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Abstract

With the increasing number of processors in mod-

ern HPC (High Performance Computing) systems, there

are two emergent problems to solve. One is scalabil-

ity, the other is fault tolerance. In our previous work,

we proposed an MPI operation level checkpoint/rollback

system. The main benefits of the system is that it of-

fers the opportunity to employ in-memory (disk-less)

checkpoint/rollback techniques which has demonstrated

a much better performance over its on-disk counter-

part, and the opportunity to have a concurrent two level

recover-and-continue MPI system [1] which has been

proven to have a high efficiency. To the scope of my

knowledge, this is the first concurrent two-level check-

point/recovery system in use. With the coming of Multi-

core era, it’s time to utilize the Multi-threading tech-

niques to improve the performance of in-memory check-

pointing algorithm. In this paper, we present two ver-

sions of MPI operation level checkpoint/rollbacksystem,

one is of single-threaded, the other is of Multi-threaded.

Also, we provide an in-depth performance analysis be-

tween these two approaches to illustrate the benefits of

Multi-threading techniques on multi-core platform. With

the progress of our work, a picture of the hierarchy of fu-

ture generation fault tolerant HPC system is gradually

unrolled.
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1 Background

The main goal of HPC is pursuing high performance.

Restricted by the physical law, the performance of a sin-

gle computing core is very limited. The HPC commu-

nity has the trend to include more and more processors

in one system. Today’s number 1 in the top500 list, the

IBM BlueGene/L - eServer, is composed of 212, 992
processors. And the systems with more processors are

in development [19] [12]. With this trend of increasing

number of processors integrated in one system , there

are two emergent problems to solve. One is scalability,

i.e. whether the performance of HPC system could grow

at the same pace as the increasing number of processors.

The other is fault tolerance. From current using experi-

ences on high-end machines, a 100, 000 processor ma-

chine will experience multiple failures every hour [14].

The MPI Specification 1.2, the most popular paral-

lel programming model, especially for large scale HPC

systems, has not specified an efficient and standard way

to process failures. Currently, MPI gives the user two

options in processing failures. The first one, which is

also the default mode of MPI, is to immediately abort

the application. The second option is just returning the

control back to the user application without requiring

that subsequent operations succeed, nor that they fail.

In short, according to the current MPI specification, an

MPI program is not supposed to continue in case of an

error. While most systems are much more robust, even

though partial node failure/unavailability are much more

frequent. In most cases the partial failure will be recov-

ered very soon. So, there is a mismatch between hard-

ware and the (non fault tolerant) programming model of

MPI. There is a request for the programming model of

MPI to include the capability of processing partial sys-

tem failure/unavailability.

In [15], we extended the MPI specification in this
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direction by constructing a systematic framework for

the recovery procedures, communicator modes, message

modes etc.(refer to [15] for details)

These extensions not only specify how the imple-

mentations of MPI library handles failures at system

level, but provide the normal MPI application devel-

opers various recovery tradeoff between performance

and cost. Also, an implementation of this exten-

sion, which is named FT-MPI [14], is available at

http://icl.cs.utk.edu/ftmpi.

The main difference between FT-MPI’s approach

and lots of other fault tolerant parallel systems is that

FT-MPI adopts a programming model of recover-and-

continue other than stop-and-restart which is the tradi-

tion in lots of other fault tolerant parallel systems [11]

[20] [17] [18] [21].

The main points of recover-and-continue are, when

some processes are found failed/unavailable, the other

processes neither exit nor migrate. Instead, they

stay in their original processor/memory places and

try re-spawning the failed processes and re-building

the communicator. From the system’s point of view,

the main benefit of this approach is to significantly

reduce the RTE (Run Time Environment) recovery

costs(see [16]). Also, it provides the opportunity to

employ the in-memory (disk-less) checkpoint/rollback

techniques, which has demonstrated much higher per-

formance than its on-disk counterpart [1]. More impor-

tantly, we have the opportunity to establish a framework

of concurrent multiple level checkpoint/rollback [1].

However, this previous work did not cover the data

sections in user application. In order to be really fault-

tolerant, users’ application have to have their own check-

point/restart codes.

Based on the specification extension, we proposed

an MPI operation level checkpoint/rollback system [1].

The initial test results have proven the high efficiency

of our two level checkpoint/rollback system. The in-

memory (diskless) level checkpoint/rollback process

does demonstrate their advantages under certain condi-

tions.

