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Abstract—Classic cache-oblivious parallel matrix multiplica-
tion algorithms achieve optimality either in time or space, but not
both, which promotes lots of research on the best possible balance
or tradeoff of such algorithms. We study modern processor-
oblivious runtime systems and figure out several ways to improve
algorithm’s time bound while still bounding space and cache
requirements to be asymptotically optimal. By our study, we give
out sublinear time, optimal work, space and cache algorithms for
both general matrix multiplication on a semiring and Strassen-
like fast algorithm. Our experiments also show such algorithms
have empirical advantages over classic counterparts. Our study
provides new insights and research angles on how to optimize
cache-oblivious parallel algorithms from both theoretical and
empirical perspectives.

Keywords-space-time efficiency, cache-oblivious parallel algo-
rithm, shared-memory multi-core or many-core architecture,
matrix multiplication, modern processor-oblivious runtime

I. INTRODUCTION

It’s important to balance space-time requirements for an
algorithm to achieve high performance on modern shared-
memory multi-core and many-core systems. There are two big
classes of parallel algorithms. One is processor-aware (PA), the
other is processor-oblivious (PO).

Typical PA algorithms for Matrix Multiplication (MM) [1],
[2], [3], [4], [5], [6], [7], [8] seem hard to achieve a perfect
load balance on an arbitrary number, e.g. a prime number, of
processors. The PA approach usually maps statically MM’s
computational DAG (Directed Acyclic Graph) of dimensions
n-by-m-by-k , which stands for a multiplication of one n-by-
k matrix with one k-by-m matrix, onto a 2D processor grid
of dimensions p1/2-by-p1/2 [2], [7] , or a 3D grid of p1/3-by-
p1/3-by-p1/3 [1], or even a 2.5D grid of (p/c)1/2-by-(p/c)1/2-
by-c [9], where p is processor count and c ∈ {1, 2, . . . , p1/3} is
a parameter depending on the availability of redundant storage.
There are several concerns on classic PA algorithms.

1) There is no guarantee that p1/2 or p1/3 will be an
integer number, which means that some degree of under-
utilization of processors is unavoidable. In theory, p can
even be a prime number. Hence, various tradeoffs need
to be explored for a balance.
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2) Obviously we need different shapes of processor grid
when multiplying different shapes of MM for a balance
of computation and communication (overall cache misses
in the case of shared-memory architecture). For instances,
multiplying a 1-by-n vector with an n-by-1 vector, an
n-by-1 vector with a 1-by-n vector, or a general n-
by-m matrix with an m-by-k matrix require different
shapes of processor grid for an optimal balance in both
computation and communication. However, the number
of factorizations of p is usually much less than the number
of possible shapes of MM, thus prior algorithms of 2D,
2.5D, or 3D are not flexible to adapt.

Fig. 1: Acronyms & Notations

MM Matrix Multiplication
PO Processor-Oblivious
PA Processor-Aware

RWS Randomized Work-
Stealing

CAS Compare-And-Swap
n Problem dimension
p Processor Count
εi small constant
M Cache size
B cache line size
T1 Work
T∞ Time (span, depth, critical-

path length)
Tp Running time on p-

processor system
T1/T∞ Parallelism
Q1 Serial cache complexity
Qp Parallel cache complexity

with p threads
a ‖ b task b has no dependency

on a
a ; b task b has full dependency

on a

The PO approach, on
the contrary, just needs to
specify the data and con-
trol dependency of com-
putational DAG, then re-
lies on a provably ef-
ficient runtime scheduler
such as Cilk [10], [11]
for a dynamic balance.
Assuming a Randomized
Work-Stealing scheduler
[12] , an algorithm just
needs to bound its critical-
path length, also known
as (a.k.a.) depth, span,
or time bound [13], to
be polylogarithmic, i.e.
low-depth [14], its paral-
lel running time is then
O(T1/p + T∞) with high
probability (w.h.p.) [15],
where T1 denotes total
work and T∞ denotes
critical-path length. Simi-
larly, if an algorithm’s serial cache complexity is asymptoti-
cally optimal, its parallel cache complexity can be bounded
by (1) [16], [17], where Q1 denotes serial cache bound, Qp

denotes parallel cache bound, M is cache size and B is cache



Algo. Work (T1) Time (T∞) Space (Sp) Serial Cache (Q1)

CO2 O(n3) O(n) O(n2) O(n3/(B
√
M) + n2/B)

