
Block Size Selection of Parallel LU and QR on PVP-based
and RISC-based Supercomputers∗

Yunquan Zhang
Institute of Software, CAS

P.O. Box 8718
Beijing,100080, P.R. China
zyq@mail.rdcps.ac.cn

Ying Chen
Institute of Computing

Technology, CAS
P.O. Box 2704

Beijing,100080, P.R. China
yingchen@ncic.ac.cn

Yuan Tang
Parallel Processing Institute,

Fudan University
220 Handan Road

Shanghai, 200433, P.R. China
yuantang@fudan.edu.cn

ABSTRACT
In this paper, we proposed a unified framework and tried
to address the optimal block size selection problem for par-
allel blocked LU and QR factorization algorithm used in
ScaLAPACK package, since they use two dimensional block
cyclic data distribution fashion [12], block size plays impor-
tant role in determining the final performance. Through
the analysis with our proposed framework and experiments
on small scale system configuration, we found that among
all factors that affect performance, load balance and local
block size selection play key roles in determining the op-
timal block size on two different type parallel computing
platforms: SR2201(PVP(Pseudo-Vector Processing) based
MPP machine) and DAWNING 3000(RISC-based SMP clus-
ter). In fact, the optimal parallel block size is determined
by the processor grid shape and problem size. Based on this
observation, optimal block size prediction formula for dou-
ble precision real parallel blocked LU and QR on SR2201
and DAWNING3000 with processor grid shape and problem
size as parameters were given, whose prediction results can
match well with the large scale system configuration and
large problem size experimental results. The application of
our framework on other parallel machines and on other ap-
plications program wound be the future work.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and vector im-
plementations; C.4 [Performance of Systems]: Modeling
techniques

∗This work was supported in partial by the National Natu-
ral Science Foundation of China under contract No.60303020
and No.60533020, the National 863 Plan of China under con-
tract No.2006AA01A102 and No.2006AA01A125, and the
Open Foundation No.200505 of State Key Laboratory of
Networking and Switching Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ATIP 3rd China HPC Workshop, November 11, 2007, Reno, NV
Copyright 2007 ACM ISBN 978-1-59593-903-6/11/07 ...$5.00.

General Terms
Performance

Keywords
Optimal Parallel Block Size, PVP, RISC, ScaLAPACK, LU,
QR

1. INTRODUCTION
Blocking [8, 9, 10] and tiling [13, 18, 19, 20] have long been

the effective loop transformation and optimization techniques
used to reduce the work set size, to increase data reuse in
cache, and to provide more resources for compiler optimiza-
tion. Blocking and tiling are thus often used to exploit per-
formance for processors with small and fast cache, large reg-
ister files, pipeline and super-scalar function. However, the
selection of optimal blocking parameters is still a difficult
task until now. This problem becomes complicated since it
is the interaction between program structure, memory access
pattern and underlying memory hierarchy organization on
which the program to be executed. To select optimal block-
ing parameters for one specific application program on one
specific machines, the programmer needs to make detailed
analysis on cache miss behavior [8, 10] of the application
program, and to find out the block size that minimize the
miss rate and cache conflicts. This is not a simple task for
common user. Thus the common way to deal with such situ-
ation is still through lots of experiments to find the changing
trend of local computational speed with block size variation.

The parallelization of blocked sequential algorithms makes
this problem further complicated. Now this problem be-
comes the interaction between the program characteristics,
underlying single processor memory hierarchy, interconnec-
tion network, memory and load balance requirement of par-
allelization. The optimal block size must be selected to
maximize the data reuse in cache, to maximize the network
bandwidth utilization while keeping memory and load bal-
ance among parallel processes. However, these goals usually
can not be satisfied at the same time, the user needs to
trade off among them, i.e., to satisfy the most important
factor while not too worse on other factors.

As we know, the common way to deal with this problem is
to model the execution time of a parallel blocked algorithm
with block size as one parameter, and the optimal block size
can thus be found out through minimizing the total execu-
tion time function [6, 14]. Although this is an effective way,
it is too difficult to be used by common user since it requires

115

too much detailed knowledge on parallel blocked algorithm
implementation [6], i.e., the user needs to model each sub-
routine in this parallel blocked implementation and to deter-
mine too many model parameters. The method used in [14]
simplifies itself by simple assumption on local computational
speed versus block size variation(the computational speed
is constant when the block size changed), but this makes
themselves reach impractical conclusions that block size 1
is the optimal block size and they provide no experimental
results to validate their conclusions. Another way [16] to
resolve this difficult task is to distribute data using small
storage block size(b, keeping better load balance) while to
perform parallel computation using larger algorithmic block
size(w, higher local computational speed), the two impor-
tant goals thus can be reached at the same time. However,
this is at the cost of more communication volume and cost
of block LU factorization(panel factorization) and a fully
distributed version of parallel BLAS library which supports
the distributed panel matrix operations over several proces-
sor rows and columns. The later requirement makes this
method not applicable to machines without support of such
parallel BLAS library. But this would be a useful idea and
can be adopted in the future design of parallel numerical
library.

