
User Manual for the Pochoir Stencil Compiler

Charles E. Leiserson Yuan Tang

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

1. INTRODUCTION
Pochoir (pronounced “PO-shwar”) [?, 22] is a compiler and

runtime system for implementing stencil computations on multi-

core processors. A stencil defines the value of a grid point in

a d-dimensional spatial grid at time t as a function of neighbor-

ing grid points at recent times before t. A stencil computation

[1, 2, 4, 5, 9, 10, 13–15, 17–19, 21, 23] computes the stencil for each

grid point over many time steps.

Stencil computations are conceptually simple to implement us-

ing nested loops, but looping implementations suffer from poor

cache performance. Cache-oblivious [8, 20] divide-and-conquer

stencil codes [9, 10] are much more efficient, but they are difficult

to write, and when parallelism is factored into the mix, most appli-

cation programmers do not have the programming skills or patience

to produce efficient multithreaded codes.

The Pochoir stencil compiler achieves a substantial performance

improvement over a straightforward loop parallelization for typical

stencil applications. Pochoir allows programmers to write simple

functional specification for arbitrary d-dimensional stencils, and

then it automatically produces a highly optimized, cache-efficient,

parallel implementation. The Pochoir language can be viewed as a

domain-specific language [3,11,16] embedded in the base language

C++ with the Cilk multithreading extensions [12].

The remainder of this manual is organized as follows. Section 2

describes how the Pochoir system can be installed. Section 3 illus-

trates how a 2D heat equation can be specified using the Pochoir

specification language. Section 4 provides a full specification of

the Pochoir embedded language. Section A contains a complete

list of error messages generated by the Pochoir system.

If you encounter bugs in the Pochoir system, please email

pochoir@csail.mit.edu.

2. INSTALLATION AND USE
This section describes how to acquire, install, and use Pochoir

on your Linux system. The Pochoir compiler has been mainly

tested under Ubuntu 10.04 and 11.04. Other Linux systems should

This work was supported in part by a grant from Intel Corporation and in
part by the National Science Foundation under Grants CCF-0937860 and
CNS-1017058.

also work but have not yet been tested. If you wish to port

Pochoir to another operating system, please let us know by email-

ing pochoir@csail.mit.edu.

Preliminaries

Before you start, you need following tool suite in your environ-

ment:

• Intel C++ Compiler (Available with C++ Composer XE 2011

for Linux), version 12.0.0 or later, with Cilk Plus extension.

• The Glasgow Haskell Compilation System, version 6.12.1

or later, Parsec-2.1.0.1 or later, if you want to compile the

Pochoir compiler for your system. (By default, the system

carries a Pochoir compiler for Intel 64 architecture for your

convenience.)

Acquire the software

Please send email to pochoir@csail.mit.edu requesting a copy

of the Pochoir system. You will receive a tarball with the software.

Set up the Pochoir environment

Suppose that the home directory for Pochoir package is $pochoir,

which is the directory containing all the pochoir_xxx.hpp and

*.hs files. Typing

% make pochoir

in directory $pochoir, provided the Haskell compilation system

and Parsec package are correctly installed, will produce the Pochoir

compiler named ./pochoir.

Compiling a program using Pochoir

By default, the Pochoir compiler assumes the Intel C++ compiler

can be accessed via the name icpc. Before compilation, set up the

environment variable by typing:

% export POCHOIR_LIB_PATH=$pochoir

You can also add this line to your start-up shell script.

As shown in Figure 1, the Pochoir system operates in two phases,

only the second of which involves the Pochoir compiler itself. For

the first phase, the programmer compiles the source program with

the ordinary Intel C++ compiler using the Pochoir template li-

brary, which implements Pochoir’s linguistic constructs using un-

optimized but functionally correct algorithms. This phase ensures

that the source program is Pochoir-compliant. For the second

phase, the programmer runs the source through the Pochoir com-

piler, which acts as a preprocessor to the Intel C++ compiler, per-

forming a source-to-source translation into a postsource C++ pro-

(a) (b)

