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Abstract. Algorithms for range partial sum query on high dimensional
integer grids typically focus on orthogonal ranges, which by definition
demands fixed right triangles between all adjacent boundary edges. We
extend the algorithm to solve 2D homothetic triangular range queries
in 〈O(Nα(N)), O(α2(N))〉 (〈preprocessing bound, query bound〉 of both
time and space since they are identical.), where N is the total number of
grid points and α(·) is a functional equivalence of the inverse Ackermann
function. This asymmetric bound improves over the existing bound for
orthogonal ranges. By the property of homotheticity, we mean that the
angles between any two adjacent boundaries are arbitrarily fixed con-
stants. The technique and bounds of our work can be extended to even
higher dimensional grids.

Keywords: Range partial sum query · Triangular reduction
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1 Introduction

In this paper, we consider the following range partial sum query problem (range
query problem for short). Given a static d-dimensional integer grid A of dimen-
sion n1 × n2 . . . × nd with each grid point1 holding a value drawn from a semi-
group (S,⊕), how fast can we answer online, if preprocessing is allowed, partial
sum queries of a simple shape region Q (i.e. no self-intersection of boundary
edges). For a static grid, we disallow dynamic insertion or deletion of any point
values.

sum(Q) =
∑

(k1,...,kd)∈Q

A(k1, . . . , kd). (1)
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Our problem differs from the classic orthogonal range query problem in that
orthogonal range by definition demands right triangles (90◦) between any two
adjacent boundary edges, while we allow arbitrarily fixed angles. We only require
that all angles are known to the preprocessing algorithm and can not change in
the subsequent queries. We use the general term triangular query to stand for
triangular shape range partial sum query in a 2D-grid, tetrahedral shape range
partial sum query in a 3D-grid, and/or similar extensions to higher dimen-
sional grids. Since (S,⊕) is a semigroup, ⊕ operation is an associative oper-
ator, i.e. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) holds for all x, y, z in the semigroup. No
other restrictions are imposed on this semigroup as is sometimes done by sim-
ilar problems in the literature. For instances, we do not assume idempotence,
i.e. a ⊕ a = a,∀a ∈ S, which is required by the Berkman-Vishkin’s algorithm
[1]; We do not assume any partial or total ordering among elements in S as do
RMQ (Range Minimum Query) algorithms; We do not assume the existence of
an inverse operation of ⊕, otherwise a trivial algorithm exists [2].

We use the same arithmetic model for complexity analysis as in Yao [2,3],
Chazelle and Rosenberg [4,5]. In the arithmetic model, the space bound is given
in units of semigroup elements instead of bits. The preprocessing and query
time are calculated in number of ⊕ operations, ignoring the time to find the
proper memory cells2. We use the notation 〈O(f(N)), O(g(N))〉 to denote the
complexity bounds of a pair of preprocessing and corresponding query algorithm,
respectively. Usually, the space and time bounds of these algorithms are identical
so that we do not differentiate.

Motivation

This research was motivated by our study on the Pochoir stencil compiler
[8], where we have to query the properties of an arbitrary d-dimensional
octagonal shape region. The octagonal shape comes from the projection of a
(d+1)-dimensional hyper-zoid3 onto a d-dimensional spatial grid. Apparently, a
straightforward way to answer an octagonal range query is to decompose it into a
set of rectangular and triangular shape queries. The range query is about partial
sum because each grid point may contains various properties for the compiler to
collect in order to generate an efficient kernel function for the region.

Our Contributions

1. We extend the range partial sum query problem on integer grid from orthogo-
nal to non-orthogonal shapes. In particular, we solve the 2D triangular prob-
lem in 〈O(Nα(N)), O(α2(N))〉 (〈preprocessing bound, query bound〉 of either

2 In the RAM model, we can locate a proper memory cell in a recursive divide-and-
conquer tree by finding the Lowest Common Ancestor (LCA) of the end vertices i of
the query range. The LCA problem can in turn be solved by a ±1 RMQ algorithm
with linear preprocessing time and O(1) query time [6,7].

