAP
problem following the convention of Galil and Park [1]. Its
applications include, but not limited to, molecular biology,
geology, and speech recognition.

Our Results (Fig. 1):
1) The 1D problem:

a) We give out a linear O(n) time and optimal O(n2)
work 1D algorithm (Theorem 5 in Sect. III-A),
which achieves optimal O(n) space and optimal
O(n2/(BM)) cache bounds in a cache-oblivious fash-
ion. This result improves over the prior cache-oblivious
and cache-efficient algorithm on time bound.

b) We give out a sublinear O(
√
n log n) time and optimal

O(n2) work 1D algorithm (Theorem 6 in Sect. III-A)
with non-optimal O(n2) space and O(n2/B) cache
bounds. This algorithm provides new insight on how to
solve DP recurrences with more than O(1) dependency
and is a prerequisite for the more complicated GAP
problem.

2) The GAP problem:
a) We give out a superlinear O(n log n) time, opti-

mal O(n3) work GAP algorithm (Theorem 11 in
Sect. III-B), which achieves optimal O(n2) space and
optimal O(n3/(B

√
M)) cache bounds in a cache-

oblivious fashion. This result improves over prior
cache-oblivious and cache-efficient algorithm [2], [3]
on time bound.

b) we give out the first sublinear O(n3/4 log n) time
and optimal O(n3) work algorithm for the general
GAP problem (Theorem 13 in Sect. III-B) with non-
optimal O(n3) space and O(n3/B) cache bounds. This
result improves over Galil and Park’s sublinear time
algorithm [1] on work bound, thus answers their open
question.

II. THEORETICAL MODELS

Parallel Model: We adopt the work-time model [13] (also
known as work-span model [14]) to calculate work and time
complexities. The model views a parallel computation as a
Directed Acyclic Graph (DAG). Each vertex stands for a piece
of computation with no parallel construct and each directed
edge represents some control or data dependency between the
pair of vertices. For simplicity, we count every arithmetic
operation such as multiplication, addition, and comparison
uniformly as an O(1) operation. The model calculates an
algorithm’s time complexity (T∞) by counting the number of
arithmetic operations along its DAG’s critical path. Work (T1)
is then the sum over all vertices, with parallelism defined as
T1/T∞. Time (T∞) and work (T1) bounds characterize the
running time of a parallel algorithm on infinite number and
one processor(s), respectively. We call a parallel algorithm
work-efficient and / or cache-efficient if its total work T1 and
/ or serial cache bound Q1 matches asymptotically that of
the best serial algorithm for the same problem, respectively.
Analogously, we have the notion of space-efficient. We call
a parallel algorithm sublinear-time if its time bound T∞ is
sublinear to the problem dimension n, i.e. T∞ = o(n).
Memory Model: By the convention of COP algorithms, we
calculate only a parallel algorithm’s serial cache complexity,
i.e. serialize all its parallel constructs by some order as
if it were run on one single computing core, in the ideal
cache model [15]. This simplification is reasonable because a
corresponding parallel cache complexity under a randomized
work-stealing (RWS) runtime scheduler can be derived directly
by Qp = Q1 +O(pT∞M/B) [16], [17]. In the rest of paper,
the term “cache bound (complexity)” stands for “serial cache
bound (complexity)” unless otherwise specified.

The ideal cache model has an upper level cache of size
M and an unbounded lower level memory. Data exchange
between the upper and lower level is coordinated by an omni-
scient (offline optimal) cache replacement algorithm in cache
line of size B. It also assumes a tall cache, i.e. M = Ω(B2).

To accommodate parallel execution, we further assume that
the lower level memory follows CREW (Concurrent Read
Exclusive Write) convention [18]. Every concurrent reads from
the same memory location can be accomplished in O(1) time,
while n concurrent writes to the same memory cell have
to be serialized by some order and take O(n) total time to
accomplish. By Brent’s theorem [19] , the above work-time
model is justified.

The Nested Dataflow (ND) Model: Tang et al. [11] firstly
observe that classic COP method may introduce excessive
control dependency among recursively derived sub-problems,
which un-necessarily lengthens DAG’s critical path. Dinh et
al. [12] formalize an ND method based on the observation.
The ND method bears some similarity to pipelining technique
[13], future [20], [21], [22], [23] and / or synchronization
variable [24]. But instead of explicitly chaining all vertices
in a DAG beforehand, the ND method recursively , where
the term “Nested” comes from, refines and expands the DAG
on only data dependency, where the term “Dataflow” comes
from, in a lazy fashion. Therefore, it not only shortens critical
path, i.e. time bound, or equivalently maximizes parallelism,
of an algorithm, but also achieves cache efficiency in a cache-
oblivious fashion [15] because it keeps the recursive executing
order among vertices. More discussions on the differences
between the ND method and related works can be found in
[12].

We describe the ND method in general as follows. The
method employs a new dataflow operator “ ” (Pronounced
“Fire”) to address the notion of partial dependency. If we
define a task as a set of vertices of a DAG, a partial depen-
dency between a pair of tasks a and b , denoted by“a b”,
indicates that a subset of subtasks of b depends on a subset of
subtasks of a . That is to say, b will get notified by some signal ,
from either runtime system or a depending on implementation,
and can start executing some subset of its subtasks when
their data dependency are satisified. If an algorithm follows
a divide-and-conquer framework, as many COP algorithms
does, the “ ” operator will preserve recursive executing order
among subtasks of a and b to attain cache efficiency in a
cache-oblivious fashion. A partial dependency will be refined,
recursively if it’s a recursive algorithm, by fire rules throughout
computation. A partial dependency will stop refinement until
both its source and sink tasks become leaf vertices (vertices
with no parallel construct), in which case the “ ” operator
reduces to a classic “ ;” (Serial) construct. By the definition,
the classic “‖” (Parallel) and “ ;” (Serial) constructs are just
syntactic sugar for the two extreme cases. That is, notation
“a ‖ b” indicates that no subtasks of b depends on any
subtasks of a , i.e. no dependency, while “a ; b” says that
all subtasks of b depend on all subtasks of a , i.e. a full
dependency.