Figure 1: Pochoir’s two-phase compilation strategy. (a) During Phase 1 the programmer uses the normal Intel C++ compiler to compile his or her code with
the Pochoir template library. Phase 1 verifies that the programmer’s stencil specification is Pochoir compliant. (b) During Phase 2 the programmer uses the
Pochoir compiler, which acts as a preprocessor to the Intel C++ compiler, to generate optimized multithreaded Cilk code.

gram that employs the Cilk extensions. The postsource is then com-

piled with the Intel compiler to produce the optimized binary exe-

cutable. The Pochoir compiler makes the following promise:

The Pochoir Guarantee: If the stencil program com-

piles and runs with the Pochoir template library during

Phase 1, no errors will occur during Phase 2 when it

is compiled with the Pochoir compiler or during the

subsequent running of the optimized binary.

Usage of the Pochoir compiler

The shell command pochoirwithout arguments causes the Pochoir

compiler to output the basic usage of Pochoir compiler as follows:

Usage: pochoir [OPTION] [filename]

Try ‘pochoir --help’ for more options.

Usage: pochoir [OPTION] [filename]

Run the Pochoir stencil compiler on [filename].

-auto-optimize

Let the Pochoir compiler automatically

choose the best optimizing level. (Default)

-debug

Perform Phase-1 compilation by running the

ordinary C++ compiler with the Pochoir template

library.

-split-macro-shadow

Use macro tricks to split the interior

and boundary regions.

-split-pointer

Split the interior and boundary regions,

and use ordinary C-style pointers to optimize

the base case.

Phase-1 compilation

To compile a stencil application named stencil.cpp for debug-

ging, you need to supply a -debug option to the Pochoir compiler

as following:

CC = pochoir

stencil: stencil.cpp

${CC} -o stencil -O0 -g -debug stencil.cpp

In this phase, the code will be compiled against a template li-

brary which provides a functionally correct serial looping imple-

mentation of stencil algorithm. Also, in this phase I, the template

library will try to capture as many bugs as possible as shown in

Appendix Section A. The command line option -debug tells the

pochoir compiler that it’s the Phase 1 compilation.

Phase-2 compilation

To compile your stencil specification for the Phase-2 optimization,

you just need to eliminate the -debug option from the command

line and supply any other optimizing option you might supply to

icpc compiler to Pochoir :

CC = pochoir

stencil: stencil.cpp

${CC} -o stencil -O3 stencil.cpp

Examples

The directory Examples in the distribution contains many exam-

ples illustrating the usage of Pochoir, including Conway’s Game of

Life, 2D heat equation, 3D wave equation, RNA secondary struc-

ture alignment, etc.

3. TUTORIAL
To illustrate how to use Pochoir, consider the 2D heat equation

[6]

∂ut(x,y)

∂t
= α

(

∂2ut(x,y)

∂x2
+

∂2ut(x,y)

∂y2

)

on an X ×Y grid, where ut(x,y) is the heat at a point (x,y) at time

t and α is the thermal diffusivity, might be solved using a stencil

computation. By discretizing space and time, this partial differen-

tial equation can be solved approximately by using the following

Jacobi-style update equation:

ut+1(x,y) = ut(x,y)

+
α∆t

∆x2
(ut(x−1,y)+ut(x+1,y)−2ut(x,y))

+
α∆t

∆y2
(ut(x,y−1)+ut(x,y+1)−2ut(x,y)) .

Figure 2 shows the Pochoir source code for the periodic 2D heat

equation. Line 7 declares the Pochoir shape of the stencil, and

line 8 creates the 2-dimensional Pochoir object heat having that

shape. The Pochoir object will contain all the state necessary to

perform the computation. Each triple in the array 2D_five_pt cor-

responds to a relative offset from the space-time grid point (t,x,y)
that the stencil kernel (declared in lines 12–14) will access. The

compiler cannot infer the stencil shape from the kernel, because

the kernel can be arbitrary code, and accesses to the grid points can

be hidden in subroutines. The Pochoir template library complains

during Phase 1, however, if an access to a grid point during the

kernel computation falls outside the region specified by the shape

declaration.