CO3 O(n3) O(log n) O(n3) O(n3/B)

TAR-MM O(n3) O(n) O(n2 + pb2) O(n3/(B
√
M) + n2/B)

SAR-MM O(n3) O(log n) O(p1/3n2) O(n3/(B
√
M) + n2/B)

STAR-MM O(n3) O(
√
p log n) O(n2) O(n3/(B

√
M) + n2/B)

STRASSEN O(nlog2 7) O(log n) O(nlog2 7) O(nlog2 7/B)

SAR-STRASSEN O(nlog2 7) O(log n) O(pn2) O(nlog2 7/(BM1/2 log2 7−1) + n2/B)
STAR-STRASSEN-1 O(p0.09nlog2 7) O(p1/2 log n) O(n2) O(p0.09nlog2 7/(BM1/2 log2 7−1) + p1/2n2/B)
STAR-STRASSEN-2 O(nlog2 7) O(log n) O(p1/2 log2 7n2) O(nlog2 7/(BM1/2 log2 7−1) + p1/2 log2 7−1n2/B)

Fig. 2: Main results of this paper, with comparisons to typical prior works. CO2 stands for the MM (Matrix Multiplication)
algorithm with O(n2) space (Fig. 3b); CO3 stands for the MM algorithm with O(n3) space (Fig. 3a); p denotes processor
count, b is the base-case dimension.

line size of the ideal cache model [18].

Qp = Q1 +O(pT∞M/B) (1)

From (1), we can see that for a PO algorithm to have
efficient parallel cache bound, both its serial cache bound (Q1)
and critical-path length (T∞) have to be optimal. However, if
we look at two typical PO MM algorithms in Fig. 4, we can
see that one algorithm (CO2 in Fig. 3b) has optimal serial
cache bound but sub-optimal (linear) critical-path length and
the other (CO3 in Fig. 3a) has optimal critical-path length
but non-optimal serial cache and space bounds. To the best of
our knowledge, no existing PO MM algorithm achieves both
sublinear critical-path length and optimal serial cache bound.

Let’s take a closer look at general MM C = A ⊗ B on
a closed semiring SR = (S,⊕,⊗, 0, 1), where S is a set
of elements, ⊕ and ⊗ are binary operations on S, and 0,
1 are additive and multiplicative identities , respectively. For
simplicity, we discuss only square MM. General MM can
be computed recursively in a divide-and-conquer fashion as
follows. At each level of recursion, the computation of an MM
of dimension n (i.e. multiplication of two n-by-n matrices)
is divided into four equally sized quadrants, which require
updates from eight sub-MMs of dimension n/2 as shown in
(2). [

C00 C01

C10 C11

]
=

[
A00 A01

A10 A11

]
⊗
[
B00 B01

B10 B11

]
=

[
A00 ⊗B00 A00 ⊗B01

A10 ⊗B00 A10 ⊗B01

]
⊕
[
A01 ⊗B10 A01 ⊗B11

A11 ⊗B10 A11 ⊗B11

]
(2)

Depending on the availability of extra space, the computation
of eight sub-MMs can be scheduled to run either completely
in parallel as shown in Fig. 3a or in two parallel steps as
Fig. 3b [19]. More sophisticated approaches are studied in the
literature and will be discussed in Sect. VI.

We can calculate the critical-path length (time), space and
serial cache bounds of these two algorithms by the recurrences

of (3) – (12). CO2 algorithm in Fig. 3b uses no more space
than input and output matrices, thus its space bound is simply
O(n2). Equation (4) says that CO3 algorithm allocates an n-
by-n temporary matrix D before spawning subtasks at each
recursion level, thus has an additional overhead of matrix
addition to merge results as indicated by (3). Equation (6)
shows that CO2 algorithm does not have this overhead.
Because of the temporary matrix, CO3 algorithm can run all
eight (8) subtasks derived at each recursion level completely
in parallel, hence only one subtask sits on the critical path as
indicated in (3), while CO2 has to separate eight subtasks into
two parallel steps, i.e. two subtasks sitting on its critical path
as in (6). Equation (8) says that as soon as the input and output
matrices of CO2 are smaller than some constant fraction of
cache size M , there will be no more cache misses than a
serial scan. Equation (10), on the contrary, indicates that CO3
algorithm keeps allocating new memory for new subtasks ,
which is always assumed to incur cold cache misses. Equations
(5) and (11) show that the matrix addition is also done by a 2-
way divide-and-conquer and there are four (4) subtasks derived
at each recursion level. There is no data dependency among
subtasks thus only one sitting on its critical path. Solving
the recurrences, we can see that CO3 algorithm in Fig. 3a
has an optimal O(log n) time bound (critical-path length) 1 if
counting only data dependency but a poor O(n3) space and
O(n3/B) serial cache bounds; By contrast, CO2 algorithm
has an optimal O(n2) space and O(n3/(B

√
M)+n2/B) serial

cache bound, but a sub-optimal O(n) time bound (critical-path

1The overhead of matrix addition at each recursion level is just O(1), i.e.
T∞,MADD(n) = O(1).



