
Extending the Nested Parallel Model to the Nested

Dataflow Model with Provably Efficient Schedulers

David Dinh
Computer Science Division
Univ. of California, Berkeley,
Berkeley, CA 94720, USA
dinh@cs.berkeley.edu

Harsha Vardhan Simhadri
Computer Science Dept.,

Lawrence Berkeley National Lab.,
Berkeley, CA 94720, USA

harshas@lbl.gov

Yuan Tang
⇤

School of Software, Fudan Univ.,
Shanghai Key Lab. of Intelligent

Information Processing,
Shanghai 200433, P. R. China
yuantang@fudan.edu.cn

ABSTRACT
The nested parallel (a.k.a. fork-join) model is widely used for
writing parallel programs. However, the two composition con-
structs, i.e. “k” (parallel) and “ ;” (serial), that comprise the nested-
parallel model are insufficient in expressing “partial dependencies”
in a program. We propose a new dataflow composition construct
“;” to express partial dependencies in algorithms in a processor-
and cache-oblivious way, thus extending the Nested Parallel (NP)
model to the Nested Dataflow (ND) model. We redesign several
divide-and-conquer algorithms ranging from dense linear algebra
to dynamic-programming in the ND model and prove that they all
have optimal span while retaining optimal cache complexity. We
propose the design of runtime schedulers that map ND programs to
multicore processors with multiple levels of possibly shared caches
(i.e, Parallel Memory Hierarchies) and prove guarantees on their
ability to balance nodes across processors and preserve locality. For
this, we adapt space-bounded (SB) schedulers for the ND model.
We show that our algorithms have increased “parallelizability” in
the ND model, and that SB schedulers can use the extra paralleliz-
ability to achieve asymptotically optimal bounds on cache misses
and running time on a greater number of processors than in the
NP model. The running time for the algorithms in this paper is

O
✓Ph�1

i=0 Q⇤(t;s·Mi)·Ci
p

◆

on a p-processor machine, where Q⇤ is the

parallel cache complexity of task t, Ci is the cost of cache miss at
level-i cache which is of size Mi, and s 2 (0,1) is a constant.
CCS Concepts
•Software and its engineering ! Parallel programming lan-
guages; •Theory of computation! Shared memory algorithms;
Control primitives;
Keywords
Parallel Programming Models, Fork-Join, Data-Flow, Nested Par-
allelism, Space-Bounded Scheduler, Cache-Oblivious Algorithms,
Cache-Oblivious Wavefront, Numerical Algorithms, Dynamic Pro-
gramming, Shared-memory multicore processors.
⇤All the coauthors contributed equally to this paper. Yuan Tang
is the corresponding author. Part of the work was done when the
author was a visiting scientist at MIT CSAIL.
Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4210-0/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2935764.2935797

1. INTRODUCTION
A parallel algorithm can be represented by a directed acyclic

graph (DAG) that contains only data dependencies, without ref-
erence to the control dependencies induced by any particular pro-
gramming model. We call this the algorithm DAG. In an algorithm
DAG, each vertex represents a piece of computation without any
parallel constructs and each directed edge represents a data depen-
dency from its source to the sink vertex. For example, Figure 1a is
the algorithm DAG of the dynamic programming algorithm for the
Longest Common Subsequence (LCS) problem. This DAG is a 2D
array of vertices labeled X(i, j), where the values with coordinates
i = 0 or j = 0 are given. For all i, j > 0, vertex X(i, j) depends on
vertices X(i�1, j�1),X(i, j�1) and X(i�1, j). In an algorithm
DAG, there are two possible relations between any pair of vertices
x and y. If there is a path from x to y or from y to x, one of them
must be executed before the other, i.e. they have to be serialized;
otherwise, the two vertices can run concurrently.

It is often tedious to specify the algorithm DAG by listing indi-
vidual vertices and edges, and in many cases the DAG is not fully
known until the computation has finished. Therefore, higher level
programming models are used to provide a description of a possi-
bly dynamic DAG. One such model is the nested parallel program-

ming model (a.k.a. the fork-join model), in which DAGs can be de-
scribed via spawn trees: recursive compositions based on two con-
structs, “k” (“parallel”) and “ ;” (“serial”). The internal nodes of
the spawn tree are serial and parallel composition constructs while
the leaves are strands — segments of serial code that contain no
function calls, returns, or spawn operations. The notation a ; b is
infix shorthand for a subtree of the spawn tree rooted at a node with
a “ ;” construct with left child a and right child b; this indicates that
b has a dependence on a and cannot start until a finishes. Likewise,
a k b is an analogous construct that indicates that a and b can run
concurrently. Expressing algorithms recursively in the NP model
exposes their locality at various scales, enabling good schedulers
to reduce the communication costs of their execution on a variety
of machine configurations [1, 12, 11].

For instance, one might express the LCS algorithm in the NP
model by decomposing the 2D array of vertices in the algorithm
DAG into four smaller blocks, recursively solving the smaller in-
stances of the LCS algorithms on these blocks, and composing
them by specifying the dependencies between them using ; or k
constructs. Figure 1 illustrates the resulting spawn tree up to two
levels of recursion. For correctness, the NP model demands a serial
composition between two subtrees of the spawn tree even if there is
a partial dependency (or equivalently, partial parallelism) between
them: that is, a subset of vertices in the DAG corresponding to one
of the subtrees depends on a subset of vertices corresponding to the

49



(a) Algorithm DAG (b) Divide-and-Conquer.

;
1;(2k3);4

;

;
11;(12k13);14

;

1 k

2 3

4

k

;
21;(22k23);24

;

1 k

2 3

4

;
31;(32k33);34

;

1 k

2 3

4

;
41;(42k43);44

;

1 k

2 3

4

(c) Spawn tree in the NP model
Figure 1: Algorithm DAG and the spawn tree of the LCS algorithm in the NP model. The labels 1,2,3,4 correspond to the four quadrants
in the recursive decomposition of the dynamic programming table. The leaves of the spawn tree are smaller LCS tasks while the internal
nodes are composition constructs. Solid arrows in the algorithms DAG represents data dependencies in the algorithm DAG and control
dependencies implied by the NP model in the spawn tree. The dashed arrows represent artificial dependencies induced by the NP model.

other. As a result, while the spawn tree in the NP programming
model can accurately retain the data dependencies of the algorithm
DAG, it also introduces many artificial dependencies that are not
necessary to maintain algorithm correctness. Artificial dependen-
cies induced by the NP programming model between subtrees of
the spawn tree in Figure 1 are shown overlaid by dashed arrows
onto the algorithm DAG in Figure 1b. Many parallel algorithms,
including dynamic programming and direct numerical algorithms,
incur an asymptotic increase in span due to the artificial depen-
dencies introduced by the NP programming model. For example,
the algorithm DAG for the LCS problem has O(n) span. When
expressed as a spawn tree in the NP model, its span follows the re-
currence T•(n) = 3T•(n/2), i.e., T•(n) = O(n1.5

), which indicates
a significant reduction in parallelism. The insufficiency of the NP
programming model in expressing partial dependencies in a spawn
tree is the fundamental reason that causes artificial dependencies
between subtrees of the spawn tree. This deficiency not only limits
the parallelism of such algorithms exposed to schedulers, but also
makes it difficult to simultaneously optimize for multiple program
complexity measures such as span and cache complexity [45]. In
practice, while schedulers can take advantage of the NP model’s
ability to expose locality, they are unable to load balance many
classes of algorithms due to reduced parallelism [43].
Our Contributions:
• Nested Dataflow model. We introduce a new fire construct, de-

noted “;” (pronounced “fire”), to compose subtrees in a spawn
tree. This construct, in addition to the k and ; constructs, forms
the nested dataflow (ND) model, an extension of the nested par-
allel programming model. The “;” construct allows us to pre-
cisely specify the partial dependence patterns in many algorithms
that k and ; constructs cannot. One of the design goals of the
ND programming model is to allow runtime schedulers to exe-
cute inter-processor work like a dataflow model, while retaining
the locality advantages of the nested parallel model by following
the depth-first order of spawn tree for intra-processor execution.

• DAG Rewriting System (DRS). We provide a DAG Rewriting
System that defines the semantics of the “;” construct by spec-
ifying the algorithm DAG that is equivalent to a dynamic spawn
tree in the ND model (see Section 2).

• Re-designed divide-and-conquer algorithms. We re-design
several typical divide-and-conquer algorithms in the ND model
eliminating artificial dependencies, thus minimizing span. The
set of algorithms include dense linear algebra and dynamic pro-
gramming. Section 3 presents algorithm for solving triangular
systems and the LCS problem; the associated technical report
[25] presents more such examples. Our critical insight is that
the data dependencies in all these algorithm DAGs can be pre-
cisely described with a small set of recursive partial dependency
patterns (which we formalize as sets of fire rules) that allows us

Memory: Mh = 1, Bh

Mh�1, Bh�1 Mh�1, Bh�1 Mh�1, Bh�1 Mh�1, Bh�1

M1, B1 M1, B1 M1, B1 M1, B1 M1, B1

h

fhfh�1 . . . f1

fh

f1
P P P f1

P P P f1
P P P f1

P P P f1
P P P

Cost: Ch�1

Cost: Ch�2

Figure 2: An h-level parallel memory hierarchy machine model.
to specify them compactly without losing any locality or paral-
lelism. Other algorithms such as stencils and fast matrix multi-
plication can also be effectively described in this model.