Line 9 declares u as an X×Y Pochoir array of double-precision

floating-point numbers representing the spatial grid. Lines 2–4 de-

fine a boundary function that will be called when the kernel func-

tion accesses grid points outside the computing domain, that is, if

1 #define mod(r,m) ((r)%(m) + ((r) <0)? (m):0)

2 Pochoir_Boundary_2D(heat_bv , a, t, x, y)
3 return a.get(t,mod(x,a.size(1)),mod(y,a.size(0)));
4 Pochoir_Boundary_End

5 int main(void) {

6 const int X = 1000, Y = 1000, T = 1000;
7 Pochoir_Shape_2D 2D_five_pt[] = {{1,0,0}, {0,1,0},

{0,-1,0}, {0,0,0}, {0,0,-1}, {0,0,1}};
8 Pochoir_2D heat(2D_five_pt);

9 Pochoir_Array_2D(double) u(X, Y);
10 u.Register_Boundary(heat_bv);
11 heat.Register_Array(u);

12 Pochoir_Kernel_2D(heat_fn , t, x, y)
13 u(t+1, x, y) = CX * (u(t, x+1, y) - 2 * u(t, x,

y) + u(t, x-1, y)) + CY * (u(t, x, y+1) - 2
* u(t, x, y) + u(t, x, y-1)) + u(t, x, y);

14 Pochoir_Kernel_End

15 for (int x = 0; x < X; ++x)
16 for (int y = 0; y < Y; ++y)
17 u(0, x, y) = rand();

18 heat.Run(T, heat_fn);

19 for (int x = 0; x < X; ++x)
20 for (int y = 0; y < Y; ++y)
21 cout << u(T, x, y);

23 return 0;
24 }

Figure 2: The Pochoir stencil source code for a periodic 2D heat equation.
Pochoir keywords are boldfaced.

it tries to access u(t, x, y) with x < 0, x ≥ X, y < 0, or y ≥
Y. The boundary function for this periodic stencil performs calcu-

lations modulo the dimensions of the spatial grid. Figure 3 shows

how nonperiodic stencils can be specified, including how to spec-

ify Dirichlet and Neumann boundary conditions [7]. Line 10 as-

sociates the boundary function heat_bv with the Pochoir array u.

Each Pochoir array has exactly one boundary function to supply

a value when the computation accesses grid points outside of the

computing domain. Line 11 registers the Pochoir array u with the

heat Pochoir object. A Pochoir array can be registered with more

than one Pochoir object, and a Pochoir object can have multiple

Pochoir arrays registered.

Lines 12–14 define a kernel function heat_fn, which specifies

how the stencil is computed for every grid point. This kernel can

be an arbitrary piece of code, but accesses to the registered Pochoir

arrays must respect the declared shape(s).

Lines 15–17 initialize the Pochoir array u with values for time

step 0. If a stencil depends on more than one prior step as indicated

by the Pochoir shape, multiple time steps may need to be initialized.

Line 18 executes the stencil object heat for T time steps using ker-

nel function heat_fn. Lines 19–21 prints the result of the compu-

tation by reading the elements u(T, x, y) of the Pochoir array. In

fact, Pochoir overloads the “<<” operator so that the Pochoir array

can be pretty-printed by simply writing “cout << u;”.

4. THE POCHOIR SPECIFICATION

LANGUAGE
This section describes the formal syntax and semantics of the

Pochoir language, which was designed with a view to offer as much

expressiveness as possible without violating the Pochoir Guarantee.

Since we wanted to allow third-party developers to implement their

own stencil compilers that could use the Pochoir specification lan-

guage, we have avoided to the extent possible making the language

too specific to the Pochoir compiler, the Intel C++ compiler, and

1 #define mod(r,m) ((r)%(m) + ((r) <0)? (m):0)

2 Pochoir_Boundary_2D(zero_bdry , a, t, x, y)
3 return 0;
4 Pochoir_Boundary_End

(a)

5 Pochoir_Boundary_2D(toroidal , a, t, x, y)
6 return a.get(t,
7 mod(x, a.size(1)),
8 mod(y, a.size(0)));
9 Pochoir_Boundary_End

(b)

10 Pochoir_Boundary_2D(cylindrical , a, t, x, y)

11 if (x < 0) || (x >= a.size(1))
12 return 0;
13 return a.get(t, x, mod(y, a.size(0)));
14 Pochoir_Boundary_End

(c)