3 “Hyper-zoid” is a trapezoidal analogue in a (d + 1)-dimensional grid, where d > 1.
The (d + 1)-dimensional grid composes of a d-dimensional spatial grid plus a 1-
dimensional temporal axis.
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time or space since they are identical.), where N is the total number of grid
points and α(·) is a functional equivalence of the inverse Ackermann function
[9]. This result improves over the previous result on rectangular problem, i.e.
the 〈Nα2(N), α2(N)〉 bounds [4,5].

2. We make the following algorithmic contributions:
(a) We generalize the “dimension reduction” technique introduced by

Chazelle and Rosenberg [4,5] to “triangular data reduction” (“triangular
reduction” in short) in Sect. 3;

(b) We show that an arbitrary triangular problem can be reduced to an Isosce-
les Right Triangular (IRT) problem, which can be solved similar to the
square problem (Sect. 2) based on the observation that it has only one
degree of freedom for scaling;

(c) We generalize a recursive algorithmic scheme to get an α(·) bound in the
end of Sect. 2.

3. We conjecture that the optimal bounds of homothetic triangular problem
in an arbitrary d-dimensional integer grid, where d > 1 is a constant, is
〈O(Nα(N)), O(αd(N))〉, in contrast to the 〈O(Nαd(N)), O(αd(N))〉 bounds
of orthogonal problem.

2 Square Shape Range Partial Sum Query Problem

This section considers a simpler problem where the query ranges are of square
shape, i.e. the height over width must be a fixed 1 : 1 aspect ratio, the study
of which will serve as a warm-up for the later homothetic triangular problem
to be discussed in Sect. 3. Intuitively, the square problem can be solved more
efficiently because a rectangle can scale independently on either dimension, i.e.
having two degrees of freedom, while a square has only one in order to keep the
1 : 1 aspect ratio.

Lemma 1. There is an algorithm of 〈O(n1n2 log(n1 + n2)), O(1)〉 bounds to
solve the 2D square range partial sum query problem on an integer grid of dimen-
sions N = n1 × n2,

Proof. We prove the lemma by construction as follows. Without loss of gener-
ality, we assume that n1 ≥ n2. Referring to Fig. 1, the preprocessing algorithm
works as follows.

1. We divide the n1 × n2 grid into a 2× 2 subgrids, each of dimension n1/2 ×
n2/2. We store on each point p inside a subgrid g four partial sums reduced
from all values contained within the maximum rectangle bounded by p and
one of the four corner vertices of g. We call this procedure corner reduc-
tion , respectively the partial sums corner values. The corner reduction can
accomplish in O(n1n2) time and space using dynamic programming.

2. We recursively divide each subgrid into a 2 × 2 array of subgrids, each of
dimension n1/22 × n2/22, and perform corner reductions for every points
within every subsubgrids. This procedure continues until the size of each
subgrid reaches O(1).
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Apparently, the cost of dynamic programming at each level of recursion
is O(n1n2), and there are O(log n2) levels of recursion. The total prepro-
cessing overhead, for either time or space, thus sums up to P�,0(n1, n2) =
O(n1n2 log n2).

Given an arbitrary square query range with dimension e� ∈ [n2/2k+1, n2/2k)
for some integer k ∈ [0, log n2], i.e. 0 ≤ k ≤ log n2, it can stride at most four
intersecting subgrids at recursion level k, i.e. subgrid of dimension n1/2k × n2/2k,
because of the fixed 1 : 1 aspect ratio. In other words, there will be exactly one
corner vertex of the four intersecting subgrids sitting inside the square query
range. If we assume that locating the intersecting corner vertex as well as the
four neighboring subgrids is free (as is true in the arithmetic model or the RAM
model, see the footnote in Sect. 1), the partial sum of the query range is then a
simple summation of the four corner values stored in the vertices. Q�,0(n1, n2) =
3 = O(1). We name the procedure corner query . 	

Theorem 1. There is an algorithm of 〈O(n1n2α(n1 + n2)), O(α2(n1 + n2))〉
bounds to solve the 2D square range partial sum query problem on an integer
grid of dimension N = n1 × n2.

