
Brief Announcement: STAR (Space-Time Adaptive and
Reductive) Algorithms for Dynamic Programming Recurrences

with more than O(1) Dependency
Yuan Tang, Shiyi Wang

∗

School of So�ware, Fudan University

Shanghai, China

yuantang@fudan.edu.cn

ABSTRACT
It’s important to hit a space-time balance for a real-world algorithm

to achieve high performance on modern shared-memory multi-

core and many-core systems. However, a large class of dynamic

programs with more than O (1) dependency achieved optimality

either in space or time, but not both. In the literature, the problem

is known as the fundamental space-time tradeo�. We propose

the notion of “Processor-Adaptiveness”. In contrast to the prior

“Processor-Awareness”, our approach does not partition statically

the problem space to the processor grid, but uses the processor

count P to just upper bound the space and cache requirement in a

cache-oblivious fashion. In the meantime, our processor-adaptive

algorithms enjoy the full bene�ts of “dynamic load-balance”, which

is a key to achieve satisfactory speedup on a shared-memory system,

especially when the problem dimension n is reasonably larger than

P . By utilizing the “busy-leaves” property of runtime scheduler and

a program managed memory pool that combines the advantages of

stack and heap, we show that our STAR (Space-Time Adaptive and

Reductive) technique can help these dynamic programs to achieving

sublinear time bounds while keeping to be asymptotically work-,

space-, and cache-optimal. �e key achievement of this paper is
to obtain the �rst sublinear O (n3/4 logn) time and optimal O (n3)
work GAP algorithm; If we further bound the space and cache

requirement of the algorithm to be asymptotically optimal, there

will be a factor of P increase in time bound without sacri�cing the

work bound. If P = o(n1/4/ logn), the time bound stays sublinear

and may be a be�er tradeo� between time and space requirements

in practice.

CCS CONCEPTS
•�eory of computation→Divide and conquer; Dynamic pro-
gramming; •Computingmethodologies→Sharedmemory al-
gorithms;

∗
Yuan Tang is the corresponding author and also a�liated with Shanghai Key Lab. of

Intelligent Information Processing and the State Key Lab. of Comp. Arch. ICT, CAS

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA’17, July 24-26, 2017, Washington DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4593-4/17/07. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3087556.3087593

KEYWORDS
space-time balance, cache-oblivious algorithm, matrix multiplica-

tion, dynamic program with more than O (1) dependency, work-
time model, the shared-memory multicore system

1 INTRODUCTION
It’s important to hit a space-time balance for a real-world algorithm

to achieve high performance on modern shared-memory multi-core

and many-core systems. However, a large class of DP (Dynamic

Programming) recurrences with more than O (1) dependency, in-
cluding the general MM (matrix multiplication), Strassen-like fast

MM, LWS, GAP, and Parenthesis, have algorithms with either sub-

linear (parallel) time bound (time bound for short)
1
but sub-optimal

space and cache bound [10], or optimal space and cache but super-

linear time bound [4, 6, 8]. To the best of our knowledge, there are

no prior approach that can simultaneously achieve a sublinear time

as well as optimal work, space and cache bound in one algorithm

for DP recurrences with more than O (1) dependency, especially in

a cache-oblivious fashion. Figure 1: Acronyms and nota-
tions

MM Matrix Multiplication

DP Dynamic Programming

COP Cache-Oblivious Parallel

RWS Randomized Work-Stealing

CAS Compare-And-Swap

n Problem dimension

P Number of processing cores

ϵi small constant

M Cache size

B cache line size

T1 Work

T∞ Time (span, depth, critical path length)

Tp Parallel running time on p cores

T1/T∞ Parallelism

Q1 Serial cache complexity

Qp Parallel cache complexity on P threads

ND Nested Data�ow

a ‖ b task b has no dependency on a
a ; b task b has full dependency on a
a { b task b has partial dependency on a

Let’s take the general

MM C = A ⊗ B on a

closed semiring SR =

(S, ⊕, ⊗, 0, 1) as an exam-

ple, where S is a set of

elements, ⊕ and ⊗ are

binary operations on S ,
and 0, 1 are additive and

multiplicative identities,

respectively. �e gen-

eral MM not only is a

DP problem with O (n)
dependency

2
, but also

serves as a basic building block for more complicated DP algo-

rithms such as LWS, GAP, and Parenthesis to achieve sublinear

time bounds [10]. �e general MM can be computed in a recursive

divide-and-conquer fashion as follows. At each level of recursion,

the computation of an MM of dimension n (i.e. n-by-n) is divided
into four equally sized quadrants, which require updates from eight

1
If we view a parallel computation as a DAG, the time bound T∞ denotes the critical

path length.