15 Pochoir_Boundary_2D(dirichlet , a, t, x, y)
16 return 100+0.2*t;
17 Pochoir_Boundary_End

(d)

18 Pochoir_Boundary_2D(neumann , a, t, x, y)
19 int xx(x), yy(y);
20 if (x<0) xx = 0;
21 if (x>=a.size(1)) xx = a.size(1);
22 if (y<0) yy = 0;
23 if (y>=a.size(0)) yy = a.size(0);
24 return a.get(t, xx, yy);
25 Pochoir_Boundary_End

(e)

Figure 3: Pochoir specifications for a variety of boundary conditions.
(a) Grid: Nonperiodic with constant value 0. (b) Toroidal: periodic in
both x and y. (c) Cylindrical: nonperiodic in x with constant value 0 and
periodic in y. (d) Dirichlet: varying with time. (e) Neumann: constrained
first derivative (0).

the multicore machines we used for benchmarking.

The static information about a Pochoir stencil computation, such

as the computing kernel, the boundary conditions, and the stencil

shape, is stored in a Pochoir object, which is declared as follows:

• Pochoir_dimD name (shape);

This statement declares name as a Pochoir object with dim spatial

dimensions and computing shape shape, where dim is a small pos-

itive integer and shape is an array of arrays which describes the

shape of the stencil as elaborated below.

We now itemize the remaining Pochoir constructs and explain

the semantics of each.

• Pochoir_Shape_dimD name [] = {cells}

This statement declares name as a Pochoir shape that can hold

shape information for dim spatial dimensions. The Pochoir shape

is equivalent to an array of arrays, each of which contains dim+ 1

integer numbers. These numbers represent the offset of each mem-

ory footprint in the stencil kernel relative to the space-time grid

point 〈t,x,y, · · ·〉. For example, suppose that the computing kernel

employs the following update equation:

ut(x,y) = ut−1(x,y)

+
α∆t

∆x2
(ut−1(x−1,y)+ut−1(x+1,y)−2ut−1(x,y))

+
α∆t

∆y2
(ut−1(x,y−1)+ut−1(x,y+1)−2ut−1(x,y)) .

The shape of this stencil is {{0,0,0}, {−1,1,0}, {−1,0,0},
{−1,−1,0}, {−1,0,1}, {−1,0,−1}}.

The first cell in the shape is the home cell, whose spatial coordi-

nates must all be 0. During the computation, this cell corresponds

to the grid point being updated. The remaining cells must have

time offsets that are smaller than the time coordinate of the home

cell, and the corresponding grid points during the computation are

read-only.

The depth of a shape is the time coordinate of the home cell

minus the minimum time coordinate of any cell in the shape. The

depth corresponds to the number of time steps on which a grid point

depends. For our example stencil, the depth of the shape is 1, since

a point at time t depends on points at time t−1.. If a stencil shape

has depth k, the programmer must initialize all Pochoir arrays for

time steps 0,1, . . . ,k−1 before running the computation.

• Pochoir_Array_dimD(type, depth) name(sizedim−1, . . . ,

size1,size0)

This statement declares name as a Pochoir array of type type with

dim spatial dimensions and a temporal dimension. The size of the

ith spatial dimension, where i ∈ {0,1, . . . ,dim}, is given by sizei.

The temporal dimension has size k+ 1, where k is the depth of

the Pochoir shape, and are reused modulo k+1 as the computation

proceeds. The user may not obtain an alias to the Pochoir array or

its elements.

• Pochoir_Boundary_dimD(name,array, idxt , idxdim−1,

. . . , idx1, idx0)
〈definition〉

Pochoir_Boundary_End

This construct defines a boundary function called name that

will be invoked to supply a value when the stencil computa-

tion accesses a point outside the domain of the Pochoir array

array. The Pochoir array array has dim spatial dimensions, and

〈idxdim−1, . . . , idx1, idx0〉 are the spatial coordinates of the given

point outside the domain of array. The coordinate in the time di-

mension is given by idxt . The function body 〈definition〉) is C++
code that defines the values of array on its boundary. A current

restriction is that this construct must be declared outside of any

function, that is, the boundary function is declared global.