Proof. Referring to Figs. 1 and 2, we prove the theorem by constructing a recur-
sive algorithmic scheme as follows. The inputs to the recursive algorithmic
scheme are:

1. A square algorithm of 〈P�,k(n1, n2) = O(n1n2f(n1 + n2)), Q�,k(n1, n2) =
O(1)〉 bounds, where the subscript k indicates the k-th recursive application
to the scheme, and f(n) < n − 2 is a function of problem dimension n.

2. A 1D algorithm of 〈P−,k(n) = O(nf(n)), Q−,k(n) = O(1)〉 [2,3,9].

For simplicity, we assume that n1 = Θ(n2) in the following analysis.
The preprocessing algorithm recursively partitions the input grid of dimen-

sion n1 × n2 into a 2D n1
f(n1+n2)

× n2
f(n1+n2)

array of subgrids, each of dimension
f(n1+n2)×f(n1+n2), until the size of each subgrid reaches O(1). At each level
of recursion, the preprocessing algorithm P�,k+1 conducts corner reductions, line
reductions, and block reductions on subgrids as follows.

1. Corner reduction: The algorithm performs corner reductions for every
point with respect to the containing subgrid as in Lemma1. The prepro-
cessing overhead of each subgrid is O(f2(n1 + n2)) and sums up to O(n1n2)
over the entire input grid.

2. Line reduction: Firstly, the algorithm reduces each horizontal line segment
of length f(n1 + n2) within each subgrid into one single value by the ⊕ oper-
ation. That is, a horizontal line of length n2 is reduced to a 1D array of
n2/f(n1+n2) reduced values. The algorithm then calculates the partial sums
of the f(n1 + n2) reduced values (from horizontal line segments) within each
subgrid with respect to the top and bottom boundary edges, respectively.
That is, for the input grid with n1 rows of horizontal lines, there will be 2n1

(one n1 rows comes from the reduction with respect to the top edge, another
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n1 rows comes from the reduction with respect to the bottom edge) arrays,
each of n2/f(n1 + n2) line values. Thirdly, the algorithm applies the 1D
preprocessing algorithm, i.e. P−,k, to the 2n1 arrays of horizontal line values.
Symmetrically, the algorithm applies the line reductions to all vertices line
values. The horizontal line reduction takes 2n1 · P−,k

(
n2

f(n1+n2)

)
= O(n1n2)

time and space, which is asymptotically the same as the vertical line reduc-
tion. The overall line reductions thus sum up to O(n1n2) space and time as
well.

3. Block reduction: The algorithm reduces all points within each subgrid into a
single partial sum by the ⊕ operation and get a 2D array of n1

f(n1+n2)
× n2

f(n1+n2)

block values. We then apply the preprocessing algorithm of P�,k, i.e. the
input square algorithm, to the array of block values. The block reduction
will take P�,k(n1/f(n1 + n2), n2/f(n1 + n2)) = O( n1

f(n1+n2)
· n2

f(n1+n2)
·

f( n1
f(n1+n2)

)) = O(n1n2) for either time or space.

Recursive reduction: We recursively apply the above corner, line, and block
reductions to all 2 × 2 array of subgrids of dimension 2f(n1 + n2) × 2f(n1 + n2)
with subsubgrids of dimension f(f(n1 + n2)) × f(f(n1 + n2)). By a recursive
application to all such 2 × 2 array of subgrids, we cover the case when a lower
level (with recursion level > k) square query range sits between the boundary
of two adjacent subgrids based on the fact that it can not stride more than four
subgrids of level-k.

The preprocessing overhead of one round of above reductions can be calcu-
lated as follows. If we define f (i)(n) = n if i = 0 and f (i)(n) = f(f (i−1)(n))
if i > 0, it’s not hard to see that the preprocessing overhead of any 2D
array of dimension 2f (k)(n1 + n2) × 2f (k)(n1 + n2) with subgrids of dimension
f (k+1)(n1+n2)×f (k+1)(n1+n2) sum up to O((f (k)(n1+n2))2). Since the entire
n1×n2 grid has O(( n1n2

f(k)(n1+n2)
)2) such 2D arrays, the overall overheads over the

entire grid sum up to O(n1n2) for any recursion level. Since the preprocessing
proceeds recursively for f∗(n1 +n2) levels4, the overall preprocessing overheads,
for either time or space, are O(n1n2f