In this paper, we have no intention to address the prob-
lem of single processor optimal block size selection since it
is specific for certain application and machines, and many
works have been done on this topic. The interested reader
can refer to [8, 9, 10] for more discussions. We assume this
problem can be resolved by heuristic method like ”climb-
ing hill” method and cache miss analysis [10]. Based on
these assumptions, we want to provide one uniform frame-
work on optimal or suboptimal block size selection problem
of parallel program using blocked algorithm. The relative
importance of framework constraint factors can be analyzed
based on theoretical model and experimental results. Our
purpose is to show that after a few small scale experiments
on optimal block size selection and match these results with
framework constraints, we can find out the most important
constraint and its relationship with optimal block size selec-
tion. This relationship can be used on predicting optimal or
suboptimal block size for larger amount of processors and
larger problem size. The timing drivers of parallel double
precision real LU(DLU for short) and QR(DQR for short)
factorization in ScaLAPACK package will be used as such
parallel applications. Using LU and QR as an example, we
demonstrated that our framework can determine the most
important constraint factor, i.e., load balance constraint,
and finally the simple prediction formulas for the near op-
timal block size of parallel LU and QR on SR2201 and
DAWNING 3000 were given respectively, which matched
well with experimental results on large scale machine and
problem size. The application of our framework on other
parallel machines and on other applications program wound
be the future work.

This paper is organized as follows: in section 2, related
works on this topic were given with detailed discussion and
comparisons. Our framework was proposed in section 3.
In section 4, the parallel DLU and DQR factorization in
ScaLAPACK were used as examples to demonstrate how to
apply our framework on two different platforms, and detailed
experimental results were compared with the prediction re-
sults of the near optimal block size prediction formula given

by our framework. Two experimental platforms, HITACHI
SR2201 and DAWNING 3000, were also introduced in this
section. Finally conclusions were given in section 5.

2. RELATED WORK
To our knowledge, the problem on optimal block size se-

lection of parallel blocked algorithm in ScaLAPACK package
was first proposed by Blackford, etc. in [1]. It is stated in [1]
that The chosen block size impacts the amount of workspace
needed on every process. This amount of workspace is typi-
cally large enough to contain a block of columns or a block of
rows of the matrix operands. Therefore, the larger the block
size, the greater the necessary workspace, i.e the smaller the
largest solvable problem on a given grid of processes. For
Level 3 BLAS blocked algorithms, the smallest possible block
operands are of size r × c. Therefore, it is good practice to
choose the block size to be the problem size for which the
BLAS matrix-multiply GEMM routine achieves 90% of its
reachable peak. Determining optimal, or near optimal block
sizes for different environments is a difficult task because
it depends on many factors including the machine architec-
ture, speeds of the different BLAS levels, the latency and
bandwidth of message passing, the number of process avail-
able, the dimensions of the process grid, the dimension of
the problem, and so on. However, there is enough evidence
and expertise for automatically and accurately determining
optimal, or near optimal block sizes via an enquiry routine.
Furthermore, for small problem sizes it is also possible to
determine if redistributing n2 data items is an acceptable
cost in terms of performance as well as memory usage. In
the future, we hope to calculate the optimal block size via an
enquiry routine.

The framework proposed in this paper just wants to find
out the way on how to unify these factors in determining
the rules of parallel optimal block size selection.

In [14], the optimal data distribution problem of parallel
LU factorization was discussed based on a computational
model and a parameterized data distribution function. The
parallel execution time function of LU was formed with the
processor grid r × c, block size b0 × b1 as parameters. The
optimal block size selection problem was thus transformed
into a minimization problem on total parallel execution time.
However, the paper reached impractical conclusion of opti-
mal block size b0 = b1 = 1 since it assumes the local com-
putation speed would not change with the block size. And
the author gives no experiments to verify their conclusion.

The optimal block size selection problem was totally avoided
in [16] through distinguishing the storage block(b) and algo-
rithmic block(w) by panel distribution technique. The
ideal behind panel distribution is to distribute data using
storage block size b with b small enough to keep better load
balance, while the algorithm proceeds using the algorithmic
block size w with w large enough to reach high local com-
putational speed. Thus parallel program can achieve load
balance while still keeping high local computational speed
at the expense of increased communication overhead, both
in startup and volume cost. However, this requires too much
work on redesigning the parallel BLAS library. This method
is not general enough. But the panel distribution technique
would be useful ideal for future design of parallel numerical
linear algebra package on distributed memory machines.

Most recently, F. Desprez, etc., solved this optimal block
size selection problem of parallel LU in ScaLAPACK [6].

116

Table 1: Parameters Used in this Paper
Parameter Definition

lb ≤ b0 ≤ ub Range of near Optimal Local Com-
putation Block Size

L0 Communication Saturation Mes-
sage Length Size

C L1 Cache Size
l L1 Cache Line Size
p Number of Parallel Processors
m Available Memory Size of Unipro-

cessor
n Problem Dimension Size

bbal Load Balance Parallel Block Size
bopt Optimal Parallel Block Size
r Number of processor rows in pro-

cessor grid
c Number of processor columns in

processor grid
e The byte size of data type. (8 for

double precision)
k The times that block cyclic data

distribution wrapping around the
processor grid column

They built the parallel execution time model of LU through
detailed step by step cost analysis on each subroutine with
many parameters that must be determined by experiments.
Then derivative was performed on the time function in real
domain with the sum of the derivative equals zero. The in-
teger part of the positive real root of this equation is just the
optimal block size to be selected. However, this method re-
quires too many parameters to be determined and too much
knowledge on the internal details of parallel LU in ScaLA-
PACK. On the contrary, our framework only needs stages
description and its computation complexity of parallel algo-
rithm.

In [3], the author discussed the implementation of parallel
LU with analyzing on the computation complexity of three
stages. The block size selection problem was also discussed
using the execution time function given by the author. The
similar conclusion was reached as ours, i.e., keeping l = ck
no less than a given value while selecting block size b as large
as possible. But the author didn’t give a formula for optimal
block size selection.