• Provably Efficient Runtime Schedulers. The NP model has
robust schedulers that map programs to shared-memory multi-
core systems, including those with hierarchical caches [17, 22,
11]. These schedulers have strong performance bounds for many
programs based on complexity measures such as work, span, and
cache complexity [16, 5, 10, 38, 1, 12, 11, 42]. In Section 4, we
propose an extension of one such class of schedulers called the
space-bounded (SB) schedulers for the ND model and provide
provable performance guarantees on its performance on the Par-
allel Memory Hierarchy machine model (see Figure 2) — a sym-
metric “trees of caches” that models the multiple levels of pos-
sibly shared caches in shared memory multicore processors. We
show that the algorithms in Section 3 have greater “paralleliz-
ability” in the ND model than in the NP model, and that space-
bounded schedulers can use the extra parallelizability to achieve
asymptotically optimal bounds on total running time on a greater
number of processors than in the NP model for “reasonably reg-
ular” algorithms. Qunatitatively, suppose that the tree of caches,
rooted at the DRAM, has h levels and any cache at level i has
size Mi. If the input (which initially resides in DRAM) has size
N >Mh�1, the SB scheduler for the ND model can efficiently use
all the processors attached to up to a maximum of N1�c/Mh�1
level-(h�1) caches for all the algorithms in this paper, where c
is an arbitrarily small constant. When each level-i cache has at
most (Mi/Mi�1)

1�c level-(i�1) caches attached to it (and level-
1 cache at most M1�c

1 processors), the running time is asymptot-

ically optimal: O
⇣⇣

Ph�1
i=0 Q⇤(t;s ·Mi) ·Ci

⌘

/p
⌘

, where Q⇤ is
the parallel cache complexity of the algorithm t, Ci is the cost of
a cache miss at level-i cache, s 2 (0,1) is a constant, and p is
the number of processors. This compares favorably with the SB
scheduler for the NP model [11] which, for the algorithms in the
paper, requires a large input size of at least M2

h�1 before it can
asymptotically match the efficiency of the ND version.

50



2. NESTED DATAFLOW MODEL
The nested dataflow model extends the NP model by introduc-

ing an additional composition construct, “;”, which generalizes
the existing “k” and “;” constructs. Programs in both the NP and
ND models are expressed as spawn trees, where the internal nodes
are the composition constructs and the leaf nodes are strands. We
refer to subtrees of the spawn tree as tasks or function calls. We
refer to the subtree rooted at the i-th child of an internal node as
its i-th subtask. In both the models, larger tasks can be defined by
composing smaller tasks with the “ ;” and “k” constructs. The ND
model allows tasks to be defined as a composition using the addi-
tional binary construct, “;”, which enables the specification of
“partial dependencies” between subtasks. This represents an arbi-
trary middle-point between the “ ;” construct (full dependency) and
the “k” construct (zero dependency).

For example, consider the program in Figure 3 represented by the
spawn tree in Figure 4. The entire program, MAIN, is comprised of
two tasks F and G. Task F is the serial composition of tasks A and
C. Similarly, task G is the serial composition of B and D. Task
C depends on A, which creates a partial dependency from F to G.
Instead of using a “ ;” construct, which would block D until the
completion of F (including both A and B), we denote the partial
dependency with the “;” construct in Figure 4.

MAIN(){
F() FG

; G()

}

F(){
A() ; B()

}

G(){
C() ; D()

}

+� FG
; -�= {

+� 1� ; -� 1�
}

Figure 3: Code for MAIN, F, G, and a fire rule.

The partial dependency from F to G is specified with the rule FG
; .

To specify that the only dependence is from A, the first subtask of
F, to C, the first subtask of G, we write +� FG

; -�= { +� 1� ; -� 1�}.
The circled values denote relative pedigree, or pedigree in short,
which represents the position of a nested function call in a spawn
tree with respect to its ancestor [36]. We use wildcards +� and -�
to represent the source and sink of the partial dependency. We then
specify a set of fire rules to describe the partial dependence pattern
of the “;” construct between the source and the sink nodes. In
the above case, we used +� 1� to denote the first subtask of the
source, +�; similarly, -� 1� denotes the first subtask of the sink. The
semicolon indicates a full dependency between them. In the context
of MAIN in Figure 3, +� is bound to F and -� to G, implying that
there is a full dependency from F� 1�, which refers to A, to G� 1�,
which refers to C. In the general case, we allow multiple rewriting
rules in the definition of a fire construct, and “multilevel” pedigrees
(e.g. +� 2� 1� denotes the first subtask of the second subtask of the
source) in each rule.

In the previous example, the dependency from A to C is a full
dependency; that is, the entirety of A must be completed before C
can start. However, this dependency itself may be artificial. There-
fore, we allow the “;” construct to be recursively defined using
fire rules that themselves represent partial dependencies.

Consider the following divide-and-conquer algorithm for com-
puting the matrix product C+=A⇥B, which we denote MM(A,B,C).
Let C00,C01,C10 and C11 denote the top left, bottom left, top right,
and the bottom right quadrants of C respectively. In the ND model,
we can define MM(A,B,C) to be

((MM(A00,B00,C00) k MM(A00,B01,C01)) // 1� 1� 1�|| 1� 1� 2�
k (MM(A10,B00,C10) k MM(A10,B01,C11))) // 1� 2� 1�|| 1� 2� 2�

MM
; ((MM(A01,B10,C00) k MM(A01,B11,C01)) // 2� 1� 1�|| 2� 1� 2�
k (MM(A11,B10,C10) k MM(A11,B11,C11))). // 2� 2� 1�|| 2� 2� 2�

Each quadrant of C is written to by two of the eight subtasks; each

;
MAIN

;
F

A B

;
G

C D

Figure 4: Spawn tree
corresponding to the
code in Figure 3.

MM
;

MM(A,B,C)

k

k

MM MM

k

MM MM

k

k

MM MM

k

MM MM

;

;

;

;

Figure 5: Partial dependencies in the
recursive matrix multiply algorithm.

such pair of subtasks must be serialized to avoid a data race. For
this, we might naively define the fire construct “MM

; ” between the
immediate subtasks of MM(A,B,C) with a pair of fire rules:

+� MM
; -� { +� 1� ; -� 1�, +� 2� ; -� 2�}

However, notice that the dependency between first subtasks (as well
as second subtasks), which is expressed with “ ;” in the code above,
is in reality a partial dependency. Furthermore, each of these par-
tial dependencies has the same pattern as “MM

; ”. Since this pattern
repeats recursively down an arbitrary number of levels, the “MM

; ”
construct should have been described by the fire rules:

+� MM
; -� { +� 1� MM

; -� 1�, +� 2� MM
; -� 2�}, (1)

wherein “ ;” is replaced by “MM
; ”.

If the recursion terminates at the level indicated in Figure 5, the
four instances of “MM

; ” between leaves of the spawn tree will be
interpreted as four full dependencies between the corresponding
strands. If the recursion continues, the fire rules are used to fur-
ther refine the dependencies. Whereas this algorithm has only one
set of dependence patterns (fire rules), we will see algorithms with
multiple types of fire rules in the next section.
DAG Rewriting System (DRS). We formalize the semantics of the
“;” construct with a DRS that defines the algorithm DAG corre-
sponding to the spawn tree given at runtime. The spawn tree can un-
fold dynamically at runtime by incrementally spawning new tasks
– a spawn operation rewrites a leaf of the spawn tree into an internal
node by adding two new leaves below. The composition construct
in the internal nodes of the spawn tree imply dependencies between
its subtrees. We represent these dependencies as directed dataflow

arrows in the spawn tree. The equivalent algorithm DAG implied
by the spawn tree is the DAG with the leaves of the spawn tree as
vertices, and edges representing dataflow edges implied by both the
serial and fire constructs that are incident to the leaves of the spawn
tree. The DAG also grows with the spawn tree; new vertices are
added to the DAG whenever new tasks are spawned, and the con-
struct used in the spawn operation defines the edges between these
new vertices in the algorithm DAG. Note that maintaining a full al-
gorithm DAG at runtime is not necessary. To save space, one can
carefully design the order of the execution of the spawn tree, and
recycle the memory used to represent parts of the spawn tree that
have finished executing as in [17, 34]. We will leave this for future
work. Instead, we focus here on the algorithm DAG to clarify the
semantics of the fire construct.

The DRS iteratively constructs the dataflow edges, and equiva-
lently the algorithm DAG, by starting with a single vertex repre-
senting the root of the spawn tree and successively applying DAG

rewriting rules. Given a DAG G, a rewriting rule replaces a sub-
graph that is isomorphic to L with a copy of sub-graph R = hV,Ei,
resulting in a new DAG G0. There are two rewriting rules:
1. Spawn Rule: A spawn rule corresponds to a spawn operation.

Any current leaf of the spawn tree corresponds to a single-vertex
no-edge subgraph L = h{A}, /0i of the DAG. If it spawns, we

51



rewrite the leaf as a (sub)tree rooted by either a “ ;”, “k” or “;”
in the spawn tree.1 The root of the newly spawned (sub)tree in-
herits all incoming and outgoing dataflow arrows of the old leaf.
For instance, if task A spawns B and C in serial, we rewrite the
single-vertex, no-edge DAG L to R = h{B,“ ;”,C},�!BCi, where�!
BC is a solid dataflow arrow (directed edge) from B to C (�!BC is
actually a shorthand for all-to-all dataflow arrows from all pos-
sible descendants of B to those of C, i.e. B⇥ C). If task A calls
B and C in parallel, we rewrite it as R = h{B,“k”,C}, /0i. While
the parallel construct introduces no dataflow arrows between B
and C, a rewriting rule from its closest ancestor that is a “;”
construct can introduce dataflow arrows to these two nodes ac-
cording to the fire rule. Similar semantics apply for non-binary
serial and parallel constructs. rewrite to R = h{B,“;”,C},E 0 ✓
B⇥ Ci, where E 0 is a dashed dataflow arrow and is a subset of
all possible arrows from descendants of B to descendants of C to
be defined by the fire rule as follows.