∗(n1 + n2)).
The query algorithm works as follows. Assuming that the input square query

range is of dimension e� ∈ [f (k+1)(n1 + n2), f (k)(n1 + n2)), i.e. the square is
of dimension e� × e�, the key observation is that it can stride at most one
2 × 2 array of subgrids of dimension 2f (k)(n1 + n2) × 2f (k)(n1 + n2). Since we
have preprocessed all such 2 × 2 array of subgrids, we can answer the query at
recursion level k by that specific 2 × 2 array of subgrids. More specifically, it
can be answered by an “inter-block query”, i.e. a partial sum on the results
returned from the following queries: one square query on the data structure
preprocessed by “block reduction”, two horizontal line queries (1D queries), two
vertical line queries (1D queries) by “line reduction”, and four corner queries by
“corner reduction”. Since we assume that we can locate a proper recursion level
and the specific 2 × 2 array of subgrids in O(1) time and the query time of all

4 We define f∗(n) = 0 if n ≤ 1, otherwise f∗(n) = 1 + f∗(f(n)).
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input algorithms at any recursion level is O(1), the total query overhead sums
up to O(1) as well.

This completes one round of application to the recursive algorithmic scheme
for the square problem. The resulting algorithm is of 〈O(n1n2f

∗(n1+n2)), O(1)〉
bounds. If we keep supplying the resulting more advanced algorithm into the
above recursive algorithmic scheme, we eventually will get the optimal 〈O(n1n2

α(n1 +n2)), O(α2(n1 +n2)〉 algorithm, where α(n) = min{k| log

k︷ ︸︸ ︷∗ ∗ . . . ∗(n) ≤ 2}
is a functional equivalence of the inverse Ackermann function [9].

We need a bit more explanation on the query bound. The recurrence of query
time is Q�,k+1(n1, n2) = Q�,k(n1/f(n1+n2), n2/f(n1+n2))+4Q−,k(n2/f(n1+
n2)) + 3 according to the above “inter-block query” procedure. Since the query
overhead of 1D algorithm Q−,α(n) = O(α(n)) and the recursive application can
continue up to α(n1 + n2) rounds, we have Q�,α(n1+n2)(n1, n2) = 4

∑α(n1+n2)
k=0

Q−,k(n1, n2) + 3α(n1 + n2) = O(α2(n1 + n2)). 	


Fig. 1. This diagram depicts the corner,
line, and block reductions.

Fig. 2. This diagram demonstrates
several possible square shape queries

In summary, our approach, namely the “recursive algorithmic scheme”,
has the following general framework.

1. We design an initial algorithm I that solves the problem correctly, but not
necessarily very efficiently.

2. We develop a recursive algorithmic scheme M, into which we plug I and make
the resulting algorithm M(I) behave functionally identical to I, but with
asymptotically different (ideally improved) complexity bound. M remains
oblivious of the internal structure of I, but the knowledge of the asymptotic
bounds of I may help.

3. We repeat the above two steps for several rounds where in any given iteration
i > 0 the input algorithm M(i−1)(I) is the resulting algorithm from the (i−1)-
th application of the recursive algorithmic scheme M. The goal of repeated
self-application is to reach even better bounds (ideally an α(·) bound).
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3 Triangular Range Query Problem

This section discusses the 2D triangular problem. We assume that all angles of
the triangular shape are fixed constants and known to the preprocessing algo-
rithm. We argue that this is not a weaker version of the classic orthogonal range
query problem because an orthogonal range by definition requires fixed right
angles between all adjacent boundaries.