III. WORK-EFFICIENT AND SUBLINEAR-TIME NESTED
DATAFLOW ALGORITHMS

A. The 1D Problem

Organization: We firstly recap Galil and Park’s sublinear-
time algorithm [1] by Theorem 3, which serves as the
foundation for later discussions; Then we address several
components, i.e. a classic COP algorithm by Lemma 4, an
improved ND version by Theorem 5. Finally, we present our
main Theorem 6 for the 1D problem constructed from these
components.

(0, 0)
(0, 1)

(1, 1)

(a) Recursive Divide-And-
Conquer Cache-Oblivious
Algorithm

j

i

(0, 0) (0, n)

(n, n)

T1

T2

Q∗

(b) Square decomposition algo-
rithm, used in Fig. 3c

j

i

(0, 0) (0, n)

(n, n)

(c) The final sublinear time algo-
rithm, using the square decompo-
sition algorithm in Fig. 3b

j

i

(0, 0) (0, n)

(n, n)

(d) The ND algorithm with sub-
linear time and linear space
bounds.

Fig. 3: Different Algorithms for the 1D problem

1) Old Work-Efficient and Sublinear-Time 1D algorithm:
The following algorithm is extracted from Sect. 2 of Galil
and Park’s original work [1]. They firstly reduce the problem
of solving the recurrences of (1) to a shortest path problem,
then solve the shortest path by squaring (the closure method,
i.e. general matrix multiplication on a semiring). Finally, they
reduce the amount of work by the method of indirection.

The main steps are recapped as follows. It defines a matrix
H as follows such that each entry H(i, j) denotes the current
shortest path from coordinate i to j.

H(i, i) = 0 for 0 ≤ i ≤ n
H(i, j) = w(i, j) for 0 ≤ i < j ≤ n (3)
H(i, j) = +∞ for i > j

It then defines a squaring operation on H as follows.

H2(i, j) = min
i≤r≤j

{H(i, r) +H(r, j)} for 0 ≤ i < j ≤ n

(4)

Hk(i, j) is then the length of shortest path from i to j via at
most k edges, and the closure H∗ (H∗ = Hn, according to
Lemma 2 of [1]) contains the lengths of shortest paths between
all pairs of coordinates. Hence, solving the 1D recurrence
reduces to finding the shortest path from 0 to n, i.e. from
(0, 0) to (0, n), which is depicted by the top shaded row in
Fig. 3c.

The squaring operation is basically a general matrix multi-
plication (MM) on a closed semiring and takes the computa-
tional overheads in Lemma 1 [14] to accomplish.

Lemma 1 ([14]): General MM of size n, i.e. an n-by-n
matrix multiplies another n-by-n matrix, on a closed semiring
can be computed in O(log n) time, O(n3) work, O(n3) space
and O(n3/B) cache misses.

Proof: The lemma can be proved by constructing a 2-
way divide-and-conquer algorithm that recursively divides a
dimension-n (n-by-n-by-n) matrix multiplication (MM) into
eight (8) concurrent dimension-(n/2) sub-MMs by allocating
temporary matrix of size n-by-n to hold intermediate results
and merge the results by addition in the end of each recursion.

Lemma 2 (Lemma 3 of [1]): Referring to Fig. 3b, a square
Q∗ of size v, i.e. of size v-by-v, can be computed from two
adjacent triangles T1, T2, and Q by Q∗ = T1QT2 in O(log v)
time, O(v3) space and work, and O(v3/B) cache bounds.

Proof: Assuming that the indices for Q∗, T1, and T2 are
from 1 to m, i.e.

T1 = H∗(i, j) for 1 ≤ i < j ≤ m
T2 = H∗(i, j) for m/2 < i < j ≤ m
Q = H(i, j) for i ≤ m/2 < j

Q∗ = H∗(i, j) = T1QT2 for i ≤ m/2 < j (5)

The semantics of Q∗’s computation stands for computing
the shortest path from i to j by taking the minimum of all
possible paths [(i, p), (p, q), (q, j)], where (i, p) is a cell in
T1 representing the shortest path from i to p, (p, q) is a cell
in Q standing for an edge from p to q, and (q, j) is a cell
in T2 representing the shortest path from q to j. Since the
computation of T1QT2 requires two squaring operations, each
of which costs O(log v) time and O(v3) work and space,
and O(v3/B) cache according to Lemma 1, the lemma then
follows.

Theorem 3 (Refinement of Theorem 2 of [1]): There is an
algorithm that solves the 1D recurrences of (1) in a sublinear
O(
√
n log n) time, optimal O(n2) work, O(n2) space, and

O(n2/B) cache bounds.
Proof: Referring to Fig. 3c, the algorithm can be formu-

lated as follows:
1) Dividing the top row of H∗ into n/v intervals, where v

is a parameter to determine later.

2) Computing n/v shaded triangles of H∗ on diagonal
bounded by cells (i, i), (i, i + v), and (i + v, i + v) for
0 ≤ i ≤ n/v − 1, simultaneously by repeated squaring
as the algorithm in Lemma 2. Observing that each top-
level triangle is computed recursively in log v levels and
that top-level computation dominates, the overheads to
compute one top-level triangle then sum up to O(log2 v)
time, O(v3) work and space, and O(v3/B) cache misses.
Summing up the overheads for n/v concurrent top-level
triangles yield the costs of O(log2 v) time, O(nv2) work
and space, and O(nv2/B) cache misses.

3) Computing the top shaded row of H∗ from the left-most
interval to right-most in n/v iterations. For convenience,
let’s denote the top shaded row of H∗ by f . The first
interval, i.e. f(0), . . . , f(v), is given by the top row
of first shaded triangle for free; For l ∈ [2, n/v), we
compute the l-th interval , i.e. f((l−1)v+1), . . . , f(lv),
by the squaring of following three matrices,
a) all previous intervals, i.e. f(0), . . . , f((l−1)v), which

is a 1-by-(l − 1)v matrix. We call it “H∗−” for conve-
nience.

b) the l-th interval of H , i.e. the rectangular region of H
bounded by cells (0, (l− 1)v + 1), ((l− 1)v + 1, (l−
1)v + 1), ((l − 1)v + 1, lv), and (0, lv), which is an
(l−1)v-by-v matrix. We call it “H�”. Note that matrix
H can be computed on-the-fly in O(1) time with no
memory access.

c) the shaded triangle on the same column, i.e. the H∗ re-
gion bounded by cells ((l−1)v, (l−1)v), ((l−1)v, lv),
and (lv, lv), which is a v-by-v triangular matrix. We
call it “H∗4”.