• Pochoir_Kernel_dimD(name,array, idxt , idxdim−1, . . . ,

idx1, idx0)
〈definition〉

Pochoir_Kernel_End

This construct defines a kernel function named name for updating

a stencil on a spatial grid with dim spatial dimensions. The spa-

tial coordinates of the point to update are 〈idxdim−1, . . . , idx1, idx0〉,
and idxt is the coordinate in time dimension. The function body

〈definition〉 may contain arbitrary C++ code to compute the sten-

cil. Unlike boundary functions, this construct can be defined in any

context.

• name.Register_Array(array)

A call to this member function of a Pochoir object name informs

name that the Pochoir array arraywill participate in its stencil com-

putation.

• name.Register_Boundary(bdry)

A call to this member function of a Pochoir array name asso-

ciates the declared boundary function bdry with name. The bound-

ary function is invoked to supply a value whenever an off-domain

memory access occurs. Each Pochoir array is associated with ex-

actly one boundary function at any given time, but the programmer

can change boundary functions by registering a new one.

• name.Run(T,kern)

This function call runs the stencil computation on the Pochoir ob-

ject name for T time steps using computing kernel function kern.

After running the computation for T steps, the results of the

computation can be accessed by indexing its Pochoir arrays at time

T + k−1, where k is the depth of the stencil shape. The program-

mer may resume the running of the stencil after examining the re-

sult of the computation by calling name.Run(T ′,kern), where T ′ is

the number of additional steps to execute. The result of the compu-

tation is then in the computation’s Pochoir arrays indexed by time

T +T ′+ k−1.

APPENDIX

A. ERROR MESSAGES
The Pochoir template library used during Phase-1 compilation

reports as many bugs as possible to assist debugging. This section

documents the error messages. If your code compiles and runs cor-

rectly during Phase 1, it should not encounter any compilation or

runtime problems during Phase 2. If it does, please report the bug

to pochoir@csail.mit.edu.

List of Pochoir error messages

Compile-time errors

• Pochoir environment variable not set

Run-time errors

• Pochoir off-shape access error

• Pochoir array registration error

• Pochoir array access error

• Pochoir array size mismatch error

• Pochoir illegal access by boundary function error

Pochoir environment variable not set

When the Pochoir compiler is invoked, it will automatically check

the value of environmental variable POCHOIR_LIB_PATH and in-

clude it as the path to the Pochoir template library. If the environ-

mental variable is not set up properly, the Pochoir compiler reports:

Pochoir environment variable not set:

POCHOIR_LIB_PATH

Pochoir off-shape access error

This error message will try to capture the mismatch between the

shape specified via Pochoir_Shape and registered in a Pochoir

object declaration, and the shape the user really used in the

Pochoir_Kernel_dimD. For example, suppose that the user writes

the following piece of stencil code, as in Figure 4:

1 Pochoir_Shape_1D heat_shape_1D[] = {{1, 0}, {0,
1}, {0, -1}, {0, 0}};

2 Pochoir_1D heat_1D(heat_shape_1D);
3 Pochoir_Array_1D(double) a(N_SIZE);
4 a.Register_Boundary(heat_bdry);
5 heat_1D.Register_Array(a);
6 Pochoir_Kernel_1D(heat_1D_fn , t, i)
7 a(t+1, i) = 0.125 * (a(t, i+1) - 2.0 * a(t, i

) + a(t, i-2));
8 Pochoir_Kernel_End
9 /* Initialization */
10 heat_1D.Run(T_STEP , heat_1D_fn);

Figure 4: The Pochoir stencil source code for a periodic 1D heat equation.

After the user compiles and runs it with the normal C++ com-

piler, the Pochoir template library reports the following errors at

runtime:

Pochoir off-shape access error:

Pochoir array index (0, 999)

Shape index {0, 2}

Input Pochoir_Shape<1> =

{{1, 0}, {0, 1}, {0, -1}, {0, 0}}

The Pochoir template library checks for shape mismatch errors on

temporal as well as spatial dimensions.

Pochoir array registration error

If you run a Pochoir object without registering any Pochoir arrays,

the Pochoir template library reports:

Pochoir registration error:

You forgot to register Pochoir array.