Outline of the high-level idea:

1. Reducing an arbitrary triangular range query problem to an isosceles right
triangular (IRT for short) problem: We have an observation that there is
always a smallest feature triangle of the query triangular shape, and we
can tile up the entire grid by feature parallelograms composed of feature
triangles and corresponding inverted. A feature triangle is a smallest tri-
angle that has the query triangular shape and has all its vertices on the grid
points. Similarly, we have the notion of feature parallelogram . Referring to
Fig. 5, if we reduce every feature triangle and its corresponding feature par-
allelogram (left-hand side) to two partial sum values (Δ and � respectively
in the figure) and store them as a new grid point, we get a new reduced grid
on the right-hand side. By the reduction, an arbitrary triangular range query
on the original grid (left-hand side) is equivalent to an IRT query on one of
the reduced grids (right-hand side) by aligning its oblique line with one of
the tilings of feature parallelograms. To align with all possible input query
ranges, we can have up to O(|Δ|) different reduced grids, where |Δ| is the
number of points internal to a feature triangle. In the rest of paper, we use
the term “triangle” to stand for IRT unless otherwise specified.

2. Extending the notion of data reduction to triangular prefix/suffix reduction.
3. The key observation is then an input IRT range of dimension eΔ will stride

at most one 3 × 3 array of subgrids of dimension 3(eΔ/2) × 3(eΔ/2), where
eΔ/2 is the dimension of the IRT’s largest embedded square.

Organization: We first address how to preprocess all triangular prefix/suffix
partial sums in linear time and space by Lemma2; We then construct an ini-
tial algorithm in Theorem2 and a recursive algorithmic scheme in Theorem 3,
respectively.

Definitions and Conventions throughout the section:

1. All coordinate systems in the figures of this paper have horizontal axis indexed
from left to right (small coordinate on the left and large on the right), and
vertical axis from bottom to top (small coordinate on the bottom and large
on the top).

2. Referring to Fig. 3, for columns to the left of Lv, we define the triangular
prefix “v(i, j).Δprefix” as the partial sum of the largest IRT bounded between
the bottom-left vertex (i, j) and partition line Lv, where i is the horizontal
coordinate and j is the vertical coordinate, respectively.
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3. Referring to Fig. 4, for columns to the right of Lv, we define the triangular
suffix “v(i, j).Δ suffix” as the partial sum of the largest IRT bounded between
the top-right vertex (i, j) and partition line Lv.

4. Note that it depends on the orientations of IRT and the partition line whether
the reduction to the left, right, upper, lower side of the partition line is for
triangular prefix or suffix.

5. We define an IRT’s core length (e�) as the dimension of its largest embedded
square. We denote an IRT’s dimension, i.e. the horizontal/vertical base, by
eΔ. Clearly, eΔ = 2e�.

Fig. 3. Triangular prefix

Fig. 4. Triangular suffix

Fig. 5. This diagram shows how to
reduce an arbitrary triangular problem
to an IRT problem. In this diagram,
every grid point on the right-hand side
holds two values, i.e. the partial sum of
a feature triangle (Δ) and of its feature
parallelogram (�).

Lemma 2. For an IRT range query on a reduced grid, we can preprocess all
triangular prefixes and suffixes with respect to a given partition line in time and
space linear to the size of grid.

Proof. Referring to Figs. 3 and 4, we assume without loss of generality a vertical
partition line Lv. Initially, each grid point on the reduced grid stores two values,
one is the partial sum of a feature triangle (Δ) and the other is the partial
sum of the corresponding feature parallelogram (�). We compute the triangular
prefixes and suffixes by dynamic programming with respect to Lv as follows.



Non-orthogonal Homothetic Range Partial-Sum Query on Integer Grids 281

1. We can compute all triangular prefixes to the left of Lv column by column
by the recurrences of (2) and (3).

v(i, j).Δprefix = v(i, j).Δ + v(i + 1, j + 1).Δprefix +v(i + 1, j).� (2)
v(i, j).� = v(i + 1, j). � +v(i, j).� (3)

In the recurrences, v(i, j).Δ and v(i, j).� is the partial sum of feature trian-
gle and corresponding feature parallelogram stored at cell (i, j), and v(i, j).�
denotes the partial sum of one horizontal line segment bounded between coor-
dinate (i, j) and Lv. By the dynamic programming recurrences, we can com-
pute all triangular prefixes in time and space linear to the size of grid.