The first squaring of H∗− with H� yields an intermediate
1-by-v matrix H ′− in O(log(lv)) time, O(lv2) space and
work, and O(lv2/B) cache misses; The second squaring
of the intermediate H ′− with H∗4 yields the final 1-by-
v l-th interval in O(log v) time, O(v2) space and work,
and O(v2/B) cache misses. Apparently, the first squaring
dominates.
Summing up over l ∈ [2, n/v] iterations yields a cost of
O((n/v) log n) time, O(nv) space, with temporary space
for squaring of Lemma 1 reused across iterations, O(n2)
work, and O(n2/B) cache misses.

Summing up the overheads of the above two steps and
making v =

√
n yields the conclusion.

Though this algorithm is work-efficient, it’s neither space-
nor cache-efficient since a straightforward cache-oblivious
algorithm requires only O(n) space and incurs O(n/B +
n2/(BM)) cache misses.

2) Cache-Oblivious Parallel 1D Algorithm: Referring to
Fig. 3a, a straightforward cache-oblivious parallel (COP) algo-
rithm recursively divides the work into three or four quadrants
depending on the shape and schedules their executing order
according to the data dependencies in the granularity of
quadrants. We denote the top-left quadrant by (0, 0), top-right
(0, 1), bottom-left (1, 0), and bottom-right (1, 1). Referring

to the pseudo-code in Fig. 4a, the serialization between the
computation of A00 and A01 is because the computation of
A01 requires the results of A00 as input. If an algorithm does
not allocate temporary space, the computation of A11 has to
lay behind A01 by our CREW assumption because they output
to the same region. A similar analysis applies to the pseudo-
code in Fig. 4c.

Lemma 4: There is a COP algorithm that solves the 1D
recurrences of (1) in O(n log n) time, optimal O(n2) work,
optimal O(n) space, and optimal O(n/B+n2/(BM)) cache
bounds.

Proof: The COP algorithm is given in Fig. 3a and we
have following recurrences for its time and cache complexity,
respectively. The subscripts of 4 and � in the recurrences
stand for the COP-1D4 and CO-1D� algorithms in Figs. 4a
and 4c respectively. Equation (10) is the stop condition of
cache bound. The recurrences solve to T∞,4(n) = O(n log n)
and Q1,4(n) = O(n/B + n2/(BM)), with an optimal O(n)
space bound because the algorithm does not use temporary
space.

T∞,4(n) = 2T∞,4(n/2) + T∞,�(n/2) (6)
T∞,�(n) = 2T∞,�(n/2) (7)
Q1,4(n) = 2Q1,4(n/2) +Q1,�(n/2) (8)
Q1,�(n) = 4Q1,�(n/2) (9)
Q1,4(n) = Q1,�(n) = O(n/B) if n ≤ ε6M (10)

COP-1D4(A)

1 COP-1D4(A00) ;
2 CO-1D�(A01, A00) ;
3 COP-1D4(A11) ;
4 return
(a) The COP algorithm for a tri-
angular region

+© 4�
 -© = {

+©00
4�
 { -©00, -©01}

, +©11
4�
 { -©10, -©11}}

(b) The fire rule of ND algorithm

CO-1D�(A,B)

1 CO-1D�(Al, Bl)
‖ CO-1D�(Ar, Br) ;

2 CO-1D�(Al, Br)
‖ CO-1D�(Ar, Bl) ;

3 return
(c) The COP algorithm for a rect-
angular region

ND-1D4(A)

1 ND-1D4(A00)
4�

CO-1D�(A01, A00) ;
2 ND-1D4(A11) ;
3 return
(d) The ND algorithm for a tri-
angular region

Fig. 4: Pseudo-codes of cache-oblivious 1D algorithms

3) Nested Dataflow 1D algorithm: We can improve the
time bound of above COP algorithm by refining the data
dependency of COP-1D4 algorithm recursively by the ND

method as shown in Fig. 4d. The “
4�
 ” construct in figure

indicates a partial dependency between the source and sink
tasks, which is specified by the fire rule in Fig. 4b. The ⊕
and 	 notation are wildcards to match at runtime source and
sink tasks respectively. The fire rule says that the (0, 0), (0, 1)

subtasks nested in the same sink task only partially depends
on the (0, 0) subtask of the source, respectively the (1, 0) and
(1, 1) subtasks of the same sink partially depends on the (1, 1)
subtask of the source. The partial dependences will then be
recursively refined by the same rule until base cases where
the “

4�
 ” construct will reduce to a “ ;” construct.

Theorem 5: There is an ND algorithm that solves the 1D
recurrences of (1) in O(n) time, optimal O(n2) work, O(n)
space and O(n2/(BM)) cache bounds.

Proof: Referring to Fig. 4d, the ND algorithm just re-
schedules subtasks to run as soon as their input data are ready
so that it does not use more space or incur more cache misses
than the classic COP counterpart in Fig. 4a. Its new time
recurrences are as follows, which solve to O(n).

T∞,4(n) = T
∞,

4�

(n/2) + T∞,4(n/2) (11)

T
∞,

4�

(n) = 2T
∞,

4�

(n/2) (12)

T
∞,

4�

(1) = T∞,4(1) + T∞,�(1) (13)

Theorem 6: There is an ND algorithm that solves the 1D
recurrences of (1) in O(

√
n log n) time, optimal O(n2) work,

O(n2) space and O(n2/B) cache bounds.
Proof: We construct the algorithm based on following

observations.
1) The

4�
 construct in (12) will invoke some kernel func-

tions to compute triangular and rectangular shape regions
respectively when the recursion goes down to base cases.

2) Galil and Park’s algorithm in Theorem 3 computes a
triangular shape region in sublinear time and optimal
work.

3) By using extra temporary space, i.e. like the general MM
algorithm in Lemma 1, we can have a sublinear-time
and optimal-work algorithm to compute rectangular shape
regions as well.