CO3(C , A, B )
1 // C ← A× B
2 if (sizeof(C ) ≤ BASE SIZE)
3 BASE-KERNEL(C , A, B )
4 return
5 D ← alloc(sizeof(C))
6 // Run all 8 sub-MMs concurrently
7 CO3(C00,A00,B00) ‖ CO3(C01,A00,B01)
8 ‖ CO3(C10,A10,B00) ‖ CO3(C11,A10,B01)
9 ‖ CO3(D00,A01,B10) ‖ CO3(D01,A01,B11)

10 ‖ CO3(D10,A11,B10) ‖ CO3(D11,A11,B11)
11 ; // sync
12 // Merge matrix D into C by addition
13 madd(C , D)
14 free (D)
15 return

(a) Recursive MM algorithm with O(n3) space

CO2(C , A, B )
1 // C ← A× B
2 if (sizeof(C ) ≤ BASE SIZE)
3 BASE-KERNEL(C , A, B )
4 return
5 // Run the first 4 sub-MMs concurrently
6 CO2(C00,A00,B00) ‖ CO2(C01,A00,B01)
7 ‖ CO2(C10,A10,B00) ‖ CO2(C11,A10,B01)
8 ; // sync
9 // Run the next 4 sub-MMs concurrently

10 CO2(C00,A01,B10) ‖ CO2(C01,A01,B11)
11 ‖ CO2(C10,A11,B10) ‖ CO2(C11,A11,B11)
12 ; // sync
13 return

(b) Recursive MM algorithm with O(n2) space

Fig. 3: Recursive MM algorithms. “‖” and “ ;” are linguistic constructs of Nested Dataflow model [20] (Fig. 1, Sect. II).

length). In the literature, it is known as space-time tradeoff.

T∞,CO3(n) = T∞,CO3(n/2) + T∞,MADD(n) (3)

SCO3(n) = 8SCO3(n/2) + n2 (4)
T∞,MADD(n) = T∞,MADD(n/2) (5)
T∞,CO2(n) = 2T∞,CO2(n/2) (6)
Q1,CO2(n) = 8Q1,CO2(n/2) (7)

Q1,CO2(n) = O(n2/B) if n ≤ εM (8)
Q1,CO3(n) = 8Q1,CO3(n/2) +Q1,MADD(n) (9)
Q1,CO3(1) = O(1) (10)
Q1,MADD(n) = 4Q1,MADD(n/2) (11)

Q1,MADD(n) = O(n2/B) if n ≤ εM (12)

An interesting research question is if it is possible to achieve
a sublinear time bound while still bounding space and cache
complexities to be asymptotically optimal.
Our Contributions (Fig. 2):
• We look into runtime system of PO algorithms and prove

that if a runtime follows the “busy-leaves” property [12],
there will be no more than p subtasks of the same
depth co-exist at any time in a p processor system. If
a runtime memory allocator stands by the “Last-In First-
Out” principle, memory blocks on the same processor
are then largely reused, thus avoiding most of CO3
algorithm’s cache misses without sacrificing critical-path
length. Moreover, we propose a novel “lazy allocation”
strategy such that a subtask allocates temporary space
“after” it is spawned and “after” it makes sure that it
is running simultaneously with its siblings that target
the same output region. By the strategy, we reduce the
space and cache requirement of PO MM algorithms to
be asymptotically optimal while still keeping a sublinear
critical-path length. In Sect. IV, we show how to extend

the approach to Strassen-like fast algorithms.
• We show by experiments that our new PO MM algorithms

do have performance advantage over both classic CO2
and CO3 algorithms in a fair comparison.

Organization: Sect. II introduces the cost models and pro-
gramming model for algorithm design and analysis; Sect. III
discusses the intuitions behind our new PO MM algorithms,
as well as its step-by-step construction; Sect. IV extends
our approach to Strassen-like fast MM algorithm; Sect. V
experiment and compare our new algorithms with classic
counterparts in a fair fashion; Sect. VI concludes the paper
and discusses related works.