2. Fire Rule: Given a dashed dataflow arrow between arbitrary
source and sink nodes, including those from the left child of a
fire construct to its right child, we (recursively) rewrite the arrow
using the set of fire rules associated with it. These rules specify
how the “;” construct is rewritten to a set of dataflow arrows
between the descendants of the source and the sink nodes. There
are two possible cases for rewriting:
• If both operands A and B are strands, the dataflow arrow be-

tween them is rewritten as either “A ; B” or, if the fire con-
struct has no rewriting rules, “A k B”.

• If the source task A of a “;” construct is rewritten by a
spawn rule into a tree containing k subtasks, we add dataflow
arrows E 0 ✓ {A1, . . .Ak}⇥ B to the resulting DAG, i.e. R =

hV,E [E 0i, where the arrows in E 0 and their labels are de-
termined based on the set of fire rules as follows: for a fire
rule of the form +� i�p T

; -�q (where p and q are some pedi-
grees) from A to B, we add a dataflow arrow +�p T

; -�q from
Ai to B. An analogous rule applies when the sink spawns.

From the DRS, it is evident that the binary “ ;” and “k” con-
structs are special cases of the “;” construct. Four fire rules that
recursively refine between both pairs of subtasks of +� and -� de-
fine the ; construct, and an empty set of rules defines “k”. Higher-
degree “ ;” and “k” constructs are also easily replaced by “;”.
Work-Span Analysis. Work-Span analysis is commonly used to
analyze the complexity of an algorithm DAG. We use T1 to denote
a task’s work, that is, the total number of instructions it contains.
We use T• to denote its span, that is, the length of the critical path
of its DAG. The composition rule to calculate work T1 for all three
constructs of the ND model is always a simple summation. In prin-
ciple, the composition to calculate the span T• for all three con-
structs is the maximum length of all possible paths from source to
sink, i.e. the critical path. Since “ ;” and “k” primitives have fixed
semantics in all contexts, the span of tasks constructed with them
can be simplified as follows: for c = a ; b, T•,c = T•,a +T•,b; for
c = a k b, T•,c = max{T•,a,T•,b}. On the other hand, since the
semantics of a “;” construct are parameterized by its set of fire
rules, we have to calculate the depth of the task constructed with
it on a case-by-case basis. For instance, for the code in Figure 3,
we have T•,MAIN = T

•,F FG
;G

= max{T•,A + T•,B,T•,A ; C + T•,D},

where T•,A ; C is T•,A +T•,C. If the rule “FG
;” were to place a par-

tial dependence “AC
;” from A to C, calculating span would require

further recursive analysis.

1A leaf with a non-constant degree parallel construct such as a par-
allel for loop must be rewritten as an binary tree in our model.

3. ALGORITHMS IN THE ND MODEL
We now demonstrate the advantages of the ND model by ex-

pressing typical 2-way divide-and-conquer classical linear algebra
and dynamic programming algorithms in it, and deriving the nec-
essary fire rules. We present algorithms for solving triangular sys-
tems and the LCS problem. The associated technical report [25]
also presents algorithms for Cholesky factorization, LU factoriza-
tion with partial pivoting and Floyd-Warshall algorithm for All-
Pairs-Shortest-Paths. We demonstrate that these algorithms have
improved parallelism in the ND model by proving that their span in
the ND model is smaller than in the NP model and in fact matches
the span of their algorithm DAG. Furthermore, the arrangement of
tasks in the spawn tree for these algorithms does not change be-
tween the NP and the ND model, so that the cache complexity
of the depth-first traversal is the same in both ND and NP mod-
els. In Section 4, we present more sophisticated metrics to quantify
parallelism in the presence of caches; the algorithms presented here
have improved parallelism according to those metrics as well.
Triangular System Solver. A Triangular System Solver TRS(T,B)
takes as input a lower triangular n⇥n matrix T and a square matrix
B and outputs a square matrix X such that T X = B. A triangular
system can be recursively decomposed as follows:



B00 B01
B10 B11

�

=



T00 0
T10 T11

�

X00 X01
X10 X11

�

=



T00X00 T00X01
T10X00 +T11X10 T10X01 +T11X11

�

(2)

Equation (2) recursively solves TRS on four equally sized sub-
quadrants X00, X01, X10, and X11, as graphically depicted in Fig-
ure 7. It can be expressed in the NP model as shown in Equation (3),
where MMS(A,B,C) represents a cache-oblivious matrix multipli-
cation and subtraction (identical to the one presented in Section 2,
except instead of computing C+= AB it computes C�= AB) with
span O(n) and using O(n2

) space.2

X  TRS(T,B) = ((X00  TRS(T00,B00) ; MMS(T10,X00,B10))

k (X01  TRS(T00,B01) ; MMS(T10,X01,B11)))

; (X10  TRS(T11,B10) k X11  TRS(T11,B11)) (3)

The span of the TRS algorithm, expressed in the NP model is given
by the recurrence T•,TRS(n)= 2T•,TRS(n/2)+T•,MMS(n/2), which
evaluates to O(n logn). This is not optimal; a straightforward right-
looking algorithm has a span of O(n).

In Equation (4), we replace the “ ;” constructs from the original
spawn tree with “;” constructs, in order to remove artificial de-
pendencies. Because the two “;” constructs join different types of
tasks, they have distinct types, which we denote “T M

;” and “2T M2T
; ”.

Note that there are algorithms, e.g. Cholesky factorization, where
two types of subtasks, say, TRS and MMS, have more than one kind
of partial dependency pattern between them based on where they
occur. Each type of fire construct has a different set of fire rules;
in order to determine what these rules are, we expand an additional
level of recursion to examine finer-grained data dependencies.

X  TRS(T,B) =

((X00  TRS(T00,B00)
T M
; MMS(T10,X00,B10))

k (X01  TRS(T00,B01)
T M
; MMS(T10,X01,B11)))

2T M2T
; (X10  TRS(T11,B10) k X11  TRS(T11,B11)) (4)

2There is also an 8-way divide-and-conquer cache-oblivious par-
allel algorithm of MMS that has an optimal span of O(log2 n) but
uses O(n3

) space which can be used to trade off span for space
complexity.

52



;
TRS(T,B)

k

;

;
TRS(T00 ,B00)

k

;

T RS MMS

;

T RS MMS

k

T RS T RS

;MMS(T10 ,X00 ,B10)

k

k

MMS MMS

k

MMS MMS

k

k

MMS MMS

k

MMS MMS

;

T RS

TRS(T00 ,B01)

MMS

MMS(T10 ,X01 ,B11)

k
TRS(T11 ,B10)kTRS(T11 ,B11)

(a) Spawn tree of TRS with only “k” and “;” constructs in NP
model

2T M2T
;

TRS(T,B)

k

T M
;

2T M2T
;

TRS(T00 ,B00)

k

T M
;

T RS MMS

T M
;

T RS MMS

k

T RS T RS

MM
;

MMS(T10 ,X00 ,B10)

k

k

MMS MMS

k

MMS MMS

k

k

MMS MMS

k

MMS MMS

T M
;

T RS

TRS(T00 ,B01)

MMS

MMS(T10 ,X01 ,B11)

k
TRS(T11 ,B10)kTRS(T11 ,B11)

;

;

;

;

(b) Spawn Tree of TRS with “;”, “k”, and “ ;” constructs in
ND model

Figure 6: Spawn trees of TRS in the NP and ND models. The shape of the tree and the leaves are the same between the two models,
except that some of the ; constructs in NP model are relaxed with ; constructs and their dataflow arrows in the ND model. Dashed arrows
corresponding to “;” constructs are recursively rewritten until both source and sink subtrees are leaves, where they are treated as solid
arrows. For simplicity, the figure illustrates only dataflow arrows of type T M between the leaves, and omits dataflow arrows of other types.

3r
d su

b�
TRS

2n
d su

b�
M

M
S

1s
t su

b�
TRS

Figure 7: Geometric picture of a 2-way
divide-and-conquer TRS algorithm.

Figure 8: Cross-section of
the TRS algorithm DAG.

Notice that the source task of 2T M2T
; is ((X00  TRS(T00,B00)

T M
;

MMS(T10,X00,B10)) k (X01  TRS(T00,B01)
T M
; MMS(T10,X01,B11))),

and the its sink is (X10  TRS(T11,B10) k X11  TRS(T11,B11)). Since
the left (analogously, right) subtask of the sink can start as soon as
the matrix multiply updating B10 (B11), which is the right subtask
of the left (right) subtask of the source, is completed:

+� 2T M2T
; -�= { +� 1� 2� MT

; -� 1�, +� 2� 2� MT
; -� 2�}. (5)

Both fire constructs in the fire rules are of type “MT
;” since the de-

pendency structure is identical: the matrix updated in the source
MMS task is used as the second argument of the TRS task.

In order to determine the set of fire rules for “MT
;”, we expand

a pair of subtasks connected by the “MT
;” construct to an addi-

tional level of recursion. For instance, we will expand the task
MMS(T10,X00,B10) in equation Equation (6), which (as the source)
binds to +� in T M

; , and X00  TRS(T11,B10) in Equation (7),
which binds to -�. In the following program, we use A00,11 to
denote the bottom right quadrant of the top left quadrant of A.