2
�e update of each cell of the output matrix requiresO (n) reads and computation

from the two input matrices

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

279

sub-MMs of dimension n/2 as shown in Equation (1).

[
C00 C01

C10 C11

]
=

[
A00 A01

A10 A11

]
⊗

[
B00 B01
B10 B11

]

=

[
A00 ⊗ B00 A00 ⊗ B01
A10 ⊗ B00 A10 ⊗ B01

]
⊕

[
A01 ⊗ B10 A01 ⊗ B11
A11 ⊗ B10 A11 ⊗ B11

]

(1)

Depending on the availability of extra space, the computation of

the eight sub-MMs can be scheduled to run either completely in

parallel (Figure 2a) or in two parallel steps (Figure 2b). �e Figures

2a and 2b show the two algorithms. More sophisticated approaches

are feasible in the literature and will be discussed in Section 2.

We can calculate the time and space bounds of the two algorithms

by the recurrences of Equations (2), (3), and (4). �e mm-n2-space
algorithm (Figure 2b) uses no extra space than the input and output

matrices so there is no recurrece for its space requirement. We

can see that the mm-n3-space algorithm (Figure 2a) has an optimal

O (logn) time bound if counting only the data dependency but a

poor O (n3) space bound; By contrast, the mm-n2-space algorithm
has an optimal O (n2) space bound, but a sub-optimal O (n) time

bound. We care about an algorithm’s space bound not only because

operating system will disable a computation from executing if it

exceeds the space quota, but also because it’s a good indicator

of cache bound. �e cache bound characterizes the amount of

data movement (communication) between levels of cache hierarchy

throughout the computation. On modern computing system with

a hierarchy of caches, data movement usually has a heavier unit

weight than arithmetic operations, thus has more impact on the

overall performance. By a similar recurrence calculation, we can see

that the mm-n3-space algorithm has a sub-optimal O (n3/B) serial

cache bound
3
, in contrast to the optimal O (n3/(B

√
M)) bound of

the mm-n2-space algorithm. In the literature, it is known as the

fundamental space-time tradeo�.

T∞,mm-n3
-space

(n) = T∞,mm-n3
-space

(n/2) +T∞,madd (n) (2)

S
mm-n3

-space
(n) = 8S

mm-n3
-space

(n/2) + n2 (3)

T∞,mm-n2
-space

(n) = 2T∞,mm-n2
-space

(n/2) (4)

A real-world MM algorithm may employ some tuning technique

(e.g. 2.5D MM algorithm [16]) to go somewhere in the middle

ground of the two extremes. However, an interesting research

question is if it is possible to achieve a sublinear time bound, while

in the meantime keeping to be asymptotically work-, space-, and

cache-optimal.

Our Contributions
• Key Achievement: We solve an open problem raised in

Galil and Park’s paper [10] more than 20 years ago. �at is,

we have the �rst sublinear O (n3/4 logn) time and optimal

O (n3) work GAP algorithm. If we further bound the space

and cache requirement of the algorithm to be asymptot-

ically optimal, i.e. O (n2) and O (n3/(B
√
M)) respectively,

there will be a factor of P increase in time bound without

sacri�cing the work bound. If P = o(n1/4/ logn), the time

bound stays sublinear andmay be a be�er tradeo� between

time and space in practice.

3
�e parallel cache complexity is determined in large by the runtime scheduler and is

proportional to the serial cache bound.

• We propose the notion of “Processor-Adaptiveness”. In
contrast to the prior “Processor-Awareness”, our approach

does not partition statically the problem space to the pro-

cessor grid, but uses the processor count P to just up-

per bound the space and cache requirement in a cache-

oblivious fashion. Moreover, our processor-adaptive ap-

proach enjoys the full bene�ts of “dynamic load-balance”,
which is a key to achieving satisfactory speedup on a

shared-memory multi-core and many-core system, espe-

cially when the problem dimension n is reasonably larger

than P . We argue that taking the processor count P as

a parameter to algorithm design and implementation is

easy and straightforward in most state-of-the-art multi-

threaded programming languages such as Cilk andOpenMP.