II. COST MODELS AND PROGRAMMING MODEL

This section briefly introduces the theoretical models used
in algorithm design and analysis.
Parallel Performance Model: We adopt the work-time model
[13] (also known as work-span model [19]) to calculate time
complexities. The model views a parallel computation as a
DAG. Each vertex stands for a piece of computation that has
no parallel construct and each edge represents some control
or data dependency. For simplicity, we count each arithmetic
operation such as multiplication, addition, and comparison
uniformly as an O(1) operation. The model calculates an algo-
rithm’s time bound (also known as critical-path length, span,
depth, denoted by T∞) by counting the number of arithmetic
operations along critical path. Work bound (T1) is then the
sum of all arithmetic operations. Time bound T∞ and work
bound T1 characterize the running time of parallel algorithm
on infinite number and one processor(s), respectively. This
paper assumes a Randomized Work-Stealing (RWS) scheduler
that has the “busy-leaves” property as specified in [12]. More
discussions on the property and its application can be found
in Sect. III-B. By an RWS scheduler, a better time bound,
or equivalently a shorter critical-path length, means more



work available for randomized stealing along critical path at
runtime, hence a better “dynamic load-balance”. We call a
parallel algorithm work-efficient if its total work T1 matches
asymptotically the time bound of best serial algorithm of the
same problem. Analogously, we have the notions of space-
efficient and cache-efficient.
Memory Model: We calculate only an algorithm’s serial
cache bound in the ideal cache model [18] since corresponding
parallel cache bound under RWS scheduler is bounded by
(1) [16], [17]. Therefore, in the rest of paper, the term
“cache bound (complexity)” stands for “serial cache bound
(complexity)” unless otherwise specified.

The ideal cache model has an upper level cache of size
M and a lower level memory of infinite size. Data exchange
between the upper and lower level is coordinated by an omni-
scient (offline optimal) cache replacement algorithm in cache
line of size B. It also assumes a tall cache, i.e. M = Ω(B2).
To accommodate parallel execution, we further assume that
the lower level memory follows CREW (Concurrent Read
Exclusive Write) convention. Every concurrent reads from the
same memory location can be accomplished in O(1) time,
while n concurrent writes to the same memory cell have
to be serialized by some order and take O(n) total time to
complete. That is to say, no matter these n concurrent writes
are coordinated by user’s atomic operation such as Compare-
And-Swap (CAS) or by system’s synchronization facility such
as “cilk_sync” in Cilk system, we always count their
overall overhead by O(n). By (1), Qp−Q1 = O(pT∞M/B),
we can see that the extra cache misses in a parallel execution
to its serial execution is proportional to T∞, the critical-path
length. Hence, a shorter critical-path length means less parallel
cache misses.
Programming Model: We use the notation “a ‖ b” to
indicate that no subtasks of b depend on any subtasks of a ,
i.e. no dependency, while “a ; b” says that all subtasks of b
depend on all subtasks of a , i.e. a full dependency.

III. SPACE-TIME ADAPTIVE AND REDUCTIVE (STAR)
MM ALGORITHM

Organization: Sect. III-A parallelizes all multiplications of
CO2 algorithm in Fig. 3b without using much space; Based
on CO3 algorithm in Fig. 3a, Sect. III-B reduces space
requirement by exploiting the “busy-leaves” property [12],
bounds cache complexity to be asymptotically optimal by
requiring a “Last-In First-Out” memory allocator, and further
improves space and cache requirements by “lazy allocation”;
Sect. III-C bounds the space complexity to be asymptotically
optimal by one level of indirection of TAR and SAR based on
processor count p.

A. Time Adaptive and Reductive (TAR) MM Algorithm

A close look at CO2 algorithm in Fig. 3b reveals several
aspects for further improvement.

1) It imposes more control dependency than necessary data
dependency to keep the algorithm correct. That is, the
all-to-all synchronization on line 8 of Fig. 3b serializes

eight sub-MM’s of each recursion levels to two paral-
lel steps. For an instance, by this synchronization, the
computation of CO2(C00,A01,B10) not only waits on
CO2(C00,A00,B00) , which writes to the same C00

quadrant, but also has to wait for the computation work-
ing on completely disjoint quadrants, i.e. C01, C10, and
C11.