3. FRAMEWORK
In this section, we will show our framework for optimal

parallel block size selection problem of ScaLAPACK library
based applications. We first define several parameters used
in this framework, and then give the detailed description on
our framework.

3.1 Parameters
The parameters used in this framework are given in Ta-

ble 1.

3.2 Framework Description
In this section, we give the framework description as fol-

lows:

1. First, the user needs to find the optimal or subopti-

mal local computation block size or the range of per-
formance acceptable block size. This can be solved
through experiments on kernel computation subrou-
tines. In ScaLAPACK, the optimal local block size se-
lection is mainly for BLAS3 subroutines, especially for
matrix multiplication. For processors with small and
fast cache(RISC-based processor), the block size pa-
rameter can often be the same or multiple of cache line
size l, i.e. b0 = gl, where g is a constant, DAWNING
3000 is such a RISC-based MPP machine; For proces-
sors with large register files and vector function(Vector-
based processor) which can combine loop unrolling [2]
with blocking, the block size can be much larger.

n > b > b0

where b0 is the vector length that can fully utilize the
data loading and processing pipeline. SR2201 is a
pseudo–vector based MPP machine since it has 128
physical registers with pseudo–vector function, thus
the larger the local block size, the higher the local com-
putation speed.

2. Then, it is necessary to determine the message passing
saturation message length L0 and the relation function
between block size b, problem dimension n, processor
grid r × c and message length L.

L = f1(n, r, c, b)

After this, we set L > L0, then the proper block size
that maximizes the utilization of communication net-
work can be determined. Thus we have

b > f∗1 (n, r, c, L0)

3. Thirdly, the memory requirement constraint is added
to block size b. Thus we have:

M(n, p, r, c, b) < m

This requires the b satisfies the following:

b < M∗(n, p, r, c, m)

4. Then the load balance constraint must be considered
since our goal is the minimal parallel execution time.
For the two dimensional block cyclic data distribu-
tion, the b must be smaller enough such that there are
enough number of blocks to be distributed cyclically
for several times k. The k is one balance parameter
need to be determined for specific application, proces-
sor grid, computation speed and communication speed.
We can find out the changing rules of k through ex-
periments on small scale problem size and small scale
processor number. Thus we have

f2(r, c)kb < n

i.e.

b <
n

f2(r, c)k

5. Finally, summarizing all these constraints, we have the
following constraints for block size b:

{
b > max(lb, f

∗
1 (n, p, L0))

b < min(M∗(n, p, r, c, m), n
f2(r,c)k

, ub, n)

117

If there are solutions for these inequalities, then the range
of optimal block size can be found. The user can select
the suitable one from the values lies in the range. How-
ever, when there are no solution that satisfy all constraints,
the users has to determine the most important constraints
among them through matching experiments results of small
scale problem size and system configuration with these con-
straints. Then the optimal or sub-optimal block size that
can satisfy the dominant constraints can be selected while
still keeping in mind the requirement of other constraints.

4. CASE STUDY
In this section, we use the double precision(D) timing

drivers parallel LU and parallel QR(DLU and DQR for
short) in ScaLAPACK as examples to illustrate the frame-
work application process. The detailed algorithm descrip-
tion of parallel blocked LU and QR factorization can be
found in [3, 5, 6, 15]. The MPI BLACS package [17] will
be used as the message passing platform. We first introduce
the experimental platforms used in our experiments, then in-
troduce how to identify the required framework parameters
step by step on SR2201. Finally, we would give the pre-
diction formulas of optimal parallel block size for DLU and
DQR on SR2201 and DAWNING 3000 respectively, then
the prediction results will be compared with the measured
results.

4.1 Experimental Platforms

4.1.1 HITACHI SR2201
One experimental machine we used is a pseudo-vector

processing based MPP machine – HITACHI SR2201. It is
the second generation MPP machine of HITACHI with 3D–
Crossbar interconnection network and can be scaled up to
2048 processors with peak performance 614GFlops , each is
one HARP 1E processor with clock speed at 150MHz, with
256MB main memory, 16KB/16KB L1 cache(Data/Instruction
split) with cache line size 128Bytes, and 512KB off-chip L2
cache, peak performance 300MFlops and augmented with
pseudo–vector processing capability [7]. The one direction
communication bandwidth of SR2201 is 300MB/s. And it
supports Remote DMA, PVM and MPI message passing en-
vironments. The system we used has 32 processors, 30 can
be used for parallel computing and 2 for system and I/O
services.

4.1.2 DAWNING3000
Another experimental machine we used is a RISC-based

SMP Cluster platform – DAWNING 3000 SuperServer. The
full scale system has 64 four-way SMP computing nodes,
each processor is 375MHZ Power3-II with 64KB/32KB L1
Data/Instruction split cache and 4MB L2 cache; each node
has 2GB main memory and 9GB SCSI Disk. Its peak per-
formance is 403.2GFlops. The operating system is IBM
AIX4.3.3. This system has compilers for C++, C, For-
tran, and Java. Its interconnection network is Myrinet,
the one direction communication bandwidth of DAWNING
3000 is 1.28Gbps. It supports parallel programming environ-
ments such as PVM, MPI and mathematical libraries such
as BLAS, ESSL, ScaLAPACK, GAUSS98, etc.. The system
we used has 4 nodes(16 processors).