The test results of this initial implementation also

reveal two main factors that may be the performance

bottleneck of in-memory checkpointing algorithm: that

is, the memory capacity and the interconnection per-

formance. The test results reveals that the in-memory

checkpointing overhead consists of two main parts:

memory copy and collective communication. And the

collective communication dominates the overall costs.

Because the in-memory checkpointing algorithm re-

lies heavily on the underlying interconnect to conduct

the algorithm (details in Section 2.1), the checkpoint

size becomes very crucial to the overall performance.

With the coming of Multi-core era, we think that

it will be a good idea to utilize the multi-threading

programming model to overlap the checkpointing pro-

cess with the computation/communication of the main

thread. After implemented the idea, we tested it and

found the solution really worked. The Multi-threaded

checkpointing/rollback system has demonstrated ap-

proximately one order of magnitude performance im-

provement over its single-threaded counterpart.

2 Current Implementation of FT-MPI

checkpoint/rollback system

Based on the above specification proposal and current

implementation of FT-MPI, in our previous work [1] we

implemented one single-threaded version of MPI opera-

tion level checkpoint/rollback library.

However, we found that the overall checkpointing

costs are dominated by the collective communication

[1]. With the coming of Multi-core era, it’s time

to exploit the multi-threading techniques to improve

the performance. We decide to overlap the expen-

sive collective communication overhead in checkpoint-

ing with the main computation thread. So we separated

the original in-memory checkpointing procedure to two

steps: first we perform a local memcpy() to copy the

data needs ckpt to local memory; secondly we signal

the background checkpointing thread to collaborate with

its counterparts on remote nodes to checkpoint the data

to remote memory. By this approach, the user’s applica-

tion will no longer waiting for the lengthy checkpointing

procedure (especially, the collective communication) to

complete. The call to the checkpointing routine returns

immediately after just one local memcpy().

2.1 The imem-m-rep algorithm

No matter in single-threaded version or in Multi-

threaded version, we use an in-memory-m-replication

algorithm to store one copy of checkpoint in local mem-

ory on each node. This algorithm is designed to tol-

erate any m, where0 ≤ m ≤ n − 1, processes

failure/unavailability simultaneously. Figure 1 demon-

strates when the nof equals 2, i.e. m = 2, how the

imem-m-rep algorithm works.

1. When the MPI Ckpt here() routine starts, every

process (assume its rank is i) first copies the

data needs ckpt into local data copy

2. For Multi-threaded version, at this point the main

computation thread i returns after signaling the

background checkpointing thread to run. For

single-threaded version, because there is no sepa-

rate checkpointing thread, the main thread will con-

tinue its job in checkpointing.
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3. Every checkpointing thread i sends the data from

local data copy to the ckpt buf of process (i +
1)%n

4. If m > 1, every process i will repeatedly send the

data received from its PREVIOUS (process (i−1+
n)%n) to its NEXT (process (i + 1)%n).

5. The send/receive pipeline keeps going until the re-

peated times equals m.

6. When the repeated times equals m, the checkpoint-

ing threads stop and write one bit in corresponding

data structure to signal the end of current round of

checkpointing.

Figure 1. How imem-m-rep-ckp t works –

As s ume m = 2

Figure 2. How imem-m-rep-ro llback works

– As s ume the Proces s on Node 3 is newly

re-s pawned

For the Multi-threaded version, the overall check-

pointing overhead sensed by the main thread is just that

of a local memcpy(). The very expensive costs of global

collective communication is well hidden from the user’s

application by the overlap. This approach works the best

on Multi-core platform equipped with multiple network

interface card as we will see soon.

With this checkpointing algorithm, the rollback algo-

rithm is straight forward as illustrated in Figure 2(refer

to [1] for details).

Obviously, this imem-m-rep algorithm could tolerate

any m, 0 ≤ m ≤ n − 1, number of simultaneous pro-

cesses failure/unavailability.

The main disadvantage of in-memory (diskless)

checkpoint/rollback algorithm is the memory consump-

tion issue. Memory is a very scarce resource in large

scale scientific computing. So we provide the user an al-

ternative approach to checkpoint to/rollback from stable

disk. The on disk checkpoint/rollback algorithm is very

similar to that of LAM/MPI, so we omit the details here

(interested readers could refer to [2] [3] for details).

3 Test Data

Due to page limitation, we only attach the most typi-

cal and interesting testing results here.