2) The synchronization on line 8 of Fig. 3b essentially seri-
alizes n multiplications updating the same cell of output
matrix to n parallel steps. However, multiplications by
themselves do not have any data dependency among each
other and should be parallelized. The serialization makes
sense only on later writing back by additions.

Based on the above observations, we devise a Time Adap-
tive and Reductive (TAR) algorithm to remove unnecessary
control dependency from critical path. Figure 4a shows the
pseudo-code. TAR-MM algorithm spawns all eight sub-MM’s
at each level of recursion simultaneously to maximize par-
allelism and serialize only concurrent writes to the same
output region. Though we employ atomic operation such
as Compare-And-Swap (ATOMIC-MADD on line 7) in our
pseudo-code for the serialization, we feel that it’s possible to
design a dataflow operator like the “ ” operator in Nested
Dataflow model [20] or “cilk_sync” in Cilk system for
the purpose. When output region C is of BASE SIZE, the
algorithm requests temporary storage from memory allocator
(line 4) before base-case computation.
Memory Allocator: Memory allocator is a key component
to guarantee the reuse of data blocks across requests on each
processor. The reason that CO3 algorithm incurs O(n3/B)
cache misses, which is asymptotically more than that of CO2,
i.e. O(n3/(B

√
M)), is because it repeatedly requests space

before spawning subtasks at each depth, and people assume
that allocation of space will always incur cold cache misses
to fill it. If a memory allocator can guarantee the reuse of
memory block, the above assumption is no longer true, thus
we can save lots of un-necessary cold misses. That is to say,
though CO3 algorithm still requests space at each depth, if
the space is reused from prior requests, the fill-out of space by
new data will not incur any cold misses because a smart cache
can hold the reused memory block in cache by the omniscient
cache replacement policy [18]. More precisely, all requests on
the same processor should be served in a Last-In, First-Out
(LIFO) fashion like a stack so that a smart cache can hold most
recently used data blocks in cache to avoid thrashing. More
precisely, if a user’s program requests the same sized memory
block on the same processor, allocator should guarantee to
return exactly the same memory block for reuse.

We have an observation that each processor can work on
only one task (one nested function call in an invocation tree)
at a time. We further assume that a task computing a base case
can not block or be preempted (according to the “busy-leaves”
property [12]), which is true by Cilk’s RWS scheduler [21].
Then we have Theorem 1.

Theorem 1: There is a TAR-MM algorithm that computes



general square MM of dimension n on a semiring in O(n)
time, O(n2+pb2) space, and optimal O(n3/(B

√
M)+n2/B)

cache misses, where b denotes the dimension of base case. If
assuming b is some small constant, the space bound reduces
to O(n2 + p).

Proof: Time bound: The critical-path length of O(n)
follows from the fact that the algorithm parallelizes all mul-
tiplications and serializes only concurrent writes to the same
memory location.
Space bound: Space bound follows from the facts that each
processor can work on only one base case at a time and
base-case computation can not block or be preempted. The
temporary space for base-case computation on each processor
thus are reused across different invocations.
Cache bound: The recurrences for cache bound are almost
identical to that of CO2 except that the stop condition is
changed to (14) as follows.

Q1,TAR-MM(n) = 8Q1,TAR-MM(n/2) (13)

Q1,TAR-MM(n) = O(n2/B) if 3n2 + b2 ≤ εM
(14)

Equation (13) recursively calculates a dimension-n (an n-
by-n matrix multiplies another n-by-n matrix) TAR-MM’s
cache misses to eight (8) dimension-(n/2) TAR-MM’s cache
misses. When the space requirements of input, output and
temporary storage (a b-by-b storage allocated on line 4 of
Fig. 4a) of a dimension-n TAR-MM are less than or equal
some constant factor of M , any further recursion will not incur
more cache misses than a serial scan as addressed by (14).
Solving the recurrences will yield the bound.

B. Space Adaptive and Reductive (SAR) MM algorithm

A close look at CO3 algorithm (Fig. 3a) shows that it
is designed for system with infinite or sufficient number of
processors (proportional to algorithm’s parallelism of T1/T∞).
At each level of recursion, regardless of availability of idle
processors, the algorithm always allocates a temporary matrix
D of the same size as output matrix C (line 5 in Fig. 3a).
By recursion, it allocates n3 − n2 total temporary space on
a p-processor system , where p � T1/T∞ = O(n3/ log n)
usually holds in reality.