In the following sections, we will demonstrate how to
apply our framework to DLU and DQR on SR2201 and

0

30

60

90

120

150

180

210

240

270

100 200 300 400 500 600 700 800 900 1000

M
F

lo
p
s

dimension

Performance of DGEMM, option=NN

lda=1024
lda=1025

Figure 1: Performance Versus Block Size of
DGEMM(NN) on SR2201

DAWNING3000.

4.2 Local Block Size b0

We use the BLAS3 subroutine DGEMM(Double Precision
General Matrix Multiplication) to identify the optimal local
computation block size range since it is frequently called by
other subroutines in ScaLAPACK and dominant the com-
putation cost. For DLU and DQR, this is especially true.
Figure 1 depicts the performance of DGEMM with different
block size using option NN(N for no transpose and T for
transpose). The block size changed from 100 to 1000 step
100. The BLAS3 used in these experiments was the speedup
version that our center(RDCPS) specifically developed for
HITACHI SR2201 with ”hill climbing” loop unrolling tech-
niques [4, 11], which can utilize the pseudo–vector process-
ing facility of SR2201 even better. The lda in these figures
means the array leading dimension size, it is the column
length of Fortran array. The lda= 1024 will cause bank
conflicts on SR2201 since it has 16 memory banks. From
Figure 1, it can be easily seen that the performance increase
with the increase of block size(problem size). This is due
to the pipeline requirement of loop unrolling. However, the
performance difference becomes little when block size larger
than 300. This tells us that block size larger than 300 is
enough to fulfill the pipeline of DGEMM on SR2201. Thus we
have:

n ≥ b0 ≥ 300

But this is not necessary condition since we can easily con-
clude that block size around 100 also has acceptable perfor-
mance. The block size constraint can be tuned down to 100
sometimes necessary.

4.3 Message Passing Saturation Message Length
L0

The communication saturation message length L0 of MPI
was measured on SR2201 using round–trip ping–pong test-
ing. This testing reflects the basic message passing perfor-
mance of MPI on SR2201. The result is depicted in Figure 2.

From Figure 2, we can easily conclude that the saturation
point L0 for MPI is approximately around 1MBytes.

The relationship between message length L, processor grid
shape r × c, problem dimension n and block size b in DLU

118

0

50

100

150

200

250

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

M
By

te
s/

se
c(

ba
nd

w
id

th
)

Data Size(byte)

MPI PingPong Performance on Hitachi SR2201

MPI

Figure 2: The Point–to–Point Performance of MPI
on SR2201

and DQR of ScaLAPACK can be:

L0 ≤ L =
enb

max(r, c)

thus we have

n ≥ bmpi ≥ max(r, c)L0

en

4.4 Memory Requirement
The memory requirement of DLU and DQR can be ex-

pressed as follows:

M(n, p, r, c, b) = e(
n2

p
+

nb

min(r, c)
+ α) ≤ m

where α is the dynamic memory used in communication
buffer and other undetermined memory allocation and its
value is relatively small. The m on SR2201 which repre-
sents user allocable maximize memory without swapping is
around 150MB according to our experience, and it is 80MB
on DAWNING3000. Thus we have:

bmem ≤ min(n,
(m

e
− n2

p
− α) ∗min(r, c)

n
)

4.5 Load Balance

4.5.1 DLU

Considering the load balance of LU in ScaLAPACK, we
need to determine the smallest k that can keep better load
balance of LU . The factor k refers to the times that the
block cyclic data distribution wraps around the column of
processor grid. Thus the block size must satisfy

bbal ≤ d n

ck
e

where bbal is the largest possible block size that can still
keep load balance, n is the array dimension size which is
distributed, c is the number of processors in a row of r × c
processor grid.

There are several papers [3, 6, 14] that analyzed the com-
putational complexity of parallel blocked LU factorization
using block cyclic data distribution, and the parallel scheme

of block LU factorization can be separated into three major
stages, they are:

• LU factorization on block column matrix with partic-
ipating of one column of processes(r), its total com-

plexity is about n2b
2

;

• Multiple right hands solving of triangular system with
participating of one row of processes(c), its total com-

plexity is about n2b
2

;

• Updating of the remaining lower right sub-matrix with
participating of all parallel processes(p), its total com-
plexity is about 2

3
n3 − n2b;

The load imbalance in parallel block LU is largely caused
by the first two stages since they usually have slow local
computation speed(non–block and bad memory access pat-
tern algorithm), involving frequent fine grained communica-
tion(partial pivoting) and less parallelism(only one row or
column of processes involved in). The larger the block size,
the larger part of the total computation complexity will use
slow computation and less parallelism. This requires the
third stage must be the dominant part of the total parallel
computation complexity, thus the largest bbal must satisfy

2
3
n3 − n2bbal

p
>>

n2bbal

2r
+

n2bbal

2c

Solving this constraint, we have:

θ =
3(r + c + 2)bbal

4n
<< 1

since

bbal ≤ d n

ck
e

then we have

θ =
3(r + c + 2)

4kc
<< 1

The θ is the parameter that depends on specific parallel
computing platform, and it indicates the tolerable complex-
ity ratio between the first two stages and the third stages,
which we believe can be determined through experiments.
If we can identify the largest value, θmax, of θ, then the
smallest k is

k =
3(r + c + 2)

4θmaxc

Using this k, we can easily find the constraint bbal as

bbal ≤ d n

ck
e = d 4nθmax

3(r + c + 2)
e

Since the larger the block size on SR2201, the higher the
local computation speed, the optimal block size would be
bbal if the load balance constraint is the dominant factors in
the selection of optimal block size.