MMS(T10,X00,B10) = // +�
((MMS(T10,00,X00,00,B10,00) k MMS(T10,00,X00,01,B10,01))

k (MMS(T10,10,X00,00,B10,10) k MMS(T10,10,X00,01,B10,11)))

MM
; ((MMS(T10,01,X00,10,B10,00) k MMS(T10,01,X00,11,B10,01))

k (MMS(T10,11,X00,10,B10,10) k MMS(T10,11,X00,11,B10,11))). (6)

X10  TRS(T11,B10) = // -�

((X00,00  TRS(T11,00,B10,00)
T M
; MMS(T11,10,X00,00,B10,10))

k (X00,01  TRS(T11,00,B10,01)
T M
; MMS(T11,10,X00,01,B10,11)))

2T M2T
; (X00,10  TRS(T11,11,B10,10) k X00,11  TRS(T11,11,B10,11))

(7)

The dependence of the sink task, -�, on the source task, +�,
in “MT

;” is a result of requiring the value of matrix B10 to be up-
dated by +� before -� can use it in a computation. At a more fine-
grained level, we can examine which quadrant of B10 each subtask
of -� requires (and which subtask of +� computes that quadrant)
in order to calculate the fine-grained dependencies. For instance,
consider the subtask X00,00  TRS(T11,00,B10,00), whose pedi-
gree is -� 1� 1� 1�, which requires B10,00. This quadrant of B10 is
updated in MMS(T10,01,X00,10,B10,00) of the source, whose pedi-
gree is +� 2� 1� 1�. Furthermore, notice that the dependency from
+� 2� 1� 1� to -� 1� 1� 1� takes the same form as the dependency
from +� to -� itself: the matrix updated by the source is the second
argument in the sink. Therefore, the fire rule for this particular de-
pendency is +� 2� 1� 1� T M

; -� 1� 1� 1�. Similar reasoning gives the
remaining fire rules:

+� T M
; -�={ +� 1� 1� 1� T M

; -� 1� 1� 1�, +� 1� 1� 1� T M
; -� 1� 2� 1�,

+� 1� 2� 1� T M
; -� 1� 1� 2�, +� 1� 2� 1� T M

; -� 1� 2� 2�,

+� 2� 1� T M
; -� 2� 1� 1�, +� 2� 1� T M

; -� 2� 2� 1�,

+� 2� 2� T M
; -� 2� 1� 2�, +� 2� 2� T M

; -� 2� 2� 2�} (8)

+� 2T M2T
; -�={ +� 1� 2� MT

; -� 1�, +� 2� 2� MT
; -� 2�}

+� MT
; -�={ +� 2� 1� 1� MM

; -� 1� 1� 2�, +� 2� 1� 2� MM
; -� 1� 2� 2�,

+� 2� 2� 1� MT
; -� 1� 1� 1�, +� 2� 2� 2� MT

; -� 1� 2� 1�}

We now argue that the span of TRS in the ND model is O(n), which
is the span of the algorithm itself and therefore optimal. The span
of an algorithm is the length of the longest path in its DAG. The
algorithm DAG defined by TRS expressed in the ND model forms
a periodic structure, a cross section of which can be seen in Fig-
ure 8, where squares represent matrix multiplications and triangles
represent smaller TRS tasks (there are no edges between separate
cross sections). The length of the longest path in the DAG, shown
in blue, is O(n).

We now formally prove that the algorithm we constructed in the
ND model achieves this span. Let T•,TRS(n) denote the span of
TRS on a matrix with input size n⇥n, and let T•,TRS p(n) denote
the span of the subtask with pedigree p descended from TRS with
input size n⇥n. Furthermore, let T

•,
T M
;

(n) denote the critical path

length of a TRS composed with a MMS by a “T M
;” construct, where

both tasks are directly descended from a TRS of size n⇥ n. Note
that it involves a TRS and a MMS, of size n/2⇥n/2 each.

53



Since replacing a fire construct with a serial construct can only
increase the span, it suffices to show that a version of the prob-
lem with some fire constructs replaced with serial constructs has
optimal span (this replacement can also simplify the algorithm de-
scription by allowing us to remove fire rules without making the
span asymptotically worse). Replacing the “2T M2T

; ” construct with
“ ;” gives the following upper bound on the span of TRS in the ND
model: T•,TRS(n) T•,TRS 1�(n)+T•,TRS 2�(n). (9)

Since the right subtask of TRS is merely the parallel composition
of two TRS operations, each on a matrix of size n/2⇥ n/2, the
second term on the right reduces to the max of their (identical)
spans, which is T•,TRS 2�(n) = T•,TRS(n/2).

The left subtask consists of two pairs (connected by a parallel
composition), each consisting of a TRS task and a MMS task, con-
nected by “T M

;” construct and done in parallel, and their spans are
identical. Therefore, the first term on the right hand side of inequal-
ity 9 reduces to

T•,TRS 1�(n) = T
•,TRS 1� 1� 1�T M

; TRS 1� 1� 2�(n) = T
•,

T M
;

(n).

The term on the right is the maximum length among all possi-
ble paths rewritten from 1� 1� 1� TM

; 1� 1� 2�. There are two types
of paths that could potentially be the longest. An instance of the
first type is the “T M

;” composition of tasks TRS 1� 1� 1� 1� 1� 1�, a
TRS of size n/4, with TRS 1� 1� 2� 1� 1� 1�, a MMS of size n/4,
followed by a MMS of size n/4. This gives the first expression in
the max term in the equation below. An instance of the second type
is the T M

; composition of the task TRS 1� 1� 1� 1� 1� 1�, a TRS of
size n/4, with TRS 1� 1� 1� 1� 1� 2�, a MMS of size n/4, followed
by the “T M

;” composition of TRS 1� 1� 1� 2� 1�, a TRS of size n/4,
with TRS 1� 1� 2� 2� 1� 1�, a MMS of size n/4. This results in the
second expression in the max term below.

T
•,

TM
;

(n)max{T
•,

TM
;

(n/2)+T•,MMS(n/4), 2T
•,

TM
;

(n/2)}

For the base case of the recurrence, we simply run TRS and MM
sequentially at the base case size. Therefore, we have

T
•,

TM
;

(1) = T•,TRS(1)+T•,MMS(1) = O(1).

Noting that T•,MMS(n) = O(n), the recurrences can be solved to
show that T•,TRS(n) = O(n), which is asymptotically optimal.

One can similarly derive fire rules for composing divide-and-
conquer algorithms for Cholesky factorization and LU factoriza-
tion with partial pivoting in the ND model (see associated technical
report [25]). Their depth is the optimal O(n) for matrices of size
n⇥n. These algorithms are also cache-oblivious and have asymp-
totically optimal cache complexity.
LCS (Longest Common Subsequence). We now consider a divide-
and-conquer algorithm for the LCS problem. Given two sequences
S = hs1,s2, . . . ,smi and T = ht1, t2, . . . , tni, the goal is to find the
length of longest common subsequence of S and T . LCS can be
computed using the recursion in Equation (10) when m = n [24] (a
similar recursion can be written for the general case, m 6= n).3

X(i, j) =

8
<

:

0 if i = 0 _ j = 0
X(i�1, j�1)+1 if i, j > 0 ^ si = t j
max{X(i, j�1),X(i�1, j)} if i, j > 0 ^ si 6= t j

(10)

In the ND model, we express this recursion as follows (Figure 9c
illustrates the spawn tree this describes):

X  LCS(X) =((X00  LCS(X00))
HV
;

(X01  LCS(X01) k X10  LCS(X10)))

VH
; (X11  LCS(X11)) (11)

The partial dependencies are given by the following fire rules
which are illustrated in Figures 9a and 9b:

+� HV
; -�= { +� H

; -� 1�, +� V
; -� 2�} (12)

3A similar recursion applies to the pairwise sequence alignment
with affine gap cost [28].

1� 2�

3� 4�

H

V

H

V

(a) Dashed arrows are de-
fined by the algorithm in
Equation (11) and fire rules
in Equations (12) and (13).

H

H

V V

H

H

V V

H

H

V V

H

H

V V

V

H

V

H

V

H

V

H

(b) Dashed arrows are
rewritten by fire rules in
Equations (14) and (15).

V H
;

HV
;

V H
;

HV
;

1 k

1 2

2

k
V H
;

HV
;

1 k

1 2

2

V H
;

HV
;

1 k

1 2

2

V H
;

HV
;

1 k

1 2

2

H
;

H
;

H
;

V
; V

;
V
;

(c) Spawn tree of LCS in ND model. We only draw one
“;” path in Figure 9b from top-left to bottom-right cell

Figure 9: DAG Rewriting and spawn tree of LCS in ND model.

+� VH
; -�= { +� 1� V

; -�, +� 2� H
; -�} (13)

+� H
; -�= { +� 1� 2� 1� H

; -� 1� 1�, +� 2� H
; -� 1� 2� 2�} (14)

+� V
; -�= { +� 1� 2� 2� V

; -� 1� 1�, +� 2� V
; -� 1� 2� 1�} (15)

To compute the span of LCS, consider the dynamic programming
table. The span is defined by the length of longest path in the DAG
which runs from the top left entry to the bottom right entry. We will
separately compute the length of the longest horizontal path, Th(n),
and the length of the longest vertical path, Tv(n). Notice that the
span, T•,LCS(n), is bounded above by Th(n)+Tv(n).

Since we split an LCS problem whose dynamic programming
table is of size n⇥ n into four LCS problems of size n/2⇥ n/2
of which the longest horizontal path covers two, we have Th(n) =
2Th(n/2). The base case (a 1⇥ 1 matrix) only depends on three
inputs, so that Th(1) = O(1). Therefore, Th(n) = O(n). Similar rea-
soning shows that Tv(n) = O(n). As a result, T•,LCS(n) is bounded
above by O(n), which is optimal.