Pochoir array access error

Accessing a Pochoir array before registering it with a Pochoir ob-

ject causes the Pochoir template library to report:

Pochoir array access error:

A Pochoir array is accessed without being registered

with a Pochoir object.

Pochoir array size mismatch error

There can be multiple Pochoir arrays participating in one stencil

computation, that is, be registered with the same Pochoir object. If

the user registers Pochoir arrays with different sizes with the same

Pochoir object, the Pochoir template library reports:

Pochoir array size mismatch error:

Registered Pochoir arrays have different sizes.

Pochoir illegal access by boundary function error

Usually, the Pochoir compiler assumes that the access to a Pochoir

array in the boundary function should be within the domain by us-

ing the getmethod. Suppose that an off-boundary access in bound-

ary function occurs, such as

Pochoir_Boundary_2D(heat_bv_2D, arr, t, i, j)

return arr.get(t, -1, -1);

Pochoir_Boundary_End

The Pochoir template library reports:

Pochoir illegal access by boundary function error:

Out-of-range access by boundary function at index

(0, -1, -1)

B. REFERENCES

[1] R. Bleck, C. Rooth, H. Dingming, and L. Smith. Salinity-driven
thermocline transients in a wind-and thermohaline-forced isopycnic
coordinate model of the North Atlantic. Journal of Physical
Oceanography, 22(12):1486–1505, 1992.

[2] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures. In SC, pages 4:1–4:12, Austin, TX, Nov. 15–18 2008.

[3] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[4] H. Dursun, K. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,
A. Nakano, and P. Vashishta. A multilevel parallelization framework
for high-order stencil computations. In International Euro-Par
Conference on Parallel Processing, pages 642–653, 2009.

[5] H. Dursun, K. Nomura, W. Wang, M. Kunaseth, L. Peng,
R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta. In-core
optimization of high-order stencil computations. In PDPTA, pages
533–538, 2009.

[6] J. F. Epperson. An Introduction to Numerical Methods and Analysis.
Wiley-Interscience, 2007.

[7] H. Feshbach and P. Morse.Methods of Theoretical Physics. Feshbach
Publishing, 1981.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS, pages 285–297. IEEE, 1999.

[9] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In
ICS, pages 361–366. ACM, 2005.

[10] M. Frigo and V. Strumpen. The cache complexity of multithreaded
cache oblivious algorithms. Theory of Computing Systems,
45(2):203–233, 2009.

[11] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28, December 1996.

[12] Intel Corporation. Intel Cilk Plus Language Specification, 2010.
Document Number: 324396-001US. Available from
http://software.intel.com/sites/products/cilk-plus/

cilk_plus_language_specification.pdf.

[13] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick.
Implicit and explicit optimizations for stencil computations. In
Workshop on Memory System Performance and Correctness, pages
51–60. ACM, 2006.

[14] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of
modern memory subsystems on cache optimizations for stencil
computations. InWorkshop on Memory System Performance, pages
36–43. ACM, 2005.

[15] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Effective automatic parallelization of
stencil computations. In PLDI, 2007.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37:316–344,
December 2005.

[17] A. Nakano, R. Kalia, and P. Vashishta. Multiresolution molecular
dynamics algorithm for realistic materials modeling on parallel
computers. Computer Physics Communications, 83(2-3):197–214,
1994.

[18] A. Nitsure. Implementation and optimization of a cache oblivious
lattice Boltzmann algorithm. Master’s thesis, Institut für Informatic,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2006.

[19] L. Peng, R. Seymour, K. Nomura, R. K. Kalia, A. Nakano,
P. Vashishta, A. Loddoch, M. Netzband, W. R. Volz, and C. C. Wong.
High-order stencil computations on multicore clusters. In IPDPS,
pages 1–11. IEEE, 2009.

[20] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department
of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, June 1999.

[21] A. Taflove and S. Hagness. Computational electrodynamics: The
finite-difference time-domain method. Artech House, Norwood, MA,
2000.

[22] Y. Tang, R. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The Pochoir stencil compiler. In SPAA. ACM, 2011. To
appear.

[23] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice
Boltzmann simulation optimization on leading multicore platforms.
In IPDPS, pages 1–14. IEEE, 2008.