4.5.2 DQR

The description of parallel QR factorization using block
cyclic distribution was given in [5]. The algorithm can be
roughly seperated into three stages:

119

1. QR factorization on one block column matrix partici-
pated by one column processes(r), its total complexity

is n2b− 2
3
nb2 + n2

2b
+ nb;

2. The computation of matrix T by one column of pro-
cesses which owned the Householder vector V [15], its

total complexity is (n−b)2b
2

;

Q =
(I − τ1v1v

T
1)(I − τ2v2v

T
2) · · · (I − τb−1vb−1v

T
b−1)

= I − V TV T

and

P = I − τvvT

then

Q+ = QP = I + V+T+V+

among that V+ = [V v],

T+ =

[
T z
0 ρ

]

and ρ = −τ , z = −τTV T v.

3. QT modification on the lower right corner of matrix
A participated by all processes, its total complexity is
4
3
(n− b)3 + (n− b)2b;

• The process which owns the vector V broadcast
in its process column, all processes compute W =
V T A2 in parallel. The partial production is
summed by the current row process, its complex-
ity is 2

3
(n− b)3;

• The process which owns T broadcast T in its pro-
cess row and compute W = T T W , its complexity
is (n− b)2b;(one row processes)

• The processes in current process row broadcast
W column-wise and all processes perform the lo-
cal modification on A2(A2 = A2−V W), its com-
plexity is 2

3
(n− b)3;

Similar with DLU , the bbal of DQR must satisfy the fol-
lowing conditions:

4
3
(n− bbal)

3

p
>>

1
2
(n− bbal)

2bbal + n2bbal

r

+
(n− bbal)

2bbal

c

Since bbal << n, we have:

4
3
n3

p
>>

3n2bbal

2r
+

n2bbal

c

Solving this constraint, we have

θ =
3(3c + 2r)bbal

8n
<< 1

since

bbal ≤ d n

ck
e

then we have

θ ≤ 3(3c + 2r)

8kc
<< 1

If we can identify the largest value, θmax, of θ, then the
smallest k is

k =
3(3c + 2r)

8θmaxc

Using this k, we can easily find the constraint bbal as

bbal ≤ d n

ck
e = d 8nθmax

3(3c + 2r)
e

4.6 All Constraints

4.6.1 DLU

Adding all these constraints together, we plotted them in
one figure for small processor grid 1 × 4 and 2 × 2. These
graphs are given in Figure 3.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000 7000 8000

b(
By

te
s)

M

Block Size Selection Using All Constraints of DLU On SR2201

b_mem(rxc=1x4, m =150MB)
b_mpi(p=4)

b_bal(rxc=1x4, k=10)
b(b = n)

Optimal b on SR2201
b=300

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000 7000 8000

b(
By

te
s)

M

Block Size Using All Constraints of DLU On SR2201

b_mem(rxc=2x2, m = 150MB)
b_mpi(p=4)

b_bal(rxc=2x2, k=18)
b(b = n)

Optimal b on SR2201
b=300

Figure 3: Block Size Selection of DLU under All
Constraints on SR2201(r×c=1×4 and r×c=2×2)

120

Table 2: k and θmax Values of DLU for Different
Processor Grids on SR2201

Items pr pc k θmax

1 1 4 10(10.5) 0.131(0.125)
2 2 2 18 0.125
3 1 8 8(8.25) 0.129(0.125)
4 2 4 12 0.125

From Figure 3, we can see that there is no large inter-
section area for these all constraints with load balance con-
straints, this fact tells us that there is no common block size
area that can satisfy all these constraints at the same time.
We have to trade off among all these constraints to select
block size that satisfy the most important constraints.

The experimental measured optimal block sizes are also
plotted in these figures to indicate the optimal block size
with solid lines. To match the load balance line with these
solid lines, we properly selected the k parameter for each
case. An obvious trend in suitable k selection is that it
will decrease with the increasing of the number of processor
column and increase with the increasing of the number of
processor row. This can be easily concluded from the above
formula of k.

However, one obvious phenomenon from these figures is
that the optimal block size is largely constrained by the load
balance constraints, sometimes even along the load balance
line when there are small intersection area among these con-
straints. This seems tell us that the load balance constraint
is the dominant constraint for optimal parallel block size se-
lection problem on SR2201. This stimulates us to find out
the θmax value on SR2201 using the k value that matches
optimal block size well in experiment, and to see whether it
is a constant or with little variant with different processor
grid shape and problem size.

The k values for different processor grids and the corre-
sponding θmax values are listed in Table 2.

We can observe from Table 2 that the θmax value on
SR2201 would be around 0.125 after little tuning on k value.
Thus we can set θmax to be 1

8
and get the following bbal for-

mula

bbal−sr2201lu ≤
n

6(r + c + 2)

As we stated above, the largest bbal would be the optimal
block size of parallel LU on SR2201 since the load balance
constraint matches the experimental optimal block size well.
But we need to add two additional conditions on SR2201 to
obtain the optimal block size bopt−sr2201lu :

1. Weak condition:

mod(n, bopt−sr2201lu) = 0

2. Strong Condition:

mod(bopt−sr2201lu , 16) 6= 0

To compare the predicted and experimental optimal block
size, we listed them in Table 4 for large scale system config-
uration and problem size. In the following tables, without
specific statement, the figures in bracket is the measured per-
formance(MFlops) at the optimal block size(Experimental

Table 3: k and θmax Values of DQR for Different
Processor Grids on SR2201

Items r c k θmax

1 1 4 13 0.098
2 2 2 24 0.079
3 4 1 50 0.0833
4 1 8 12 0.1026
5 2 4 18 0.084
6 4 2 31 0.086

line) and the percent of performance difference between the
predicted and measured optimal block size(Predicted line).
NA represents Not Available. For cases that predicted block
size matched perfectly with optimal block size, we only gave
the block size.