4) Combining the two sublinear-time and optimal-work ker-
nel functions for triangular and rectangular shape regions
respectively, we can stop the recursion of (12) earlier.

We allocate temporary space for the CO-1D� algorithm in
Fig. 4c and have following SUB-1D� algorithm as shown in
Fig. 5.

In Fig. 5, lines 4–5 parallelizes the task of updating A
from B to four subtasks by allocating temporary space of
A′, which is of the same size of A. The “ ;” construct on
line 5 is a synchronization operation so that the overall task can
not proceed until all four concurrent subtasks are done. Note
that the merge by addition on line 7 can be parallelized and
accomplished in O(1) time if counting only data dependency.
The recurrence for SUB-1D�’s time bound is then revised to
(14), which solves to O(log n).

T∞,�(n) = T∞,�(n/2) +O(1) (14)

Supplying this SUB-1D� for rectangular shape regions and
Galil and Park’s final algorithm for triangular shape regions

SUB-1D�(A,B)

1 // Update region A from B
2 // Allocate temporary space
3 A′ ← alloc(sizeof(A))
4 SUB-1D�(Al, Bl) ‖ SUB-1D�(Ar, Br)
5 ‖ SUB-1D�(A′l, Br) ‖ SUB-1D�(A′r, Bl) ;
6 // Merge A′ to A by addition
7 A = A+A′

8 free(A’)
9 return
Fig. 5: A Sublinear-Time and Optimal-Work algorithm for the
rectangular shape region of 1D problem

to stop the recursion of (12) earlier, we have following stop
condition of (15) to replace (13), where v is a parameter to
be determined later.

T
∞,

4�

(v) = T∞,4(v) + T∞,�(v) (15)

T∞,4(v) = O(
√
v log v) (16)

T∞,�(v) = O(log v) (17)

T
∞,

4�

(v) then solves to O(
√
v log v). Supplying this re-

sult into (12), we have T∞,4(n) = O(n/v ·
√
v log v) +

T∞,4(n/2) = O(n/
√
v log v). By making v = n, the time

bound solves to O(
√
n log n). It’s easy to verify that SUB-1D�

has the same space and cache bounds as Galil and Park’s
final algorithm for triangular regions (Theorem 3). The overall
space and cache bounds then are a simple summation over all
regions.
Discussions: Our result of Theorem 5 improves over prior
cache-oblivious and cache-efficient algorithm of Lemma 4 on
time bound without sacrificing work, space, and cache effi-
ciency. Our result of Theorem 6 gives out another dimension
of tradeoff by reducing further time bound to be sublinear
but at the cost of increasing the space and cache bounds a
bit , actually still be asymptotically the same as that of Galil
and Park’s final algorithm (Theorem 3). Moreover, Theorem 6
provides new insights into solving DP recurrences with more
than O(1) dependency and will show its power in solving the
GAP problem in Sect. III-B.

B. The GAP Problem

Organization: We firstly recap Galil and Park’s final al-
gorithm by Theorem 9, which serves as the foundation for
later discussion; Then we address the classic COP algorithm
developed by Chowdhury and Ramachandran [2], [3], as well
as its ND improvement by Theorem 11; Finally, we combine
all components to yield the main Theorem 13.

C. Sublinear-Time but Non-Work-Efficient GAP algorithm

The key of Galil and Park’s sublinear-time algorithm (Sect.
4 of [1]) is similar to that of the 1D algorithm (Sect. III-A1 of
this paper). That is, firstly, they reduce the GAP problem to a
shortest path problem, then solve the shortest path problem by

the closure method. Finally, they reduce the amount of total
work by indirection.

x

y

(0, 0) (0, n)

(n, 0) (n, n)

(p, q) (p, j)

(i, q) (i, j)

Q10 Q11

Q00 Q01

(a) The 2D square decomposition
algorithm

(n, n) (n, 0)

(0, n) (0, 0)

x

y
z

o

(b) The work of GAP

Fig. 6: The GAP Problem

The main steps as follows are essentially a 2D version of the
closure method for the 1D problem in Sect. III-A1. Firstly, it
defines matrix H as follows such that each entry H(p, q, i, j),
where p < i and q < j, is the current shortest path from
cell (p, q) to (i, j) via one intermediate cell (p, j) or (i, q) as
shown in Fig. 6a. H(·, ·, ·, ·) can be viewed as a combination
of two independent matrices like the one defined by (3) for
the 1D problem, and is a 4D array by itself.

H(i, j, i, j) = 0 0 ≤ i, j ≤ n
H(p, q, i, j) = w(q, j) + w′(p, i) p < i− 1 ∧ q < j − 1

(18)
H(p, q, i, j) = +∞ for all others

H(i− 1, j − 1, i, j) = min{sij , w(j − 1, j) + w′(i− 1, i)}

It then defines a squaring operation on H as follows.

H2(p, q, i, j) = min
p≤s≤i
q≤r≤j

{H(p, q, s, r) +H(s, r, i, j)} (19)

Lemma 7: The squaring operation of (19) on two 4D ma-
trices of dimension n as defined by (18) costs O(log n) time,
O(n6) work and space with O(n6/B) cache misses.

Proof: Referring to (19), since the squaring operation
chooses the two coordinates of intermediate cell (s, r) in-
dependently from p to i and q to j, the update to any cell
requires a min operation on O(n2) intermediate results of
+ operations. By allocating temporary space like that of
Lemma 1, it takes O(log n) time, O(n2) work and space with
O(n2/B) cache misses to update one cell. Summing up over
the O(n4) cells of H yields the conclusion.
By Lemma 2 in [1], H∗ = I + H + H2 + · · · + Hn = Hn

is then the solution to the GAP recurrence of (2) and can be
computed by log n repeated squaring on H . By Lemma 7,
this straightforward computation takes totally O(log2 n) time,

O(n6 log n) work, O(n6) space, and O(n6 log n/B) cache
misses by reusing temporary space across repeated squarings.

Following Lemma 8 reduces the total work by a 2D reduc-
tion technique (The 1D version is in the proof of Lemma 2).

Lemma 8: There is a 2D square decomposition algorithm
that computes the GAP recurrences of (2) in O(log2 n) time,
O(n6) work and space, and O(n6/B) cache misses.