4. SPACE-BOUNDED SCHEDULERS FOR
THE ND MODEL

We show that reasonably regular programs in the ND model, in-
cluding the algorithms in Section 3 and [25], can be effectively
mapped to Parallel Memory Hierarchies by adapting the space-
bounded (SB) schedulers for NP programs. Regularity is a quan-
tifiable property of the algorithm (or spawn tree) that measures how
difficult it is to schedule; we will define this for programs in the ND
model and show that the algorithm in Section 3 are highly regular.
Space-bounded schedulers for programs in the NP model were first
proposed for completely regular programs [22], improved upon
and rigorously analyzed in [11], and empirically demonstrated to
outperform work-stealing based schedulers for many algorithms in
[43], but not for TRSM and Cholesky algorithms due to their lim-
ited parallelism in the NP model [43]. The key idea in SB sched-
ulers is to map tasks to processors and caches in the hierarchy based
on annotations regarding their memory footprint. The main result
of this section is Theorem 3, which shows that the SB scheduler is
able to exploit the extra parallelism exposed in the ND model.
Machine Model: Parallel Memory Hierarchy. SB schedulers
are well suited for the Parallel Memory Hierarchy (PMH) machine

54



model [4] (see Figure 2), which models the multi-level cache hi-
erarchies and cache sharing common in shared memory multi-core
architectures. The PMH is represented by a symmetric tree rooted
at a main memory of infinite size. The internal nodes are caches
and the leaves are processors. We refer to subtrees rooted at some
cache as subclusters. Each cache at level i is of the same size Mi,
and has the same the number of level-(i�1) caches attached to it.
We call this the fan-out of level-i and denote it by the constant fi, so
that the number of processors in a h-level tree is ph =

Qh
i=1 fi. We

let the constant M0 denote the number of registers on a processor.
We let Ci�1 denote the cost parameter representing the cost of ser-
vicing a cache miss at level (i�1) from level i. A cache miss that
must be serviced from level j requires C0j = C0 +C1 + · · ·+Cj�1
time steps. For simplicity, we let the cache block be one word long.
This limitation can be relaxed and analyzed as in [11].
Terminology. A task is done when all the leaf nodes (strands) as-
sociated with its subtree have been executed. A dataflow arrow
originating at a leaf node in the spawn tree is satisfied when its
source node is done. A dataflow arrow originating at an internal
node of the spawn tree is satisfied when all its descendants (rewrit-
ings) according to the fire rules have been satisfied. A task is fully

ready or just ready when all the incoming dependencies (dataflow
arrows) originating outside the subtree are satisfied. The size, s(·),
of a task or a strand is the number of distinct memory locations
accessed by it. We assume that programs are statically allocated,
i.e., all necessary heap space is allocated up front and freed at pro-
gram termination, so that the size function is well defined. The size
annotation can be supplied by the programmer or can be obtained
from a profiling tool. We call a task M-maximal if its size is at
most M, but its parent in the spawn tree has size > M. A task is
level-i maximal in a PMH if it is Mi-maximal, Mi being the size of
a level-i cache. Note that even though an Mi-maximal task is not
ready, a M j-maximal subtask inside it (where j < i) can be ready.

SB Schedulers. We define a space-bounded scheduler to be any
scheduler that has the anchoring and boundedness properties [43]:
• Anchor: As the spawn tree unfolds dynamically, we assign and

anchor ready tasks to caches in the hierarchy with respect to
which they are maximal. Tasks are allocated a part of the sub-
cluster rooted at the assigned cache. The anchoring property re-
quires that all the leaves of the spawn tree of a task be executed
by processors in the part of the subcluster allocated.

• Boundedness: Tasks anchored to a cache of size M have a total
sizesM, where s2 (0,1) is a scheduler chosen constant called
dilation parameter.
There are several ways to maintain these properties and operate

within its constraints. The approach taken in [11] is to have a task
queue with each anchored task that contains its subtasks than can
be potentially unrolled and anchored to the caches below it. We
adopt the same approach here (outlined below for convenience) for
the ND model with the difference being that we only anchor and
run ready subtasks. In the course of execution, ready tasks are an-
chored to a suitable cache level (provided there is sufficient space
left), and each anchored task is allocated subclusters beneath the
cache, based on the size of the task. Just as in [11], a task of size S
anchored at level-i cache is allocated
gi(S)=min{ fi,max{1,

j

fi(3S/Mi)
a0
k

}},where a0=min{amax,1}

level-(i� 1) subclusters4 where amax is the parallelizability of the
task, a term we will define shortly. All processors in the subclusters
are required to work exclusively on this task. Initially, the root node
of the spawn tree is anchored to the root of the PMH.

4The factor 3 in the allocation function helps in proving Thm. 3.

Task t

glue nodes

t1 t2 t3

tA tB

Figure 10: Use of partial parallelism in the SB scheduler. White
represents tasks that are yet to start, gray represents running tasks,
and black represents complete tasks. Green arrows represent
dataflow arrows that may be used to start new tasks by the SB
scheduler while orange dataflow arrows are not immediately used.
Task t is level-i maximal; tasks tA and tB are level-(i�1) maximal;
tasks t1, t2, and t3 are level-(i� 2) maximal. Although subtask t1
has completed and has two outgoing dataflow edges, only t2, which
is in the same level-(i� 1) maximal subtask (tA) can be started; t3
can not immediately started until subtask tA completes.

To find work, a processor traverses the path from the leaf it rep-
resents in the tree towards the root of the PMH until it reaches
the lowest anchor it is part of. Here it checks for ready tasks in
the queue associated with this anchor, and if empty, re-attempts to
find work after a short wait. Otherwise, it pulls out a task from
the queue. If the task is from an anchor at the cache immediately
above the processor, i.e. at an L1 cache, it executes the subtask by
traversing the corresponding spawn tree in depth-first order. If the
processor pulled this task out of an allocation at a cache at level
i > 1, it does not try to execute its strands (leaves) immediately. In-
stead, it unrolls the spawn tree corresponding to the task using the
DRS and enqueues those subtasks that are either of size > Mi�1, or
not ready, in the queue corresponding to the anchor. Those subtasks
that cannot be immediately worked on due to lack of space in the
caches are also enqueued. However, if the processor encounters a
ready task that has size less than that of a level- j cache ( j < i), and
is able to find sufficient space for it in the subcluster allocated to
the anchor, the task is anchored at the level- j cache, and allocated
a suitable number of subclusters below the level- j cache. The pro-
cessor starts unraveling the spawn tree and finding work repeatedly.
When an anchored task is done, the anchor, allocation and the asso-
ciated resources are released for future tasks. We also borrow other
details in the design of the space-bounded schedulers (e.g. how
many subclusters are provisioned for making progress on “worst
case allocations”? what fraction of cache is reserved for tasks that
“skip cache levels”?) from prior work [11].

Roughly speaking, this scheduler uses the partial parallelism be-
tween level-(i�1) maximal subtasks within a level-i maximal task.
However, it does not use all the partial parallelism across level-
(i� 2) subtasks, especially those dataflow arrows between level-
(i�2) subtasks in different level-(i�1) subtasks (see Figure 10).
Metrics. We now analyze the runtime of the SB scheduler, ac-
counting for the cost of executing the work and load imbalance,
but not the overhead of the data structures needed to keep track of
anchors, allocations, and the readiness of subtasks; optimizing the
overhead is left for a future empirical study. The anchoring and
boundedness properties help to preserve locality while trading off
some parallelism. Inspired by [11, 42], we develop an analysis for
the ND model to argue that the impact of the loss of parallelism due
to the anchoring property on load balance is not significant.

A critical consequence of the anchoring property of the SB sched-
uler is that once a task is anchored to a cache, all the memory lo-

55



cations needed for the task are loaded only once and are not forced
to be evicted until the completion of the task. This motivates the
following quantification of locality. Given a task t, decompose the
spawn tree into M-maximal subtasks, and “glue nodes” that hold
these trees together (this decomposition is unique). Define the par-

allel cache complexity (PCC), Q⇤(t;M), of task t to be the sum of
sizes of the maximal subtrees, plus a constant overhead from each
glue node. This is motivated by the expectation that a good sched-
uler (such as SB) should be able to preserve locality within M-sized
tasks given an cache of appropriate size, while it might be too cum-
bersome to preserve locality across maximal subtasks. 5 The PCC
metric differs from the another common metric for locality of NP
programs: the cache complexity Q1 of the depth-first traversal in
the ideal cache model [1]. Unlike Q1, Q⇤ does not depend on the or-
der of traversal, but does not capture data reuse across M-maximal
subtasks, which is a smaller order term in our algorithms.

Note that M is a free parameter in this analysis. When the context
is clear, we often replace the task t in the Q⇤ expression with a size
parameter corresponding to the task, so that cache complexity is
denoted Q⇤(N;M). With this notation we have the following bound
on the cache complexity of the algorithms in Section 3.

CLAIM 1. For dense matrices of size N = n⇥n, the divide and
conquer classical matrix multiplication and Triangular System Solve
in Section 3, as well as the Cholesky and LU factorizations and the
2D analog of the Floyd-Warshall algorithm in [25] have parallel
cache complexity Q⇤(N;M) = O(N1.5/M0.5

), when N > M, with
the glue nodes contributing an asymptotically smaller term. The
LCS algorithm has Q⇤(n;M) = O(n2/M) for input of size n >

p
M.

This is true even if the algorithms are expressed in the NP model by
replacing fire constructs with the “ ;” construct.

As a direct consequence of the anchoring and boundedness prop-
erties, which conservatively provision cache space, the following
restatement of [11, Theorem 3] applies to the ND model.