To reduce space requirement at no cost of parallelism, we
have one observation and one algorithmic trick as follows.
Generalization of “busy-leaves” property: If we view the
execution of a recursive algorithm as a depth-first traversal of
its invocation tree, each node of which stands for a computing
task (nested function call), we define the depth of a node to be
the number of nodes on the path from root of tree to itself. The
RWS scheduler specified in Blumofe and Leiserson’s paper
[21] has an important busy-leaves property as follows. The
busy-leaves property says that from the time a task is spawned
to the time it finishes, there is always at least one subtask from
the subcomputation rooted at it that is ready. In other words, no
leaf task can stall or be preempted. The busy-leaves property
holds in Cilk runtime system [10], [11] and we further extend
it by Theorem 2.

Theorem 2: If a runtime scheduler stands by the busy-
leaves property, there can be no more than p tasks of the
same depth executing or blocking at any time in a p-processor
system.

Proof: We prove by induction on the depth of tasks. Since
no leaf task can stall or be preempted, there can be no more
than p leaf tasks at any time in a p-processor system. Since
each leaf task can have only one parent task, it’s obvious that
their parent tasks can be no more than p either. Recursively,
the argument holds for arbitrary depth d .

We verified by experiments that Theorem 2 does hold in
Intel Cilk Plus runtime [10]. By Theorem 2, it is sufficient
to allocate at most p copies of sub-matrix of any depth for
reuse among all subtasks. More precisely, min{p, 4d} copies
of sub-matrices of any depth d are sufficient, where the term 4d

indicates that at each depth, at most four out of eight sub-MMs
will require temporary space and another four will work right
on its parent’s space. So, for any depth d, the memory allocator
needs to hold at most min{p, 4d} blocks of size n/2d-by-n/2d

for reuse across requests.
Final SAR algorithm: The pseudo-code of this new algo-
rithm, which we call SAR-MM, is shown in Fig. 4c, with a
helper function in Fig. 4b.
Lazy Allocation: To minimize space requirement, or in other
words maximize space reuse, we use an algorithmic trick that
allocates temporary space in a lazy fashion. That is, a sub-
MM will request for temporary space if and only if it runs
simultaneously on a different processor from the sub-MM
updating the same output region. In Fig. 4c, all top-half and
bottom-half sub-MMs updating the same output regions are
spawned simultaneously. In Fig. 4b, line 1 show that the top-
half and corresponding bottom-half will compete on a mutex
lock to determine who will reuse parent’s space and who will
request temporary space. If the top-half and bottom-half are
executed one-after-another either on the same processor or on
different processor, they will both reuse parent’s space. If some
sub-MM does request temporary space for local computation ,
it has to write its results back to parent atomically on line 13.
Though we utilize atomic operations such as mutex lock to
coordinate between every pairs of top-half and bottom-half,
we feel that it is possible and will be beneficial to have a
system’s facility like a dataflow “ ” operator [20] for the
purpose. Besides the way shown in Fig. 4b, an alternative
way to coordinate space reuse is to always let the bottom-half
reuse parent’s space and top-half check the status (“running” or
“finished”) of corresponding bottom-half when it is scheduled
to run before it decides if it should request temporary space
or just reuse bottom-half’s space. We have to clarify that
Theorem 2 always holds with or without the algorithmic trick
of lazy allocation. The trick just further maximizes the space
reuse, thus reduces cache misses.

Theorem 3: There is a SAR-MM algorithm that computes
general MM of dimension n on a semiring in optimal O(log n)
time, O(p1/3n2) space, and optimal O(n3/B

√
M + n2/B)

cache bounds, assuming p = o(n).
Proof: Time bound: Since the algorithm does not



impose any synchronization among the eight (8) sub-MMs
derived at each depth, the time bound is not affected, i.e. there
are still O(log n) (atomic) additions sitting on critical path. We
have to clarify that the ATOMIC-MADD on line 13 in Fig. 4b is
functionally equivalent to a summation of the syncrhonization
on line 11 of CO3 algorithm in Fig. 3a and the madd on
line 13. We just implement it by atomic operation such as
Compare-And-Swap (CAS). Moreover, the trylock on line 1
and unlock on line 17 of Fig. 4b is just an O(1) operation
because every pair of top-half and bottom-half do not wait
on each other by the operation, but just check and signal the
status to each other.
Space bound: The recurrences of temporary space require-
ments are:

S(v) = 8S(v/2) + 4(v/2)2 if v > n/2k (15)

S(v) = pS1(v) if v ≤ n/2k (16)