Proof: Referring to Fig. 6a, the algorithm computes the
GAP recurrence by recursively decomposing the 2D region of
H (a 2D projection of H) into four quadrants and computes
H∗ bottom up from the smallest squares to the largest in
log n levels. At any level k, H∗ of (n/2k)2 squares of
size 2k are computed as follows. To compute a square Q
from four quadrants Q00, Q01, Q10, and Q11, the algorithm
firstly computes H∗00,01 = H∗00H00,01H

∗
01 and H∗10,11 =

H∗10H10,11H
∗
11 simultaneously, where H00,01 stands for the

joint H matrix striding quadrants Q00 and Q01, and so on.
Finally H∗ = H∗00,01HH

∗
10,11, where H and H∗ are over the

entire region striding all four quadrants. By Lemma 7, a square
of size 2k can thus be computed in O(k) time, O(26k) work
and space , and O(26k/B) cache misses. Since a square’s
dimension at a higher level is geometrically larger than the
one at a lower level, the work, space, and cache bounds of
the top-level H∗ computation then dominates. The conclusion
then follows.

Theorem 9: The final sublinear-time GAP algorithm in
[1] takes O(

√
n log n) time, O(n4) work and space , and

O(n4/B) cache misses.
Proof: Let f(i, j) be the length of the shortest path from

(0, 0) to (i, j), their algorithm works as follows.
1) It computes H∗ of the squares from bottom up until level

k such that 2k = v, where v is a parameter to be deter-
mined later. Each square of H∗(i, j, i+v, j+v) contains
all pairs of shortest paths within the 2D region bounded
between cell (i, j) and (i + v, j + v). By Lemma 8,
each square’s computation takes O(log2 v) time, O(v6)
work and space, with O(v6/B) cache misses. Since
there are O(n2/v2) of them, which can be computed
simultaneously , the costs of this step sum up to O(n2v4)
work and space, with O(n2v4/B) cache misses.

2) It computes f(i, j) from cell (0, 0) to (n, n) at step size
of v by backward diagonal, i.e. i+ j is constant, in 2n/v
iterations. Squares on the same backward diagonal are
computed simultaneously in the same iteration. As in the
1D version (refer to the proof of Theorem 3), computing
any square f(i, j) on the l-th iteration, i.e. i + j = lv,
requires squaring of following three matrices.
a) All previous squares of f(0, 0) . . f(i−v, j−v), which

can be viewed as a combination of two independent 1-
by-(l−1)v matrices. We denote it by a (1× (l−1)v)2

matrix for convenience.
b) The H values of l-th iteration, which can be viewed

as a combination of two independent (l − 1)v-by-v
matrices. We denote it by a ((l − 1)v × v)2 matrix.

c) The square of level-k H∗ that is computed in above

step (1) and is on the l-th iteration, which can be
viewed as a combination of two independent v-by-v
triangular matrices. We denote it by a (v× v)2 matrix.

As in the 1D case, the squaring of (1× (l−1)v)2 matrix
with ((l − 1)v × v)2 matrix dominates. By Lemma 7,
the squaring of one f(i, j) takes O(log lv) time, O(l2v4)
work and space, with O(l2v4/B) cache misses.
Summing over the n/v iterations for n2/v2 squares of f ,
the costs of this step are O(n/v log n) time, O(n4) work
and space, and O(n4/B) cache misses.

Summing up the overheads of the two steps and making
v =
√
n yields the bounds.

D. Cache-Oblivious Parallel GAP algorithm

COP-GAP4(A)

1 COP-GAP4(A00)
2 ; ((COP-GAP-H�(A01, A00)

; COP-GAP4(A01))
3 ‖ (COP-GAP-V�(A10, A00)

; COP-GAP4(A10)))
4 ; COP-GAP-V�(A11, A01)
5 ; COP-GAP-H�(A11, A10)
6 ; COP-GAP4(A11)
7 return
(a) The COP algorithm for a trian-
gular region A.

COP-GAP-H�(A,B)

1 (COP-GAP-H�(A00, B00)
2 ; COP-GAP-H�(A00, B01))
3 ‖ (COP-GAP-H�(A01, B00)
4 ; COP-GAP-H�(A01, B01))
5 ‖ (COP-GAP-H�(A10, B10)
6 ; COP-GAP-H�(A10, B11))
7 ‖ (COP-GAP-H�(A11, B10)
8 ; COP-GAP-H�(A11, B11))
9 return
(b) The COP algorithm to update
a rectangular region A from B.

x

y

(0, 0) (0, n)

(n, 0) (n, n)

Q10

Q00 Q01

Q11

(c) The ND algorithm

x

y

(0, 0) (0, n)

(n, 0) (n, n)

Q10

Q00 Q01

(d) The ND algorithm to compute
a Γ-shape region.

Fig. 7: Pseudo-code of cache-oblivious GAP algorithms

Chowdhury and Ramachandran [2], [3] devised a cache-
oblivious parallel (COP) algorithm for the GAP recurrences
of (2). The algorithm separates the updates to any quadrant
to two functions, one is an update from cells within the same
quadrant, and the other is an update from a disjoint quadrant
either horizontally or vertically. The COP-GAP4 function in
Fig. 7a is the self-updating function, the computational shape
(total work) of which is a 3D triangular analogue as shown
in the upper-right corner of Fig. 6b. The COP-GAP-H�(A,B)
function in Fig. 7b is to update quadrant A from a disjoint
quadrant B horizontally, the computational shape of which is
a 3D cube as shown in the bottom-right corner of Fig. 6b. The
update from a vertical direction is similar thus omitted.

Lemma 10: The COP algorithm in Fig. 7a computes the
GAP recurrences of (2) in O(nlog2 3) time, optimal O(n2)
space, optimal O(n3) work, and optimal O(n3/(B

√
M))

cache bounds [2], [3].
Proof: Space bound: Since different functions updating

the same quadrant are explicitly separated by synchronizations,
it’s easy to see that it uses no more space than the input 2D
array of A.
Time and cache bound: The algorithm has the following
recurrences for time and cache bounds, which solves to
O(nlog2 3) and O(n3/(B

√
M)), respectively.