THEOREM 1. Suppose t is a task in ND program that is an-
chored at a level-i cache of a PMH by a SB scheduler with dilation
parameter 0 < s < 1 (i.e., a SB scheduler that anchors tasks of
size at most sM j at level j). Then for all cache levels j  i, the
sum of cache misses incurred by all caches at level j is at most
Q⇤(t;s ·M j).

In conjunction with Claim 1, this gives a bound on the commu-
nication cost of the schedulers for ND algorithms. One can verify
from results on lower bounds on communication complexity [7]
that these bounds are asymptotically optimal. If the scheduler is
able to perfectly load balance a program at every cache level on an
h level PMH with p processors, we would expect a task t to take

Ph�1
i=0 Q⇤(t;s ·Mi) ·Ci

p
(16)

time steps to complete, where 0 < s < 1 is the dilation parameter.
However, if the algorithm does not have sufficient parallelism

for the PMH or is too irregular to load balance, we would expect it
take longer. Furthermore, since the number of processors assigned
to a task by a SB scheduler depends on its size, unlike in the case
of work-stealing scheduler, a work-span analysis of programs may
not be an accurate indicator of their running time. A more sophis-
ticated cost model that takes account of locality, parallelism-space
imbalances, and lack of parallelism at different levels of recursion
is necessary. In the NP model [11, Defn. 3], this was quantified
5This definition is a generalization of [11, Defn.2] for the ND
model. The full metric measures cache complexity in terms of
cache lines to model latency and is also parameterized by a second
parameter B: size of a cache line. We set B = 1 here for simplicity.
This simplification can be reversed.

Task t s(t)> M

glue nodes

 M  M  M  M  M  M  M

Figure 11: M-maximal subtasks (in gray) and glue nodes in the
spawn tree of a task t. The PCC, Q⇤(t;M), is the sum of sizes of
M-maximal subtasks plus one miss for each glue node. The red and
blue sets of arrows represent two chains of dependencies in t. The
ECC, bQa(t;M), is determined by the maximum, among all such
chains, of the sum of effective depth of M-maximal subtasks in the
chain, and the ratio Q⇤(t;M)/s(t)a for a parameter a > 0.

by the effective cache complexity metric (ECC, bQa). We provide
a new definition of this metric for the ND model. ECC attempts
to capture the cost of load balancing the program on hypotheti-
cal machine with machine with parallelism at most a — a PMH
which has at most fi  (Mi/Mi�1)

a level-(i� 1) caches beneath
each level-i cache for all 1 i h.

The metric assigns to each subtree of a spawn tree an estimate
of its complexity, measured in cache miss cost equivalents, when
mapped to a PMH by a SB scheduler. The estimate is based on
its position in the spawn tree and its cache complexity in the PCC
metric. The metric has two free parameters: a which represents
the parallelism available of a hypothetical machine, and M which
represents the size of one of the caches in the hierarchy with respect
to which the spawn tree is being analyzed.

DEFINITION 2 (EFFECTIVE CACHE COMPLEXITY (ECC)).
Let t be a task in the ND model. Unroll the spawn tree of t, ap-
plying the DAG rewriting rules until all the leaves of the tree are
M-maximal. Regard all dataflow arrows (solid or dashed) between
the leaves to be dependencies (see Figure 11).
The ECC of a M-maximal task t0s is bQa(t0;M) = Q⇤(t0;M).

The ECC of t is bQa(t;M), where
⇠

bQa(t;M)

s(t)a

⇡

=

max

8

>

>

<

>

>

:

maxc2chains(t,M)

⇢

P

ti2c

⇠

bQa(ti;M;k)
s(ti)a

⇡�

(depth dominated)
⇠P

ti2maximal(t,M)

bQa(ti;M)

s(t)a

⇡

(work dominated)

where chains(t,M) represents the set of chains of dependence edges
between M-maximal tasks, maximal(t,M), in the spawn tree of t.

The work dominated term has the same denominator as the left
hand side and thus captures the total amount of cache complex-
ity in the spawn tree (summation over leaves). The depth domi-
nated term captures the critical path for the SB scheduler. The term
d bQa(t;M)/s(t)ae is the proxy for span in our analysis and we call
it the effective depth of the task t. The depth dominated ensures
that the effective depth defined by ECC for a task is at least the
sum of the effective depths of all M-maximal tasks along any chain
between M-maximal tasks induced by DAG rewriting with respect
to the fire rules. The definition of ECC is such that:
1. In the range a 2 [0,amax), for some algorithm-specific constant

amax, bQa(t;M) cU Q⇤(t;M) for all M > MU , for some positive
universal constants cU ,MU .

56



2. On a machine with parallelism b amax�e for some arbitrarily
small positive constant e, the running time of the SB scheduler is
within a constant factor of the perfectly load balanced scenario
in equation 16 (see Theorem 3).

3. For NP programs, it coincides with the definition in [11].
Parallelizability of an Algorithm. For the above reasons, we refer
to the amax of an algorithm as its parallelizability just as in [42].
The greater the parallelizability of the algorithm, the more efficient
it is to schedule on larger machines. When the parallelizability
of the algorithm asymptotically approaches the difference between
the work and the span exponents of the algorithm, we call it reason-

ably regular. For an input of size N = n⇥ n, TRS, Cholesky and
2D Floyd-Warshall have work exponent 1.5 and span exponent 0.5,
and the difference between them is 1. In many divide-and-conquer
algorithms, such as in [14], where the NP model does not induce
too many artificial dependencies, the parallelizability exceeds that
of largest shared memory machines available today. In such algo-
rithms SB schedulers have been empirically shown to be effective
at managing locality without compromising load balance, and as
a consequence, capable of outperforming work-stealing schedulers
[43]. However, this is not the case for algorithms in Section 3,
which lose some parallelism when expressed in the NP model.

For example, in the NP model, the parallelizability (w.r.t. cache
size M) of the cache-oblivious matrix multiplication is amax,MM =

1� logM(1+ cMM) for some small constant cMM (see Claim 2 in
Appendix of [25]), which is as high as it can be. We expect the
parallelizability of nested parallel TRS algorithm to be less than
amax,MM . In fact, for an n⇥ n upper triangular T and a right hand
side B of size N = n⇥n, the parallelizability of the nested parallel
TRS algorithm in Equation (3) is 1� logmin{N/M,M}(1+cT RS) (see
Claim 3 in Appendix of [25]). This is smaller than the paralleliz-
ability of matrix multiplication when N/M < M. Since L3 caches
are of the order of 10MB, the reduced parallelism adversely affects
load balance even in large instances that are of the order of giga-
bytes (also empirically observed in [43]). When expressed in the
ND model, the parallelizability of TRS improves. This can be seen
in Figure 8, where the depth dominated term corresponding to the
longest chain has effective depth c(N0.5/M0.5

)M1�a
+c0, which is

less than the work dominated term when a < 1� logM(1+ cT RS).
This is the parallelizability of TRS in the ND model. This is also
the case for other linear algebra algorithms, including Cholesky and
LU factorizations. We can similarly show that the parallelizability
of LCS in the ND model is 1.
Running time analysis. The main result of this section is Theo-
rem 3 which shows that SB schedulers can make use of the extra
parallelizability of programs expressed in the ND model.

THEOREM 3. Consider an h-level PMH with ph processors where
a level-i cache has size Mi, fanout fi and cache miss cost Ci. Let
t be a task such that S(t;B) > fhMh�1/3 (the scheduler allocates
the entire hierarchy to such a task) with parallelizability amax in
the ND model. Suppose that amax exceeds the parallelism of the
machine by a constant. The running time of t is no more than:

Ph�1
j=0

bQa(t;M j/3) ·Cj

ph
· vh, where overhead vh is

vh = 2
h�1
Y

j=1

✓

1
k
+

f j

(1� k)(M j/M j�1)a0

◆

,

for some constant 0 < k < 1, where a0 = min{amax,1}.
When the machine parallelism is no greater than the parallelizabil-
ity of the algorithm in the ND model, bQa(t;M) cU Q⇤(M). There-
fore, the theorem says that the algorithm runs within a constant

factor (vh) of the perfectly load balanced scenario in Equation (16).
Relating this theorem to the definition of machine parallelism, we
infer that for highly regular algorithms considered in this paper,
the SB scheduler can effectively use up to O(N1�c0/Mh�1) level-
(h�1) subclusters for some arbitrarily small constant c0 < 0.

We prove this theorem using the notion of effective work, the
separation lemma (lemma 5) and a work-span argument based on
effective depth as in [11]. The latency added effective work is
similar to the effective cache complexity, but instead of counting
just cache misses at one cache level, we add the cost of cache
misses at each instruction. The cost r(x) of an instruction x access-
ing location m is r(x) = W (x)+C0i , where W (x) is the work, and
C0i = C0 +C1 + · · ·+Ci�1 is the cost of a cache miss if the sched-
uler causes the instruction x to fetch m from a level-i cache in the
PMH. The instruction would need to incur a cache miss at level-i if
it is the first instruction within the unique maximal level-i task that
accesses a particular memory location. Using this per-instruction
cost, we define effective work bW ⇤a (.) of a task using structural in-
duction in a manner that is deliberately similar to that of bQa(.).