S1(v) = S1(v/2) + (v/2)2 if v ≤ n/2k (17)

4× (80 + 81 + . . .+ 8k ) = p (18)

The term S1 stands for the space requirement on each pro-
cessor. Equation (15) says that at upper levels of recursion,
every four out of eight sub-MMs spawned at each level may
require extra space. Equation (18) calculates the switching
depth of k . The term (n/2)2 on the right-hand side of (17)
indicates that only one copy of n/2-by-n/2 temporary matrix
is needed for all MMs of size n-by-n on any single processor.
The recurrences solve to k = (1/3) log2(7/8p + 1/2) and
S(n) = O(p1/3n2). Assuming p1/3 � n, i.e. p = o(n),
which usually holds in reality, the total space bound can be
asymptotically less than that of the CO3 algorithm.
Cache bound: The recurrences of cache complexity are:

Q1(n) = 8Q1(n/2) +O(n2/B) (19)

Q1(n) = O(n2/B) if (1 + 1/4 + . . .)n2 + 2n2 ≤ ε4M
(20)

Equation (19) is identical to that of the CO3 algorithm, where
the O(n2/B) term accounts for the possible overheads of
merging the top-half and corresponding bottom-half’s results
by addition. If the top-half reuses bottom-half’s space by lazy
allocation, the overhead will disappear. So (19) accounts for
the worst case. The stop condition of (20) says that if the
summation of memory footprint of all writes (output region)
and reads (input region) of later recursions of dimension n
are less than or equal some constant fraction of cache size M ,
it will incur no more cache misses than a serial scan. In the
equation, the term (1+1/4+ . . .)n2 stands for the summation
of all subsequent writes’ memory footprint assuming that
same-sized memory requests reuse the same memory blocks
on the same processor, and 2n2 is of all reads. The recurrences
solve to the optimal O(n3/(B

√
M) + n2/B) bound.

C. Space-Time Adaptive and Reductive (STAR) MM algorithm

The TAR algorithm removes multiplications from critical
path without using much more space, while the SAR algorithm
reduces space requirement without increasing time bound. A

natural idea will be combining the two and yields a near time-
optimal and space-optimal STAR MM algorithm.

The hybrid algorithm works as follows. At upper levels of
recursion, we employ the TAR algorithm and switch to the
SAR after depth k , where k is a parameter to be determined
later. More precisely, before depth k , our new algorithm
spawns all eight sub-MMs at each depth in parallel and
serializes concurrent writes to the same output region like
the TAR-MM algorithm; After depth k , the algorithm keeps
spawning all eight sub-MMs at each depth in parallel and reuse
memory blocks like the SAR-MM.

Theorem 4: There is a STAR-MM algorithm that computes
the general MM of dimension n on a semiring in O(

√
p log n)

time, optimal O(n2) space, and optimal O(n3/(B
√
M) +

n2/B) cache bounds, assuming p = o(n2/ log2 n).
Proof: The time and space recurrences of the STAR MM

algorithm are:

T∞(v) = 2T∞(v/2) if v > n/2k (21)

T∞(v) = T∞(v/2) +O(1) if v ≤ n/2k (22)

S(v) = pS1(v) if v ≤ n/2k (23)

S1(v) = S1(v/2) + (v/2)2 (24)

Equations (21) and (22) indicate that concurrent writes to
the same output region are serialized / parallelized before
/ after depth k , respectively. Since there are at most two
sub-MMs at each depth updating the same output quadrant,
the serialization overhead is O(1) at each level. Since no
temporary space is requested before depth k , (23) counts
only the space requirement after k , which has the same
form as in the SAR algorithm. The recurrences solve to
S(v) = (1/3)p(n/2k )2 , and T∞(n) = 2k log2(n/2k ).
Making k = (1/2) log2 p, we have S(v) = (1/3)n2 = O(n2)
and T∞(n) =

√
p log2(n/

√
p) = O(

√
p log n).

We can consider the cache bound as follows. Recall that
from the paragraph of “Memory Model” in Sect. II we count
only serial cache bound in this paper. If executing STAR
algorithm on a single processor, i.e. p = 1, it reduces to SAR;
If we adjust the switching depth k on the single processor, it
will become some middle ground between the TAR and SAR.
In either case, its cache bound stays optimal with a constant
in big-Oh between that of the TAR and SAR.