2. We can compute all triangular suffixes to the right of Lv column by column
by the recurrences of (4).

v(i, j).Δ suffix = v(i, j).Δ + v(i − 1, j − 1).Δ suffix +v(i, j − 1). �� (4)

In the recurrence, v(i, j − 1). �� stands for the partial sum of one vertical
line segment bounded between cell (i, j − 1) and the horizontal base of the
largest IRT bounded between (i, j) and Lv. In Fig. 4, v(i, j − 1). �� is the
vertical line segment shaded by mini-grid.
Observing that the length of v(i, j). �� is always i − 1 for all �� on the
same column i, we denote it by di = i − 1, i ≥ 1. We can then compute
all v(i, j). �� values column by column by the following simple dynamic
programming algorithm.

For the i-th column to the right of Lv, we partition it into segments of
length di = i − 1, i ≥ 1. We then compute by dynamic programming for
every point on the column the partial sum from itself to the top and bottom
vertices of the holding segment and store them as v(i, j). � and v(i, j). �,
respectively. Now, it’s clear that any v(i, j). �� can be computed in O(1)
time by summing up one � and one � value of cell (i, j) with respect to the
top and bottom vertices of the holding segment.

Since the preprocessing time for �� values are amortized O(1) for every grid
point, it’s not hard to see that the entire preprocessing overhead of triangular
suffixes are linear as well by (4). 	


Theorem 2. There exists an algorithm that can solve the 2D triangular range
partial sum query on a grid of dimension n1 ×n2 in bounds of 〈O(n1n2 log(n1 +
n2)), O(1)〉.
Proof. To simplify the discussion, we assume without loss of generality that
n1 ≥ n2 and n1 = Θ(n2). Referring to Figs. 6 and 7, we construct a preprocessing
algorithm for 2D triangular range query problem as follows:

1. We divide the n1 × n2 grid into a 2 × 2 array of subgrids, each of dimen-
sion n1/2 × n2/2, ignoring the at most one (1) row or column difference
between subgrids to simplify the discussion. More generally, referring to
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Fig. 6. Perform corner reduction (up to 2
directions) in initial triangular algorithm

Fig. 7. Perform triangular prefix/suffix
(up to 2x) in initial triangular algorithm

Fig. 8. Query in initial triangular
algorithm

Fig. 9. Query in recursive algorithmic scheme
for triangles

Fig. 7, at each recursion level k, where k ∈ [0, log n2], we divide each grid
of dimension n1/2k × n2/2k into a 2 × 2 array of subgrids, each of dimension
n1/2k+1 × n2/2k+1. Within each subgrid, we perform corner reductions for
all points with respect to two vertices, depending on the orientation of the
query triangular shape; We also compute triangular prefixes and suffixes for
all grid points up to 2x of the subgrid’s dimension with respect to every ver-
tical boundaries. The reason behind the 2x triangular prefixes and suffixes
computation will become clear in the query algorithm. Since the preprocess-
ing complexity for both corner reduction and triangular prefixes/suffixes are
linear, the overall overhead for any recursion level is clearly linear.

2. Summing up the overhead over all log n2 recursion levels and O(|Δ|) different
tilings yields the claimed preprocessing bound, where |Δ| is a constant for
any given query triangular shape.

The query algorithm works as follows. Given an arbitrary input triangular
query range, we firstly align its oblique line to one of the O(|Δ|) tilings, thus
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reduce it to an IRT range query. Analogous to the case of square range query
(Lemma 1), we have an observation that an IRT range query with core length
e� ∈ [n2/2k+1, n2/2k) can stride at most one 3×3 array of subgrids with dimen-
sion 3(n1/2k) × 3(n2/2k), thus can be answered by summing up one triangular
prefix (up to 2x of the subgrid’s dimension), one triangular suffix, and up to
three (3) corner queries as shown in Fig. 8. 	

Theorem 3. There exists a recursive algorithmic scheme that can solve the 2D
triangular range partial sum query on a grid of dimension n1 × n2 in bounds of
〈O(n1n2α(n1 + n2)), O(α2(n1 + n2))〉.
Proof. Referring to Fig. 9, we construct a recursive algorithmic scheme as follows.