Using the experiences obtained from SR2201, we only need
to get the value of θmax after careful tuning on k value of
DAWNING3000. Though on RISC-based MPP machines,
it seems more difficult than on PVP-based MPP to obtain
a constant θmax, since the optimal block size must be the
power of 2, which gives little space to tune the proper k
value. Thus by choosing commonly acceptable θmax to be
0.06, we could get the following bbal−dawn3000lu formula

bbal−dawn3000lu ≤
2n

25(r + c + 2)

As we stated above, the largest bbal−dawn3000lu would be
the optimal block size of parallel LU on DAWNING3000
since the load balance constraint matches the experimental
optimal block size well. But we need to add two additional
conditions on DAWNING3000 to obtain the optimal block
size bopt−dawn3000lu :

1. Weak condition:

mod(n, bopt−dawn3000lu) = 0

2. Strong Condition:

2n1−1 < bbal−dawn3000lu ≤ bopt−dawn3000lu = 2n1

n1 is integer.

Where the first condition on bopt is only for even data dis-
tribution and can be ignored if the performance accept-
able, while the second condition must be obeyed on DAWN-
ING3000 to obtain better cache performance. These two
additional conditions on SR2201 and DAWNING3000 can
be applied to DQR as well and we will not give these addi-
tional conditions again in the next section.

To compare the predicted and experimental optimal block
size, we listed them in Table 5 for large scale system config-
uration and problem size.

4.6.2 DQR

The k values for different processor grids and the corre-
sponding θmax values on SR2201 are listed in Table 3.

We can observe from Table 3 that the average θmax value
on SR2201 would be around 0.089 after little tuning on k
value. Thus we can set θmax to be 0.09 and get the following
bbal formula

bbal−sr2201QR ≤ 6n

25(2r + 3c)

121

To compare the predicted and experimental optimal block
size, we listed them in Table 6 for large scale system config-
uration and problem size.

Using the experiences obtained from SR2201, we get the
commonly acceptable value of θmax after careful tuning on
k value on DAWNING3000. Though it is more difficult on
DAWNING3000 than on SR2201 to obtain a nearly constant
θmax. By choosing the θmax to be 0.06, we could get the
following bbal−dawn3000qr formula

bbal−dawn3000qr ≤
4n

25(2r + 3c)

To compare the predicted and experimental optimal block
size, we listed them in Table 7 for large scale system config-
uration and problem size.

From Table 4 to Table 7, we can easily find out that most
of the predicted optimal block size matched well with mea-
sured optimal block size, except with little performance dif-
ferences for unmatched case (mostly far less than 10.0%).
Some can even perfectly matched. This demonstrates the ac-
curacy and usability of our framework in finding the formula
of optimal block size on SR2201 and DAWNING3000. On
SR2201, for DLU , the average percent of performance dif-
ferences between predicted and experimental is 1.71%; For
DQR, the average is 2.41%. On DAWNING3000, for DLU ,
the average percent of performance differences between pre-
dicted and experimental is 3.68%; For DQR, the average is
1.63%. However, for small problem size using larger number
of processors, especially for those using long flat processor
grid, the prediction deviates a lot from measured perfor-
mance(not given since space limitation). This is largely due
to the too small local block size selection of our framework
in order to keep better load balance under such extreme con-
dition and the sharply local computational speed decreasing
at too small block size. This tells us that the local compu-
tational speed will become the dominate factor under some
extreme conditions.

Above all, we got the following principles in selecting op-
timal block size for ScaLAPACK based applications:

• For applications using large amount of processors, to
split work evenly among processors, i.e., to keep load
balance would be the most important constraint among
all factors that affect the selection of optimal block
size. The load balance line can be used as the indica-
tion of possible optimal block size area; The optimal
block size won’t be larger than the allowed block size
that can keep load balance.

• The selection of k in load balance constraint is a key
factor that affects the accuracy of optimal block size
selection. It depends on the specific application, ma-
chines and interconnection network features on which
the application will run; The experience of analyzer is
also important in identifying it;

• Memory constraint is not so important among these
cases we studied since the problem size is relative small.
It will become important when the problem size be-
comes larger;

• The message passing saturation length constraint is
not so important factor for dense matrix based appli-
cation since the dominant part of application execution

time would be local computation time. It will become
important when the ratio of communication to com-
putation becomes larger.

• The lower bound on local optimal computation block
size is not the lower bound on parallel optimal block
size selection as we would expect. The load balance
constraint limits its usage. However, it prevents load
balance constraint from selecting too small block size
to keep better load balance.

• On SR2201 and DAWNING3000, the optimal parallel
block size selection is mainly influenced by processor
grid shape and problem size.

5. CONCLUSIONS
Optimal block size selection is a complicate problem in sin-

gle processor as it will change with different application loop
characteristics, machine architecture and memory hierarchy.
It is still a difficult task in parallel computing since it be-
comes the interaction between local block size problem, load
balance, memory requirement and communication systems.
In this paper, we try to address this problem for parallel LU
and QR factorization based on ScaLAPACK package since
it uses block cyclic data distribution fashion, block size plays
important role in determining the final application perfor-
mance. Through analysis and experiments, we find out that
among all these factors, load balance constraint plays key
role in determining the optimal parallel block size selection.
After matching the measured optimal block size on small
scale processor configuration, we finally found out the rules
on the selection of θmax parameter. Simple optimal block
size prediction formula were given for parallel DLU and
DQR on SR2201 and DAWNING3000 respectively, whose
prediction matched well with experimental results.