T∞,4(n) = 3T∞,4(n/2) + 3T∞,�(n/2)

T∞,�(n) = 2T∞,�(n/2)

Q1,4(n) = 4Q1,4(n/2) + 4Q1,�(n/2)

Q1,�(n) = 8Q1,�(n/2)

Q1,4(n) = Q1,�(n) = O(n2/B) if n2 ≤ ε8M

E. Nested Dataflow GAP algorithm

Theorem 11: There is an ND algorithm that solves the GAP
recurrences of (2) in O(n log n) time, optimal O(n3) work,
optimal O(n2) space, and optimal O(n3/(B

√
M)) cache

bounds.
Proof: Let’s label all the quadrants recursively as in

Fig. 7c. Figure 7c is the 2D projection of a 3D triangular
analogue in Fig. 6b from its 3D o − xyz space to the
o − xy plane. We have an observation that except the last
(11) quadrant, i.e. Q11,11,...,11, all (11) quadrants nested in a
recursion have the same amount of computation as the (00)
quadrants of some of its parent’s siblings, i.e. the quadrants
that lie on the same backward diagonal (i.e. x+y is constant).
For instances, the (11) quadrant of Q00, i.e. Q00,11, has the
same amount of computation as the (00) quadrants of some of
its parent’s siblings, i.e. Q01,00 and Q10,00; Q01,11 and Q10,11

have the same amount of computation as Q11,00, and so on.
Moreover, these quadrants on the same backward diagonal do
not have any data dependencies among each other so can be
scheduled to run in parallel. By this observation, except the
Q11,11,...,11 quadrant, all other (11) quadrants can be pushed
one level up in the recursion and run simultaneously with some
of its parent’s siblings as shown in Figs. 7c and 7d. And this
execution pattern proceeds recursively.

The pseudo-code of ND-GAP4 algorithm is in Fig. 8a.
The key improvement over the classic COP algorithm comes
from associating every COP-GAP� subtask with its source
COP-GAP4 by a partially parallel “ ” construct. The partially
parallel construct will then be refined recursively by fire
rule throughout computation. By fine-grain interleaving of
data dependency across borders of recursion, each base case
of COP-GAP� can start computing as soon as corresponding
source subtask produces the data. At the same time, the
recursive executing order among subtasks is preserved. The
interleaving just allows some subtasks at a higher level of
recursion to start executing earlier. The computation frontier

proceeds by a 2D plane whose projection on the o − xy
plane aligns with some backward diagonal, i.e. x + y is
constant. Referring to Fig. 7c, the projection of proceeding
plane on the bottom o − xy plane sweeps from cell (0, 0) to
(n, n) by backward diagonals. By contrast, a COP-GAP-H/V�
computation in Fig. 7a has to wait until the entire COP-GAP4
at the same recursion level finishes. That is, it introduces
excessive control dependency to subtasks at lower levels.

ND-GAP4(Q)

1 ND-GAPΓ(Q00,01,10)
Γ�
 COP-GAP�(Q11) ;

2 ND-GAP4(Q11) ;
3 return

(a) The ND algorithm

+© Γ�
 -© = {

+©00
4�
 H/V { +©01, +©10}

, { +©01, +©10}
4�
 H/V { -©}}

(b) The fire rule of “Γ�
 ” compu-

tation

+© 4�
 H -© = {

{ +©00
4�
 H { +©01, +©10

, -©00, -©01}

, +©01
4�
 H { -©00, -©01}

, +©10
4�
 H { -©10, -©11}}

, { +©11
4�
 H { -©10, -©11}}}

(c) The fire rule of “
4�
 ” compu-

tation

Fig. 8: Pseudo-code of ND GAP algorithm

Referring to Fig. 8, the ND algorithm proceeds as follows.
Figure 8a says that the computation of a GAP recurrence
without external dependency is accomplished by a partially
parallel Γ�

 computation followed by a recursion on a geomet-
rically smaller Q11 quadrant. Note that the partially parallel
Γ�
 computation not only computes the Γ shape region of
Q00,01,10 but also invokes COP-GAP� function (Fig. 7b) to
update Q11 quadrant with the data from the Γ shape region.
The big partially parallel Γ�

 computation will then be refined
by the fire rule in Fig. 8b to two wavefronts that comprise four
geometrically smaller

4�
 computations. The two wavefronts

execute one after another as follows. Referring to Fig. 7d
1 , it firstly executes the partially parallel computation of
Q00

4�
 H/V {Q01, Q10} (the first wavefront), 2 followed

by {Q01, Q10}
4�
 H/V Q11 (the second wavefront) 3. The

partially parallel computations of the first wavefront share
the same source and will have their sink tasks executed si-
multaneously. By contrast, the second wavefront executes two
distinct source tasks (ND-GAP4) concurrently, while sink tasks
(COP-GAP�) serially because the two sinks write to the same
output region of Q11. After the second wavefront, Q11 quad-
rant will have been updated with the data from the Γ shape

1The +© and -© in Figs. 8b and 8c are wildcards that will match at runtime
to the source and sink subtasks of corresponding construct, respectively.

2This is a shorthand for two partially parallel computations of Q00
4�
 H

Q01 and Q00
4�
 V Q10.

3Similarly, this is a shorthand for two partially parallel computations of

Q01
4�
 V Q11 and Q10

4�
 H Q11

region of Q00,01,10 and can start a recursive GAP computation
of ND-GAP4 on itself without external data dependency. The
4�
 construct recursively refines the partially parallel invoca-
tion of ND-GAP4 (3D triangular analogue) and COP-GAP�
(3D cube) to two parallel steps. There is a synchronization
between the two parallel steps to guard correctness. Figure 8c
shows the horizontal refinement , and the vertical direction is
similar. Referring to Figs. 7d and 8c, Q00

4�
 Q01 is refined to

Q00,00
4�
 {Q00,01, Q00,10, Q01,00, Q01,01} for the first paral-

lel step and {Q00,01, Q00,10}
4�
 {Q00,00, Q00,01, Q00,10} for

the second parallel step. The rule of { +©11
4�
 H { -©10, -©11}}

in Fig. 8c is a nested
4�
 computation on a geometrically

smaller (11) quadrant, which will run concurrently with some
of its parent’s siblings on the same backward diagonal.

By the ND method, we have following recurrences for time
bound.