3.1 1st Testing Platform – PPI-XEON

Our first testing platform (PPI-XEON) is a cutting

edge Multi-Core platform. It is of a single node, Dell

PowerEdge 2950 server. The hardware/software param-

eters are listed below:

• Hardware:

– 2 x Broadcom NetXtreme 1000Gbit/s Ether-

net port

– Computing nodes:

∗ 2 x Intel Xeon 4-core 1.6GHz Processor

∗ 2 GBytes Main Memory (ECC DIMM)

∗ 146 GBytes Hard disk (10k rpm SAS)

• Software:

– LINUX (kernel version: 2.6.20-

2925.9.fc7xen)

– gcc version 4.2.1, glibc version 2.6

Due to the hardware limitation, all our tests are per-

formed by 4 processes on 4 different hard-cores, with

the nof set to 1. The ratio of on-disk checkpointing

to in-memory checkpointing was set to 1:1000 (which

means we take 1 stable disk checkpoint automatically

every 1000 in-memory checkpoints). The benchmark is

a synthetic benchmark only for the purpose of measur-

ing checkpointing/rollback overhead.

The Testing Data on PPI-XEON could be viewed at

Figure 3. In Figure 3, we could see that no matter how

small or how large the checkpoint size is, the Multi-

threaded version always outperforms the single-threaded

version by an order of magnitude. If we look into these

performance data, we could find out that the check-

pointing overhead sensed by end user (application de-

veloper) of Multi-threading version consists of just one

local memory copy plus some thread overhead (mainly.

signals and mutual exclusive lock) , while the overhead

of Single-threaded version consists of one local memory

copy and m, (0 ≤ m ≤ n) collective communications.

Because the collective communication of both the main
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thread and the checkpointing thread are so intensive that

the communication saturate the underlying network. So,

the very high costs of collective communication domi-

nates the overall costs of Single-threaded checkpointing.

Obviously, for Multi-threaded version, because the very

expensive collective communication for checkpointing

is well hidden from the main thread, it wins.
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ing thread overhead , of Multi-th readed
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Figure 4 tells us that if the checkpoint size is too

small, the thread costs (mainly, signals and mutual ex-

clusive locks) introduced by Multi-threading version is
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a little higher than the actual checkpointing overhead.

Compared the overhead of in-memory checkpointing

with that of on-disk algorithm, we could see that if the

checkpoint size increases, the overhead of in-memory

checkpoint increases as well. After some threshold

point, the high costs of large message collective com-

munication beat the benefits of in-memory algorithm.

3.2 2nd Testing Platform – FDU-
ITANIUM

Our second testing platform (FDU-ITANIUM) is a

real cluster. It consists of 32 dual-Itanium2-processor

nodes. The main hardware/software parameters are

listed below:

• Hardware:

– 32 dual-Itanium2 1.3GHz nodes in total

– Myrinet 2000 Network Interface (LANai

10.0)

– Computing nodes:

∗ Dual Intel Itanium2 1.3GHz Processor

∗ 2 GBytes Main Memory per node

(PC2100 DDR SDRAM)

∗ 36 GBytes Hard disk (10k rpm SCSI)

• Software:

– LINUX (kernel version: 2.4.18-e.31smp)

– gcc version 2.96, glibc version 2.2.x
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In order to compare with the testing results on PPI-

XEON, we employ the same synthetic benchmark as

above and still use only 4 processes (one process on one

node and every node has a dual-Itanium2 processors).

The testing data on FDU-ITANIUM could be viewed

at figure 6 and Figure 7. These two figures tell approxi-

mately the same story as that on PPI-XEON.
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However, Figure 8 tells a little different story from

its PPI-XEON counterpart. Figure 8 tells us that the
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choice of which checkpointing algorithm to choose re-

lies heavily on the condition of network interface. If

the network interface is a high performance one ( which

should have high bandwidth, low latency, and low con-

gestion ratio, etc.), like the Myrinet 2000 on our FDU-

ITANIUM platform, for a very wide range of checkpoint

size, the in-memory algorithm could have a much better

performance over its on-disk counterpart.

3.3 Some conclusions

From above testing results, we summarize some most

important points below:

• The in-memory checkpointing algorithm depends

heavily on the network conditions, both its per-

formance and its traffic load. So which algorithm

to choose, in-memory or on-disk, depends on the

memory capacity, interconnect performance, and

the performance of stable disk system. In one word,

which checkpointing algorithm to choose is and

should be performance driven.

• If we choose in-memory checkpointing algorithm,

the Multi-threaded version always outperforms the

single-threaded version by an order of magnitude,

especially on a Multi-core/Multi-processor system

equipped with multiple network interface cards,

because the Multi-threaded version overlaps very

well the checkpointing thread with the computa-

tion/communication of main thread.
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