The local computation optimal block size can not be easily
satisfied because of load balance requirement, but it still pre-
vent load balance constraint from selecting too small block
size. This tells the truth that load balance is more important
than local faster computation speed on SR2201 and DAWN-
ING3000, the relative not so larger performance difference
among local block size changes plays another role in these
results.

The memory constraint and communication message length
constraint play ignorable roles in our analysis since they will
become important for application with larger problem size
and larger communication to computation ratio.

Further research on other timing drivers in ScaLAPACK
package and the application of our framework on other par-
allel machines would be our future works.

6. REFERENCES
[1] L. Blackford, J.Choi, A.Cleary, J.Demmel, I.Dhillon,

and etc. Scalapack: A portable linear algebra library
for distributed memory computers - design issues and
performance. In Proceedings of the 1996 ACM/IEEE
conference on Supercomputing, pages 5–5. ACM
SIGARCH and IEEE Computer Society, November
1996.

[2] S. Carr and K. Kennedy. Improving the ratio of
memory operations to floating point operations in
loops. ACM Transactions on Programming Languages
and Systems (TOPLAS), 16(6):1768–1810, November
1994.

122

[3] X. Chi. Parallel implementation of lu factorization. In
Proceeding of the Second IASTED International
Conference on Parallel and Distributed Computing and
Networks, pages 108–112. IASTED, December 1998.

[4] X. Chi, Y. Li, J. Sun, Y. Zhang, and P. Zhu.
Developing high performance blas and scalapack on
hitachi mpp sr2201. In Proceeding of 3rd High
Performance Computing Asia Conference and
Exhibition, pages 142–151. National Supercomputing
Research Centre, Singapore, September 1998.

[5] J. Choi, J. J. Dongarra, and etc. The design and
implementation of the scalapack lu, qr, and cholesky
factorization routines. Scientific Programming,
5(3):173–184, September 1996.

[6] F. Desprez, S. Domas, and B. Tourabcheau. Optimal
data distribution for lu decomposition routine using
communication/computation overlap. In Research
Report No. 3094, pages 1–20. National Institute of
Information and Automation, France, February 1997.

[7] H. Fujii, Y. Yasuda, and etc. Architecture and
performance of the hitachi sr2201 massively parallel
processor system. In Proceeding of 11th International
Parallel Processing Symposium (IPPS ’97), pages
233–241. IEEE Computer Society, April 1997.

[8] K. Gallivan, W.Jalby, U.Meier, and A. Sameh. Impact
of hierarchical memory systems on linear algebra
algorithm design. The International Journal of
Supercomputer Applications, 2(1):12–48, March 1988.

[9] D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global
program transformation. Journal of Parallel and
Distributed Computing, 5(5):587–616, October 1988.

[10] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. In Proceedings of the fourth international
conference on Architectural support for programming
languages and operating systems, pages 63–74. ACM
Press, April 1991.

[11] Y. Li and P. Zhu. Speedup methods and
implementation techinques of blas. Chinese Journal of
Numerical Methods and Computer Applications,
19(3):227–240, September 1998.

[12] W. Lichtenstein and S. L. Johnsson. Block-cyclic
dense linear algebra. SIAM Journal on Scientific
Computing, 14(6):1259–1288, November 1993.

[13] N.Mitchell, K.Hogstedt, L.Carter, and J.Ferrante.
Quantifying the multi-level nature of tiling
interactions. International Journal of Parallel
Programming, 26(6):641–670, December 1998.

[14] T. Rauber and G. Runger. Optimal data distribution
for lu decomposition. In Proceeding of the EuroPar’95
Conference, Lecture Notes in Computer Science
NO.966, pages 391–402. Springer, August 1995.

[15] R. Schreiber and C. V. Loan. A storage efficient wy
representation for products of householder
transformations. SIAM Journal on Scientific and
Statistical Computing, 10(1):53–57, January 1989.

[16] P. Strazdins. Matrix factorization using distributed
panels on the fujitsu ap1000. In Proceeding of the
IEEE First International Conference on Algorithms
and Architectures for Parallel Processing, pages
263–273. IEEE Computer Society, April 1995.

[17] R. C. Whaley. Basic linear algebra communication
subprograms: analysis and implementation across
multiple parallel architectures. In LAPACK Working
Note 73, Technical Report: UT-CS-94-234. University
of Tennessee, Knoxville, TN, USA, May 1994.

[18] M. Wolf and M. Lam. A data locality optimization
algorithm. In Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and
implementation, pages 30–44. ACM SIGPLAN, June
1991.

[19] M. J. Wolfe. Iteration space tiling for memory
hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific
Computing, pages 357–361. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA,
December 1987.

[20] M. J. Wolfe. More iteration space tiling. In
Proceedings of the 1989 ACM/IEEE conference on
Supercomputing, pages 655–664. ACM/IEEE,
November 1989.