DEFINITION 4 (LATENCY ADDED COST). With cost r assigned
to instructions, the latency added effective work of a task t, or a
strand s nested inside a task t (from which it inherits space decla-
ration) is: strand:

bW ⇤a (s) = s(t)a
X

x2s
r(x).

task: For task t of size between Mi and Mi+1, the l.a.e.w. is bW ⇤a (t),

where
l bW ⇤

a (t)
s(t)a

m

=

max

8

>

<

>

:

maxc2chains(t,M)

n

P

ti2c

l bW ⇤
a (ti)

s(ti)a

mo

(depth dominated)
⇠P

ti2maximal(t,M)

bW ⇤
a (ti)

s(t)a

⇡

(work dominated)

where chains(t,M) represents the set of chains of dependence edges
between M-maximal tasks, maximal(t,M), in the spawn tree of t.
Because of the large number of machine parameters involved ({Mi,Ci},
i = 1 . . .h etc.), it is undesirable to compute the latency added work
directly for an algorithm. Instead, using induction of the structure
of the task in terms of decomposition into strands and maximal
tasks, one can show that the latency added effective work can be
upper bounded by a sum of per (cache) level machine costs bW (i)

a (·)
that can, in turn be bounded by machine parameters and ECC of
the algorithm. For i 2 [h� 1], bW (i)

a (t) of a task t is computed ex-
actly like bW ⇤a (c) using a different base case: for each instruction
x in c, if the memory access at x costs at least C0i , assign a cost
of ri(x) = Ci to that node. Else, assign a cost of ri(x) = 0. Fur-
ther, we set r0(x) =W (x), and define bW (0)

a (c) in terms of ro(·). It
also follows from these definitions that r(x) =

Ph�1
i=0 ri(x) for all

instructions x. With this notation, we have (see [25] for proof):
LEMMA 5. Separation Lemma: On an h-level PMH, and for a

parameter a > 0, for a task t with size at least Mh�1, we have:
&

bW ⇤a (b)
s(t)a

'


&

Ph�1
i=0

bW (i)
a (t).

s(t)a

'

With the separation lemma for the ND model, the proof of The-
orem 3 follows from the two lemmas which we adapt from [11].
The first is a bound on the per level latency added effective work
term in terms of the effective cache complexity. The second is a
bound on the runtime in terms of the latency added effective work
using a modified work-span analysis akin to Brent’s theorem. The
proofs of these two lemmas follow the same arguments as in [11]
with minor, but straightforward, modifications that account for the
new definition of the ECC in the ND model.

57



LEMMA 6. Consider an h-level PMH and a task (or a strand)
t. If t is scheduled on this PMH using a space-bounded scheduler
with dilation s = 1/3, then bW ⇤a (t)

Ph�1
i=0

bQa(t;Mi/3,B) ·Ci.

LEMMA 7. Consider an h-level PMH and a task with paral-
lelizability with amax that exceeds the parallelism of the PMH by a
small constant. Let a0 = min{amax,1}. Let Ni be a task or strand
which has been assigned a set Ut of q  gi(S(Ni)) level-(i� 1)
subclusters by the scheduler. Letting

P

V2Ut
(1� µ(V )) = r (by

definition, r  |Ut |= q), the running time of Ni is at most:

bW ⇤a (Ni)

rpi�1
· vi,where overhead vi = 2

i�1
Y

j=1

✓

1
k
+

fi
(1� k)(Mi/Mi�1)a0

◆

,

for some constant 0 < k < 1.

5. RELATED WORK AND COMPARISON
Nested Parallelism, Complexity and Schedulers. A major ad-
vantage of writing algorithms in the NP and ND models is that
it exposes its locality (quantified by cache complexity) and paral-
lelism (quantified by work and span) at different scales. This makes
it possible to design schedulers that can exploit parallelism and lo-
cality in algorithms at different levels of the cache hierarchy. Initial
analyses of schedulers for the NP model, such as the randomized
work-stealing scheduler [17], were based only on work and span.
While such analyses serve as a good indicator of their scalability
and load-balancing abilities, better analyses and newer schedulers
that minimize both communication costs and load balance in terms
of time and cache complexities on various parallel cache config-
urations have been studied [1, 10, 12, 22, 11]. Many divide-and-
conquer parallel cache-oblivious algorithms that can can achieve
theoretically optimal bounds on cache complexity, work and span
exist [14, 23]. For these NP algorithms, schedulers can achieve
optimal bounds on time and communication costs.

Another advantage of the NP (and ND) algorithms is that despite
being processor- and cache-oblivious, schedulers execute these al-
gorithms well with minimal tuning; the bounds are fairly robust
across cache sizes and processor counts. Tuning of algorithms for
time and/or cache complexity has several disadvantages: first, the
code structure becomes more complicated; second, the parameter
space to explore is usually of exponential size; third, the tuned code
is non-portable, i.e., separate tuning is required for different hard-
ware systems; fourth, the tuned code may not be robust to variations
and noise in the running environment. Recent work by Bender et al.
[8] showed that loop based codes are not cache-adaptive, i.e., when
the amount of cache available to an algorithm can fluctuate, which
is usually the case in a real-world environment, the performance
of tuned loop tiling based can suffer significantly. However, many
runtimes and systems (e.g. Halide [41]) that map algorithms such
as dense numerical algebra, stencils and memoization algorithms
to parallel machines rely heavily on tuning to extract performance.
Futures, Pipelines and other Synchronization Constructs. The
limitations of the NP model in expressing parallelism is known in
the parallel programming community. Several approaches, such as
futures [6, 26] and synchronization variables [13], were proposed
to express more general classes of parallel programs.

Conceptually, the future construct lets a piece of computation
run in parallel with the context containing it. The pointer to fu-
ture can then be passed to other threads and synchronize at a later
point. Several papers have studied the complexity of executing pro-
grams with futures. Greiner and Blelloch [29] discuss semantics,
cost models and effective evaluations strategies with bounds on the
time complexity. Spoonhower et al. [44] calculate tight bounds on
the locality of work-stealing in programs with futures. The bounds

show that moving from a strict NP model to programs with futures
can make WS schedulers pay significant price in terms of local-
ity. To alleviate this problem, Herlihy and Liu [31] suggest that the
cache locality of future-parallel programs with work-stealing can
be improved by restricting the programs to using “well-structured
futures”: each future is touched only once, either by the thread
that created it, or by a later descendant of the thread that created
it. However, it is difficult to express the algorithms in our paper as
well-structured futures without losing parallelism or locality. One
of the main reasons for this is that the algorithm DAGs we con-
sider have nodes with multiple, even O(n), outgoing dataflow ar-
rows which cannot be easily translated into “touch-once” futures.
Even if we were to express such DAGs with touch-once futures, the
resultant DAG might be unnecessarily serialized. We seek to elim-
inate such artificial loss of parallelism with the ND model. Further,
the analysis of schedulers for programs with futures is limited to
work-stealing, which is a less than ideal candidate for multi-level
cache hierarchies. To the best of our knowledge, no provably good
hierarchy-aware schedulers for future-parallel programs exist.

Synchronization variables are a more general form of synchro-
nization among threads in “computation DAG” and can be used
to implement futures. Blelloch et al. [13] present the write-once
synchronization variable, which is a variable (memory location)
that can be written by one thread and read by any number of other
threads. The paper also discusses an online scheduling algorithm
for a program with “write-once synchronization variables” with ef-
ficient space and time bounds on the CRCW PRAM model with the
fetch-and-add primitive.

Though futures or synchronization variables provide a more re-
laxed form of synchronization among threads in a computation DAG,
thus exposing more parallelism, there are some key technical dif-
ferences between these approaches and the ND model. First, the fu-
ture construct fails to address the concept of “partial dependencies”.
A thread computing a future is “parallel”, not “partially parallel”,
to the thread touching the future. The runtime always eagerly cre-
ates both threads before the future is computed, thus possibly wast-
ing asymptotically more space and incurring asymptotically more
cache misses. In contrast, the “;” construct allows the runtime
the flexibility of creating “sink” tasks as required when partial de-
pendencies are met. Second, there is no existing work on linguistic
and runtime support for the recursive construction and refinement
of futures over spawn trees. While many dataflow programming
models have been studied and deployed in production over the last
four decades [33], the automatic recursive construction of dataflow
arrows over the spawn tree, which is crucial in achieving locality
in a cache- and processor-oblivious fashion, is a new and unique
feature of our model. Third, there are algorithms whose maximal
parallelism can be easily realized using the “;” construct but not
with futures. In the ND model, it is easy to describe algorithms in
which a source can fire multiple sink nodes, and a sink node can de-
pend on multiple sources. Such algorithms with nodes that involve
multiple incoming and outgoing dataflow arrows pose problems in
future-parallelism models. For instance, programming the LCS al-
gorithm using futures without introducing artificial dependencies is
very cumbersome. To eliminate artificial dependencies, this class
of problems requires futures to be touched by descendants of the
siblings of the node whose descendant created the future; that is,
the touching thread may be created before the corresponding future
thread is created. To the best of our knowledge, there is no easy
scheme to pass the pointer to a future up and down the spawn tree.

Another closely related extension of the nested parallel model
is “pipeline parallelism”. Pipeline parallelism can be constructed
by either futures (as in [15], where it was used to shorten span) or

58



synchronization variables, or by some elegantly defined linguistic
constructs [35]. The key idea in pipeline parallelism is to orga-
nize a parallel program as a linear sequence of stages. Each stage
processes elements of a data stream, passing each processed data
element to the next stage, and then taking on a new element before
the subsequent stages have necessarily completed their processing.
Pipeline parallelism cannot express all the partial dependence pat-
terns described in this paper. To allow the expression of arbitrary
DAGs, interfaces for “parallel task graphs” and schedulers for them
have been studied [32, 2]. While in principle they can be used to
construct computation DAGs that contain arbitrary parallelism, the
work flow is more or less similar to dataflow computation without
much emphasis on recursion, locality or cache-obliviousness. The
same limitation is true of pipeline parallelism as well.
Other algorithms, systems and schedulers. Parallel and cache-
efficient algorithms for dynamic programming have been exten-
sively studied (e.g. [22, 27, 37, 45]). These algorithms illustrate
algorithms in which it is necessary to have programming constructs
that can express multiple (even O(n)) dataflows at each node with-
out serialization [27]. The necessity of wavefront scheduling and
designs for it have been studied in [37, 45].