We assume an input triangular algorithm with 〈PΔ,i(n1, n2) = O(n1n2f(n1+
n2)), QΔ,i(n1, n2) = O(1)〉 bounds, and an input 1D algorithm with 〈P−,i(n) =
O(nf(n)), Q−,i(n) = O(1)〉 bounds, where f(n) < n − 2 is a function of the
input problem’s dimension and subscript i specifies the rounds of repeated self-
application to the recursive algorithmic scheme as in the case of square problem
(proof of Theorem 1). Again, we assume n1 = Θ(n2) to simplify the discussion.

Analogous to the recursive algorithmic scheme for the square problem (proof
of Theorem 1), at recursion level k, the preprocessing algorithm PΔ,i partitions

an f (k)(n1 + n2) × f (k)(n1 + n2) grid into a f(k)(n1+n2)
f(k+1)(n1+n2)

× f(k)(n1+n2)
f(k+1)(n1+n2)

array

of subgrids, each of dimension f (k+1)(n1 + n2) × f (k+1)(n1 + n2), and conducts
corner reductions, line reductions, triangular prefix/suffix reduction, and block
reductions on all subgrids. Recursively, it preprocesses all 3 × 3 subgrids of
dimension 3f (k+1)(n1 + n2) × 3f (k+1)(n1 + n2) with subsubgrids of dimension
f (k+2)(n1 +n2)×f (k+2)(n1 +n2), and so on. In order to align the oblique line of
input (reduced) IRT query range with one of the 2D arrays, we have to preprocess
for f (k+1)(n1 +n2) differently aligned 2D arrays of subgrids at level k. Since the
preprocessing overhead for one such array is O((f (k)(n1+n2))2/f (k+1)(n1+n2)),
the overhead over all differently aligned arrays is then O((f (k)(n1 + n2))2), and
sum up to O(n1n2) over the entire grid.

The query algorithm works as follows. Assuming that the input (reduced) IRT
range has core length e� ∈ [f (k+1)(n1 + n2), f (k)(n1 + n2)), the key observation
is that the range can stride at most one 3 × 3 array of subgrids of dimension
3f (k)(n1 + n2) × 3f (k)(n1 + n2). Since we have preprocessed all such 3 × 3
subgrids, we can answer the query by summing up at most the following results,
i.e. one triangular query on the data structure preprocessed by “block reduction”,
one horizontal and one vertical line queries (1D queries), one corner query, one
triangular prefix and one triangular suffix query. The query time is O(1) following
a similar argument as in the proof of Theorem1.

The claimed final preprocessing and query bounds then follow similarly to
that of Theorem 1. 	


4 Future Work and Open Problems

We have shown an asymmetric upper bound of 〈O(O(Nα(N)), O(αd(N))〉 for
the homothetic triangular range partial sum query problem. The reason behind
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asymmetry is that we employ the 1D algorithm [2,9] in our recursive algorithmic
scheme. An interesting open problem is whether this bound is tight? A more
interesting problem is how to handle general non-orthogonal range partial sum
query problem without losing much in complexity bounds, i.e. the angles between
adjacent boundaries of input query ranges may change from query to query?

5 Related Work

To the best of our knowledge, all previous research on range partial sum query
problem assumed orthogonal ranges. Yao [2] devised the first 1D partial sum
algorithm with an 〈O(Nα(N)), O(α(N))〉 bound. Seidel [9] provided an excellent
graphical illustration and simplification of the algorithm. Chazelle and Rosen-
berg [4] later extended the algorithm to arbitrary d-dimensional grid with bounds
of 〈O(Nαd(N)), O(αd(N))〉 by the technique of “dimension reduction”. In their
later work [5], Chazelle and Rosenberg proved a lower bound of the 1D offline
problem, where the queries are known ahead of time. They further conjectured
that their multi-dimensional extension is optimal.

Other works in the literature studied variants of the problem, such as the
dynamic version that allows insertions and deletions [10], or special cases such
as RMQ (Range Minimum Query), where properties such as idempotence and
ordering among elements can be utilized [11–18].

Classic orthogonal range searching problem in computational geometry [19]
assumes a contiguous space and sparse points, while in our setting we assume
an integer grid where every point holds a valid value.
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