123

Table 4: Predicted and Experimental Optimal Block Size of Parallel DLU on SR2201

r × c N 6000 7000 8000 9000 10000
1× 8(P) 100 100 120(-0.8%) 140 152

(E) 100 100 100(1173) NA NA

2× 4(P) 125(-7.7%) 140 170 190 200
(E) 140(1142) 140 170 NA NA

1× 16(P) 50(-2.5%) 60 70 90 90(-0.1%)
(E) 60(1708) 60 70 90 100(2063)

2× 8(P) 84 100 110 125(-5.2%) 139(-8.7%)
(E) 84 100 110 120(2204) 140(2306)

4× 4(P) 100 117(-5.4%) 134(-0.9%) 150 167(-6.8%)
(E) 100 110(2046) 150(2195) 150 180(2322)

4× 6(P) 84(-1.3%) 100 110(-0.8%) 125(-6.8%) 140(-0.3%)
(E) 100(2647) 100 100(3027) 130(3143) 130(3265)

3× 10(P) 60(-3.1%) 70 90(-2.1%) 100 100(-0.6%)
(E) 84(3048) 70 70(3471) 100 90(3862)

Table 5: Predicted and Experimental Optimal Block Size of Parallel DLU on DAWNING3000

6000 7000 8000 9000 10000
1× 8(P) 64 64 64 128(-14.8%) 128

(E) 64 64 64 64(5949) NA

2× 4(P) 64 128(-6.4%) 128(-4.6%) 128(-4.5%) 128
(E) 64 64(5627) 32(5668) 64(5919) NA

4× 2(P) 64(-4.0%) 128(-5.6%) 128(-10.4%) 128(-9.9%) 128
(E) 32(4330) 64(4528) 32(4641) 64(5305) NA

8× 1(P) 64(-10.1%) 64(-5.3%) 64(-5.5%) 128(-6.3%) 128
(E) 16(3229) 32(3416) 32(3281) 32(3495) NA

1× 16(P) 32 32(-2.14%) 64 64 64
(E) 32 64(8885) 64 64 64

2× 8(P) 64 64 64 64 128(-8.98%)
(E) 64 64 64 64 64(10509)

4× 4(P) 64(-8.78%) 64 64(-1.25%) 128(-10.2%) 128(-7.9%)
(E) 32(6516) 64 32(7749) 64(8838) 32(8632)

8× 2(P) 64(-2.4%) 64 64(-9.2%) 64 128
(E) 32(5221) 64 32(5871) 64 NA

16× 1(P) 32 32 64(-4.1%) 64(-3.0%) 64(-2.89%)
(E) 32 32 32(4051) 32(4885) 32(4748)

124

Table 6: Predicted and Experimental Optimal Block Size of Parallel DQR on SR2201

6000 7000 8000 9000 10000
1× 8(P) 60(-1.49%) 70 70(-1.89%) 84(-0.37%) 90(-1.94%)

(E) 70(1205) 70 90(1268) 90(1344) 84(1341)

2× 4(P) 90 100(-0.07%)) 120(-2.04%) 130(-1.03%) 150
(E) 90 90(1399) 90(1422) 90(1460) 150

1× 16(P) 30(-5.75%) 30(-8.95%) 40(-4.52%) 40(-4.33%) 50(-2.69%)
(E) 60(2019) 60(2178) 50(2166) 60(2331) 60(2340)

2× 8(P) 50(-2.02%) 60(-3.98%) 70 84(-3.37%) 84(-2.48%)
(E) 70(2371) 70(2486) 70 90(2638) 70(2666)

8× 2(P) 60(-2.13%) 76(-4.28%) 90 100(-0.64%) 110(-2.76%)
(E) 84(2399) 84(2500) 90 90(2666) 90(2750)

16× 1(P) 40(-11.16%) 50(-4.16%) 50(-3.97%) 60(-2.33%) 68
(E) 60(2034) 70(2163) 90(2265) 90(2356) NA

4× 4(P) 70(-1.56%) 84 100(-8.30%) 100(-0.69%) 120(-2.3%)
(E) 100(2495) 84 90(2710) 90(2772) 100(2820)

4× 6(P) 60 70 70 83(-3.21%)) 90
(E) 60 70 70 90(3923) 90

3× 10(P) 40(-4.73%) 50(-1.95%) 50(-1.79%) 60(-0.72%) 70(-2.64%)
(E) 60(4035) 70(4262) 70(4414) 70(4577) 90(4692)

Table 7: Predicted and Experimental Optimal Block Size of Parallel DQR on DAWNING3000

6000 7000 8000 9000 10000
1× 8(P) 64(-3.33%) 64(-1.4%) 64(-1.8%) 64 64

(E) 32(6930) 32(7075) 32(7077) NA NA

2× 4(P) 64 128(-8.2%) 128(-3.4%) 128(-1.2%) 128
(E) 64 64(7468) 64(7570) 64(7736) NA

4× 2(P) 128(-2.7%) 128(-1.3%) 128(-4.1%) 128(-3.6%) 128
(E) 64(6794) 64(7035) 64(7253) 64(7389) NA

8× 1(P) 64 64 128(-3.2%) 128(-1.5%) 128
(E) 64 64 64(6325) 64(6523) NA

1× 16(P) 32 32(-8.6%) 32 32 32
(E) 32 64(10255) 32 32 32

2× 8(P) 64 64 64 64 64
(E) 64 64 64 64 64

4× 4(P) 64 64 64 128(-2.99%) 128(-3.0%)
(E) 64 64 64 64(12813) 64(13175)

8× 2(P) 64 64 64 128(-3.4%) 128(-6.1%)
(E) 64 64 64 64(11725) 64(12280)

16× 1(P) 32(-1.4%) 32(-1.8%) 64 64(-0.1%) 64(-0.9%)
(E) 64(7910) 64(8557) 64 32(9226) 32(9649)

125