T∞,ND-GAP4(n) = T∞,ND-GAPΓ�

(n) + T∞,ND-GAP4(n/2) (20)

T∞,ND-GAPΓ�

(n) = T∞,ND-GAP4�

(n/2)

+ max{T∞,ND-GAP4(n/4), T∞,ND-GAP4�

(n/2)}

+ T∞,COP-GAP�(n/2) (21)
T∞,COP-GAP�(n) = 2T∞,COP-GAP�(n/2) (22)
T∞,ND-GAP4�

(n) = 2T∞,ND-GAP4�

(n/2) = O(n) (23)

T∞,ND-GAP4�

(1) = T∞,ND-GAP4(1) + T∞,ND-GAP�(1) (24)

The max{. . .} term of (21) says that the recursively nested
(11) quadrant will be executed concurrently with the sec-
ond wavefront. Referring to Fig. 7d, these are the shaded
(11) quadrants. Since these (11) quadrants are geometrically
smaller, their execution will be completely subsumed in the
max{. . .}, hence will not affect the critical-path length. The
last T∞,COP-GAP�(n/2) term of (21) says that there are two

partially parallel
4�
 computations of the second wavefront to

update the same output quadrant (Q11) so that one update
has to lay behind. Note that their source tasks have no
dependency on each other, thus can still execute concur-
rently. Equation (22) recursively expands the computation of
COP-GAP� without using any more space than inputs and
output. Equation (24) says that the recursive refinement of

4�

computation will stop and reduce to classic serial construct
(“ ;”) at base cases. The time recurrences solve to O(n log n),
which is asymptotically better than the classic COP algorithm
in Lemma 10.

Since the ND algorithm just schedules COP-GAP� (3D
cubes) to run as soon as its sources (3D triangular analogues)
produce the data without changing the recursive executing
order, its work, space, and cache bounds do not change from
those of Lemma 10.

F. Work-Efficient and Sublinear-Time GAP Algorithm

Referring to Fig. 7b, we can see that the computation of
3D cubes by COP-GAP� can be parallelized in the same way

as that of Lemma 1 by using temporary space. We then have
following Lemma 12.

Lemma 12: We have a sublinear-time algorithm to compute
the 3D cubes of dimension-n in Fig. 6b in O(log n) time,
O(n3) work and space, and O(n3/B) cache bounds.

Combining Galil and Park’s sublinear-time algorithm (The-
orem 9) with the ND method of Theorem 11 for the 3D
triangular analogues, and Lemma 12 for the 3D cubes, we
have the first work-efficient and sublinear-time GAP algorithm
as follows.

Theorem 13: There is an ND algorithm that solves the GAP
recurrences of (2) in sublinear O(n3/4 log n) time, optimal
O(n3) work, O(n3) space, and O(n3/B) cache bounds.

Proof: Referring to Fig. 6b, we employ the algorithm
of Lemma 12 to compute the 3D cubes and the algorithm
of Theorem 9 to compute the 3D triangular analogues. At a
high level, we preserve the ND scheduling as shown by the
recurrences of (20) – (23) except that we stop the recursion
of (23) earlier than (24) at size v as follows, where v is a
parameter to be determined later.

T∞,ND-GAP4�

(v) = T∞,ND-GAP4(v) + T∞,ND-GAP�(v) (25)

To bound the parameter v, we need to bound the total work
of this hybrid algorithm to be the optimal O(n3). Since there
are O((n/v)3) 3D cubes, each of which takes O(v3) work
(Lemma 12), and O((n/v)2) 3D triangular analogues, each of
which takes O(v4) work (Theorem 9), we have (26) to bound
the total work, which solves to v = n1/2.

O((n/v)3) ·O(v3) +O((n/v)2) ·O(v4) = O(n3) (26)

Supplying this v into (25) yields T∞,ND-GAP4�

(v) =

O(v1/2 log v) = O(n1/4 log n). Supplying this result into (20)
– (23) yields the conclusion.
Discussions : Our result of Theorem 11 improves over
the prior cache-oblivious and cache-efficient algorithm of
Lemma 10 developed by Chowdhury and Ramachandran [2],
[3] on time bound without sacrificing work, space, and cache
efficiency. By Theorem 13, we solve an open problem raised in
Galil and Park’s paper [1], i.e. we have the first work-efficient
and sublinear-time GAP algorithm, though its space and cache
complexities are non-optimal, which will be left as yet another
open problem for future work.

IV. CONCLUSION AND RELATED WORKS

Concluding Remarks: Galil and Park [1] gave out sev-
eral work-efficient and sublinear-time algorithms for DP re-
currences with more than O(1) dependency. However their
algorithm for the general GAP problem is not work-efficient.
Classic COP approach [2], [3], [10] usually attains optimal
work, space, and cache bounds in a cache-oblivious fashion,
but with a super-linear time bound due to both the updating
order imposed by DP recurrences and excessive control depen-
dency introduced by their approach. In this paper, we present
a new framework to parallelize a DP computation based on a
novel combination of the closure method and ND method. Our

results not only improves the time bounds of classic cache-
oblivious parallel algorithms without sacrificing work, space,
and cache efficiency, but also gives out the first work-efficient
and sublinear-time algorithm for the general GAP problem,
thus provides an answer to the open problem raised by Galil
and Park [1].
Open Problem: It remains an interesting problem whether
it is possible to further bound the space and cache bounds of
the general GAP algorithms to be asymptotically optimal in
a cache-oblivious fashion while keeping its work bound to be
optimal and time bound to be sublinear.
Related Works: Galil, Giancarlo, and Park [5], [6], [1]
proposed to solve DP recurrences with more than O(1)
dependency by the methods of closure, matrix product, and
indirection. Maleki et al. [25] presented in their paper that
certain dynamic programming problem called “Linear-Tropical
Dynamic Programming (LTDP)” can possibly obtain extra
parallelism by breaking data dependencies between stages.
Their approach is based on the property of rank convergence
of matrix multiplication in linear algebra. Their approach in
the worst case can reduce to a serial algorithm. Chowdhury
and Ramachandran [26] considered a processor-aware hybrid
r-way divide-and-conquer algorithms with different values of
r at different levels of recursion. Their cache bounds match
asymptotically that of the best serial algorithm. Chowdhury
et al. [27] proposed a multicore-oblivious (MO) method for
a hierarchical multi-level caching (HM) model. By the MO
method, an algorithm requires no specifying of any machine
parameters such as the number of computing cores, number
of cache levels, cache size, or block transfer size. However,
for improved performance, an MO algorithm is allowed to
provide advices or “hints” to the runtime scheduler through a
small set of instructions on how to schedule the parallel tasks
it spawns. Shun et al. [28] proposed “priority updates” to relax
the serialization of “concurrent writes” to the same memory
cell, thus could possibly improve the time bounds in some
cases. However, not all operations can be prioritized.