Moreover, the parameter P does not require any tuning

during the computation in contrast to the cache parame-

ters.

• By utilizing the “busy-leaves” property of the runtime

scheduler, we can bound the space requirement of our

STAR (Space-Time Adaptive and Reductive) algorithms to

be asymptotically optimal; By a program-managed mem-

ory pool that combines the advantages of stack and heap,

our STAR technique can further bound the serial cache

misses to be asymptotically optimal in a cache-oblivious

fashion.

• We show by experiments that our STAR algorithms do

improve the parallel cache misses due to a be�er time

bound and can outperform the classic cache-oblivious par-

allel algorithms when the problem dimension is reasonably

large, especially when the application is more “memory-

intensive” than “computation-intensive”, provided that the

same kernel function is employed to compute the same-

sized base cases.

2 RELATEDWORKS
Galil and Park [9, 10] proposed to solve the dynamic programming

recurrences by the methods of matrix closure, matrix product, and

indirection. �eir work is a great motivation for this paper. By their

methods, they achieved sublinear parallel time bounds algorithms

for a large class of dynamic programming recurrences with more

than O (1) dependency. �eir work, however, doesn’t consider the

space or cache requirements. Moreover, their GAP algorithm is not

work-optimal.

Hybrid r -way divide-and-conquer algorithms with di�erent val-

ues of r at di�erent levels of recursion have been considered in by

Chowdhury et al [5]. �ese algorithms can reach parallel cache

complexity matching the best serial cache bounds. �eir approach

are processor-aware.

Tang et al. [17] proposed Eager and Lazy cache-oblivious wave-

front (COW) technique to strike the best of cache complexity and

parallelism for a large class of dynamic programming problems.

Dinh et al. [7] extended the research to the ND (Nested Data�ow)

parallel programming model.

�e optimizations, as well as various tradeo�s among work,

space, time, communication bounds, on the general matrix mul-

tiplication on a semiring or Strassen-like fast algorithm has been

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

280

MM-n3
-space(C, A, B)

1 // C ← A × B
2 if (sizeof (C) ≤ base size)
3 base-kernel(C, A, B)
4 return
5 D ← alloc(sizeof (C))
6 // Run all 8 sub-MMs concurrently

7 MM-n3
-space(C00, A00, B00) ‖ MM-n3

-space(C01, A00, B01)
8 ‖ MM-n3

-space(C10, A10, B00) ‖ MM-n3
-space(C11, A10, B01)

9 ‖ MM-n3
-space(D00, A01, B10) ‖ MM-n3

-space(D01, A01, B11)
10 ‖ MM-n3

-space(D10, A11, B10) ‖ MM-n3
-space(D11, A11, B11)

11 ; // sync
12 // Merge matrix D into C by addition

13 madd(C, D)
14 free (D)
15 return

(a) �e O (n3) space recursive MM algorithm

MM-n2
-space(C, A, B)

1 // C ← A × B
2 if (sizeof (C) ≤ base size)
3 base-kernel(C, A, B)
4 return
5 // Run the �rst 4 sub-MMs concurrently

6 MM-n2
-space(C00, A00, B00) ‖ MM-n2

-space(C01, A00, B01)
7 ‖ MM-n2

-space(C10, A10, B00) ‖ MM-n2
-space(C11, A10, B01)

8 ; // sync
9 // Run the next 4 sub-MMs concurrently

10 MM-n2
-space(C00, A01, B10) ‖ MM-n2

-space(C01, A01, B11)
11 ‖ MM-n2

-space(C10, A11, B10) ‖ MM-n2
-space(C11, A11, B11)

12 ; // sync
13 return

(b) �e O (n2) space recursive MM algorithm

Figure 2: Recursive Divide-And-Conquer MM algorithms. “‖” and “ ;” are symbols of linguistic constructs of the ND (Nested
Data�ow) parallel programming model [7] (Figure 1).

studied for decades, including at least [1–3, 11–13, 15, 16]. �e basic

idea of these prior works on the tradeo�s between work, space,

time and / or communication overheads for general matrix multipli-

cation or Strassen-like fast algorithms is to switch manually back

and forth between the serial algorithm to save and reuse space and

the parallel algorithm to increase the parallelism. �ere are some

di�erences between these prior works and the STAR techniques.