Dynamic scheduling in dense numerical linear algebra on shared
and distributed memories, as well as GPUs, has been studied in the
MAGMA and PLASMA [3], DPLASMA [18], and PaRSEC [19]
systems. The programming interface used for these systems is
DaGUE [20], which is supported by hierarchical schedulers in run-
times. The DaGUE interface is a slight relaxation of the NP model
that allows recursive composition of task DAGs representing dataflow
within individual kernels. However, the interface does not capture
the notion of partial dependencies. When DAGs of smaller ker-
nels are composed to define larger algorithms, the dependencies
are either total or null. The ability to compose kernels with partial
dependency patterns is key to the ND model.

The FLAME project [30], and subsequently the Elemental project
[40], provides a systematic way of deriving recursions and data de-
pendencies in dense linear algebra from high-level expressions [9],
and using them to generate data flow DAG scheduling [21]. The
method proposed in these works can be adapted to find the partial
dependence patterns derived by hand in this paper.

The Galois system developed at UT Austin [39] proposes a data-
centric formulation of algorithms called “operator formulation”.
This formulation was initiated for handling irregular parallel com-
putation in which data dependencies can change at runtime, and for
irregular data structures such as graphs, trees and sets. In contrast,
our approach was motivated by more regular parallel computations
such as divide-and-conquer algorithms.

Acknowledgements
We thank Prof. James Demmel, Dr. Shachar Itzhaky, Prof. Charles
Leiserson, Prof. Armando Solar-Lezama and Prof. Katherine Yelick
for valuable discussions and their support in conducting this re-
search. Yuan Tang thanks Prof. Xiaoyang Wang, the dean of
Software School and School of Computer Science at Fudan Uni-
versity for general help on research environment. Yuan Tang also
thanks Prof. Haibin Kan for generous financial support from grant
KRH2301058. We thank the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research (DoE
ASCR), Applied Mathematics and Computer Science Program, grants
DE-SC0010200, DE-SC-0008700, and AC02-05CH11231, for fi-
nancial support, along with DARPA grant HR0011-12-2-0016, AS-
PIRE Lab industrial sponsors and affiliates Intel, Google, Huawei,
LG, NVIDIA, Oracle, Samsung, and MathWorks.

6. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. In Proc. of the 12th ACM Annual
Symp. on Parallel Algorithms and Architectures (SPAA
2000), pages 1–12, 2000.

[2] K. Agrawal, C. E. Leiserson, and J. Sukha. Executing task
graphs using work stealing. In IPDPS, pages 1–12. IEEE,
April 2010.

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov. Numerical
linear algebra on emerging architectures: The plasma and
magma projects. Journal of Physics: Conference Series,
180(1):012037, 2009.

[4] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel
computers as memory hierarchies. In Proc. Programming
Models for Massively Parallel Computers, pages 116–123.
IEEE Computer Society Press, 1993.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA
’98, pages 119–129, June 1998.

[6] H. C. Baker, Jr. and C. Hewitt. The incremental garbage
collection of processes. In Proceedings of the 1977
Symposium on Artificial Intelligence and Programming
Languages, pages 55–59, New York, NY, USA, 1977. ACM.

[7] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear algebra.
SIAM J. Matrix Analysis Applications, 32(3):866–901, 2011.

[8] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh,
R. Johnson, and S. McCauley. Cache-adaptive algorithms. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 958–971, 2014.

[9] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S.
Quintana-Ortí, and R. A. v. d. Geijn. The science of deriving
dense linear algebra algorithms. ACM Trans. Math. Softw.,
31(1):1–26, Mar. 2005.

[10] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism.
Journal of the ACM, 46(2):281–321, 1999.

[11] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V.
Simhadri. Scheduling irregular parallel computations on
hierarchical caches. In Proceedings of the Twenty-third
Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 355–366. ACM, 2011.

[12] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache
among threads. In Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 235–244. ACM, 2004.

[13] G. E. Blelloch, P. B. Gibbons, Y. Matias, and G. J. Narlikar.
Space-efficient scheduling of parallelism with
synchronization variables. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 12–23, Newport, Rhode Island, June 1997.

[14] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low
depth cache-oblivious algorithms. In Proceedings of the
Twenty-second Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’10, pages 189–199,
New York, NY, USA, 2010. ACM.

[15] G. E. Blelloch and M. Reid-Miller. Pipelining with futures.
In Proceedings of the Ninth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’97, pages
249–259, New York, NY, USA, 1997. ACM.

59



[16] R. D. Blumofe and C. E. Leiserson. Space-efficient
scheduling of multithreaded computations. In Proceedings of
the Twenty Fifth Annual ACM Symposium on Theory of
Computing, pages 362–371, San Diego, California, 1993.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. JACM,
46(5):720–748, Sept. 1999.

[18] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief,
P. Luszczek, A. Yarkhan, and J. Dongarra. Distributed dense
numerical linear algebra algorithms on massively parallel
architectures: Dplasma. Technical Report UT-CS-10-660,
University of Tennessee Computer Science, September 2013.

[19] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault,
and J. J. Dongarra. Parsec: Exploiting heterogeneity to
enhance scalability. Computing in Science & Engineering,
15(6):36–45, 2013.

[20] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. Dague: A generic distributed
{DAG} engine for high performance computing. Parallel
Computing, 38(1-2):37 – 51, 2012. Extensions for
Next-Generation Parallel Programming Models.

[21] E. Chan and F. D. Igual. Runtime data flow graph scheduling
of matrix computations with multiple hardware accelerators,
FLAME Working Note #50, October 2010.

[22] R. Chowdhury, F. Silvestri, B. Blakeley, and
V. Ramachandran. Oblivious algorithms for multicores and
network of processors. Journal of Parallel and Distributed
Computing (Special issue on best papers from IPDPS 2010,
2011 and 2012), 73(7):911–925, 2013. A preliminary
version appeared in IPDPS ’10.

[23] R. Cole and V. Ramachandran. Efficient resource oblivious
algorithms for multicores. CoRR, abs/1103.4071, 2011.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[25] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested
parallel model to the nested dataflow model with provably
efficient schedulers. CoRR, abs/1602.04552, 2016.

[26] D. Friedman and D. Wise. Aspects of applicative
programming for parallel processing. Computers, IEEE
Transactions on, C-27(4):289–296, April 1978.

[27] Z. Galil and K. Park. Parallel algorithms for dynamic
programming recurrences with more than O(1) dependency.
Journal of Parallel and Distributed Computing, 21:213–222,
1994.

[28] O. Gotoh. An improved algorithm for matching biological
sequences. Journal of Molecular Biology, 162:705–708,
1982.

[29] J. Greiner and G. E. Blelloch. A provably time-efficient
parallel implementation of full speculation. ACM Trans.
Program. Lang. Syst., 21(2):240–285, Mar. 1999.

[30] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A.
van de Geijn. FLAME: Formal Linear Algebra Methods
Environment. ACM Transactions on Mathematical Software,
27(4):422–455, Dec. 2001.

[31] M. Herlihy and Z. Liu. Well-structured futures and cache
locality. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 155–166. ACM, 2014.

[32] T. Johnson, T. A. Davis, and S. M. Hadfield. A concurrent
dynamic task graph. Parallel Comput., 22(2):327–333, 1996.

[33] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, Mar. 2004.

[34] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E.
Leiserson. Using memory mapping to support cactus stacks
in work-stealing runtime systems. In Proceedings of the 19th
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, pages 411–420, New
York, NY, USA, 2010. ACM.

[35] I.-T. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and
Z. Zhang. On-the-fly pipeline parallelism. In Proceedings of
the Twenty-fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, pages 140–151,
New York, NY, USA, 2013. ACM.

[36] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic
parallel random-number generation for
dynamic-multithreading platforms. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’12, pages 193–204, New
York, NY, USA, 2012. ACM.

[37] S. Maleki, M. Musuvathi, and T. Mytkowicz. Parallelizing
dynamic programming through rank convergence. In
Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP’14,
pages 219–232, New York, NY, USA, 2014. ACM.

[38] G. Narlikar. Space-Efficient Scheduling for Parallel,
Multithreaded Computations. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, May 1999.

[39] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, pages 12–25. ACM, 2011.

[40] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond,
and N. A. Romero. Elemental: A new framework for
distributed memory dense matrix computations. ACM Trans.
Math. Softw., 39(2):13:1–13:24, Feb. 2013.

[41] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 519–530. ACM, 2013.

[42] H. V. Simhadri. Program-Centric Cost Models for Locality
and Parallelism. PhD thesis, CMU, 2013.

[43] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
and A. Kyrola. Experimental analysis of space-bounded
schedulers. Transactions on Parallel Computing, 3(1), 2016.
A preliminary version appeared in SPAA ’14.

[44] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and
R. Harper. Beyond nested parallelism: Tight bounds on
work-stealing overheads for parallel futures. In Proceedings
of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’09, pages 91–100,
New York, NY, USA, 2009. ACM.

[45] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A.
Chowdhury. Cache-oblivious wavefront: Improving
parallelism of recursive dynamic programming algorithms
without losing cache-efficiency. In PPoPP’15, San
Francisco, CA, USA, Feb.7 – 11 2015.

60