REFERENCES

[1] Z. Galil and K. Park, “Parallel algorithms for dynamic programming
recurrences with more than O(1) dependency,” Journal of Parallel and
Distributed Computing, vol. 21, pp. 213–222, 1994.

[2] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic
programming,” in In Proc. of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’06, 2006, pp. 591–600.

[3] R. Chowdhury, “Cache-efficient algorithms and data structures: Theory
and experimental evaluation,” Ph.D. dissertation, Department of Com-
puter Sciences, The University of Texas at Austin, Austin, Texas, 2007.

[4] Wikipedia contributors, “Dynamic programming — Wikipedia, the free
encyclopedia,” 2018.

[5] Z. Galil and R. Giancarlo, “Speeding up dynamic programming with ap-
plications to molecular biology,” Theoretical Computer Science, vol. 64,
pp. 107–118, 1989.

[6] Z. Galil and K. Park, “Dynamic programming with convexity, concavity
and sparsity,” Theoretical Computer Science, vol. 92, no. 1, pp. 49–76,
Jan. 1992.

[7] D. Hirschberg and L. Larmore, “The least weight subsequence problem,”
SIAM Journal on Computing, vol. 16, pp. 628–638, 1987.

[8] F. F. Yao, “Efficient dynamic programming using quadrangle inequali-
ties,” in Proceedings of the Twelfth Annual ACM Symposium on Theory
of Computing, ser. STOC ’80. New York, NY, USA: ACM, 1980, pp.
429–435.

[9] M. Waterman and T. Smith, “Rna secondary structure: a complete
mathematical analysis,” Mathematical Biosciences, vol. 42, no. 3, pp.
257 – 266, 1978.

[10] R. A. Chowdhury, H.-S. Le, and V. Ramachandran, “Cache-oblivious
dynamic programming for bioinformatics,” TCBB, vol. 7, no. 3, pp.
495–510, Jul.-Sep. 2010.

[11] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowdhury,
“Cache-oblivious wavefront: Improving parallelism of recursive dynamic
programming algorithms without losing cache-efficiency,” in PPoPP’15,
San Francisco, CA, USA, Feb.7 – 11 2015.

[12] D. Dinh, H. V. Simhadri, and Y. Tang, “Extending the nested parallel
model to the nested dataflow model with provably efficient schedulers,”
in SPAA’16, Pacific Grove, CA, USA, Jul.11 – 13 2016.

[13] J. JáJá, An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. The MIT Press, 2009.
[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-

oblivious algorithms,” ACM Trans. Algorithms, vol. 8, no. 1, pp. 4:1–
4:22, Jan. 2012.

[16] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in Proc. of the 12th ACM Annual Symp. on Parallel
Algorithms and Architectures (SPAA 2000), 2000, pp. 1–12.

[17] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper, “Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel
futures,” in Proceedings of the Twenty-first Annual Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’09. New York,
NY, USA: ACM, 2009, pp. 91–100.

[18] P. B. Gibbons, Y. Matias, and V. Ramachandran, “The queue-read queue-
write pram model: Accounting for contention in parallel algorithms,”
SIAM J. Comput., vol. 28, no. 2, pp. 733–769, Feb. 1999.

[19] R. P. Brent, “The parallel evaluation of general arithmetic expressions,”
vol. 21, no. 2, pp. 201–206, Apr. 1974.

[20] R. H. Halstead, Jr., “Implementation of Multilisp: Lisp on a multipro-
cessor,” in Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, Austin, Texas, Aug. 1984, pp. 9–17.

[21] ——, “Multilisp: A language for concurrent symbolic computation,”
vol. 7, no. 4, pp. 501–538, Oct. 1985.

[22] G. E. Blelloch and M. Reid-Miller, “Pipelining with futures,” in Pro-
ceedings of the Ninth Annual ACM Symposium on Parallel Algorithms
and Architectures, ser. SPAA ’97. New York, NY, USA: ACM, 1997,
pp. 249–259.

[23] M. Herlihy and Z. Liu, “Well-structured futures and cache locality,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’14. New York, NY,
USA: ACM, 2014, pp. 155–166.

[24] G. E. Blelloch, P. B. Gibbons, G. J. Narlikar, and Y. Matias, “Space-
efficient scheduling of parallelism with synchronization variables,” in
SPAA. ACM, 1997, pp. 12–23.

[25] S. Maleki, M. Musuvathi, and T. Mytkowicz, “Parallelizing dynamic
programming through rank convergence,” in Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP’14. New York, NY, USA: ACM, 2014, pp.
219–232.

[26] R. Chowdhury and V. Ramachandran, “Cache-efficient Dynamic Pro-
gramming Algorithms for Multicores,” in Proceedings of ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), 2008, pp.
207–216.

[27] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran,
“Oblivious algorithms for multicores and network of processors,” in
Proceedings of the 24th IEEE International Parallel & Distributed
Processing Symposium, April 2010, pp. 1–12.

[28] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in SPAA, 2013, pp. 152–163.

	Introduction
	Theoretical Models
	Work-Efficient and Sublinear-Time Nested Dataflow Algorithms
	The 1D Problem
	Old Work-Efficient and Sublinear-Time 1D algorithm
	Cache-Oblivious Parallel 1D Algorithm
	Nested Dataflow 1D algorithm

	The GAP Problem
	Sublinear-Time but Non-Work-Efficient GAP algorithm
	Cache-Oblivious Parallel GAP algorithm
	Nested Dataflow GAP algorithm
	Work-Efficient and Sublinear-Time GAP Algorithm

	Conclusion and Related Works
	References