First, our work focus on the shared-memory multicore architecture,

on which the dynamic load-balance is a key to achieve satisfactory

speedup, especially when the problem dimension n is reasonably

large compared to the processor count P ; By utilizing the “busy-

leaves” property of the runtime scheduler, our STAR technique can

upper bound the space requirement to be optimal without tuning;

By a program managed memory pool, we combine the advantages

of stack and heap, thus bound the serial cache-optimality; By hav-

ing a sublinear critical path length, we reduce asymptotically the

parallel cache misses.

Shun et al. [14] alleviates the problem of “concurrent writes”

to the same memory location by prioritizing the operations, thus

reduce the number of writes. However, not all operations can

be prioritized and reduced such as those for the general matrix

multiplication.

ACKNOWLEDGMENTS
We gratefully thank the PACMAN group at Tsinghua University

for providing some equipment for experiments. �is research is

supported in part by the Open Funding of State Key Laboratory of

Computer Architecture, ICT, CAS (No. CARCH201606).

REFERENCES
[1] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Communication-

optimal parallel algorithm for strassen’s matrix multiplication. In Proceedings
of the Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, pages 193–204, New York, NY, USA, 2012. ACM.

[2] A. R. Benson and G. Ballard. A framework for practical parallel fast matrix

multiplication. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP 2015, pages 42–53, New York, NY,

USA, 2015. ACM.

[3] B. Boyer, J.-G. Dumas, C. Pernet, and W. Zhou. Memory e�cient scheduling

of strassen-winograd’s matrix multiplication algorithm. In Proceedings of the
2009 International Symposium on Symbolic and Algebraic Computation, ISSAC
’09, pages 55–62, New York, NY, USA, 2009. ACM.

[4] R. Chowdhury. Cache-e�cient Algorithms and Data Structures: �eory and
Experimental Evaluation. PhD thesis, Department of Computer Sciences, �e

University of Texas at Austin, Austin, Texas, 2007.

[5] R. Chowdhury and V. Ramachandran. Cache-e�cient Dynamic Programming

Algorithms for Multicores. In Proceedings of ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 207–216, 2008.

[6] R. Chowdhury and V. Ramachandran. �e cache-oblivious Gaussian elimination

paradigm: �eoretical framework, parallelization and experimental evaluation.

�eory of Computing Systems, 47(4):878–919, 2010.
[7] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested parallel model to the

nested data�ow model with provably e�cient schedulers. In SPAA’16, Paci�c
Grove, CA, USA, 11 – 13 2016.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, Jan. 2012.
[9] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applications

to molecular biology. �eoretical Computer Science, 64:107–118, 1989.
[10] Z. Galil and K. Park. Parallel algorithms for dynamic programming recurrences

with more thanO (1) dependency. Journal of Parallel and Distributed Computing,
21:213–222, 1994.

[11] J. Huang, T. M. Smith, G. M. Henry, and R. A. van de Geijn. Implementing

strassen’s algorithm with blis. CoRR, 2016.
[12] B. Kumar, C. Huang, P. Sadayappan, and R. W. Johnson. A tensor product

formulation of strassen’smatrixmultiplication algorithmwithmemory reduction.

Scienti�c Programming, 4(4):275–289, 1995.
[13] F. W. McColl and A. Tiskin. Memory-e�cient matrix multiplication in the bsp

model. Algorithmica, 24(3):287–297, 1999.
[14] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention

through priority updates. In SPAA, pages 152–163, 2013.
[15] T. M. Smith, R. v. d. Geijn, M. Smelyanskiy, J. R. Hammond, and F. G. V. Zee.

Anatomy of high-performance many-threaded matrix multiplication. In Pro-
ceedings of the 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 1049–1059, Washington, DC, USA, 2014. IEEE

Computer Society.

[16] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5d matrix multi-

plication and lu factorization algorithms. In Proceedings of the 17th International
Conference on Parallel Processing - Volume Part II, Euro-Par’11, pages 90–109,
Berlin, Heidelberg, 2011. Springer-Verlag.

[17] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowdhury. Cache-

oblivious wavefront: Improving parallelism of recursive dynamic programming

algorithms without losing cache-e�ciency. In PPoPP’15, San Francisco, CA, USA,

Feb.7 – 11 2015.

SESSION 6 SPAA’17, July 24-26, 2017, Washington, DC, USA

281

	Abstract
	1 Introduction
	2 Related Works
	References