From the proof of Theorem 4, we can see that the total
extra space requirement of STAR algorithm is just a third of
the output matrix size, i.e. (1/3)n2, with an O(

√
p) factor

increase in the time bound. Since the CO2 algorithm uses at
least 3n2 space to hold the input and output matrices, this
extra temporary space is just minimum. If we assume that
p = o(n2/ log2 n), the time bound stays sublinear.

D. Discussions

The main difference of our SAR-MM algorithm from CO3
is that SAR-MM requires a memory allocator to guarantee
the reuse of the same sized memory blocks across different
requests on the same processor, plus a novel “lazy allocation”



strategy. The reuse of memory blocks across requests re-
moves un-necessary cold cache misses in CO3 algorithm. The
generalization of “busy-leaves” property bounds total space.
The “lazy allocation” trick further reduces space and cache
requirements.

Though our STAR algorithm takes processor count p as
a parameter to bound total space requirement, unlike clas-
sic processor-aware approach, we do not partition statically
problem space to processor grid. Static partitioning strategy
has several concerns as discussed in Sect. I. By contrast,
STAR algorithm enjoys the full benefits of dynamic load
balance as classic processor-oblivious approach, which is a
key to a satisfactory speedup especially when there is no good
static partitioning algorithm for a problem. By a sublinear
time bound, i.e. a shorter critical-path length of computational
DAG, our STAR algorithm has at least two advantages over
classic cache-oblivious parallel counterpart (e.g. the CO2
algorithm in Fig. 3b ). Firstly, it means more work available for
dynamic load balance along critical path; Secondly, it incurs
asymptotically less parallel cache misses according to (1).

IV. STAR ALGORITHM FOR STRASSEN-LIKE FAST MATRIX
MULTIPLICATION ALGORITHM

This section extends the STAR technique to Strassen-like
fast MM algorithms. Given square matrices A, B, and C, the
Strassen algorithm [22] recursively divides each matrix into
four equally sized quadrants as shown in (2). It then computes
each quadrant of C as follows:

S1 = A00 ⊕A11 S2 = A10 ⊕A11 S3 = A00

S4 = A11 S5 = A00 ⊕A01 S6 = A10 	A00

S7 = A01 	A11

T1 = B00 ⊕B11 T2 = B00 T3 = B01 	B11

T4 = B10 	B00 T5 = B11 T6 = B00 ⊕B01

T7 = B10 ⊕B11

Pr = Sr ⊗ Tr, 1 ≤ r ≤ 7

C00 = P1 ⊕ P4 	 P5 ⊕ P7 C01 = P3 ⊕ P5

C10 = P2 ⊕ P4 C11 = P1 ⊕ P3 	 P2 ⊕ P6

The 	 notation dnotes the inverse operation of ⊕.
Lemma 5: A straightforward parallelization of Strassen

MM algorithm has an O(log n) time, O(nlog2 7) work,
O(nlog2 7) space, and an O(nlog2 7/B) serial cache bound.

Proof: The time (T∞), space (S) and cache (Q1) re-
currences of a straightforward Strassen parallelization is as
follows:

T∞(n) = T∞(n/2) +O(1) S(n) = 7S(n/2) + 17(n/2)2

Q1(n) = 7Q1(n/2) +O(n2/B)

The time recurrence says that at each depth of dimension
n, the Strassen algorithm spawns simultaneously seven (7)
subtasks of dimension n/2 and only one of them sits on the
critical path. The O(1) term in the time recurrence accounts

for the overheads of constant number of matrix additions and
subtractions (for computing S’s, T ’s, and C’s) at each depth.
The space recurrence says that at each depth of dimension
n, a straightforward parallelization requires at most 17 copies
of n/2-by-n/2 temporary matrices to hold the intermediate
results of all Pr’s and some of the Sr’s and Tr’s. If an Sr

or Tr corresponds directly to a quadrant of input matrices A
or B with no ⊕ or 	 operations such as S3 or T2, the algo-
rithm doesn’t allocate temporary space for it. Since all seven
subtasks of multiplication of the same recursion level execute
simultaneously, all temporary matrices have to be ready before
subtasks can be launched as the CO3 algorithm. The cache
recurrence is analogous with a similar stop condition to that of
the CO3 algorithm ((10)), i.e. Q1(1) = O(1), which indicates
that the straightforward parallelization keeps allocating new
space for new subtasks, which is always assumed to incur cold
cache misses. The recurrences solve to T∞(n) = O(log n),
S(n) = O(nlog2 7), and Q1(n) = O(nlog2 7/B). That is to
say, the amount of space requirement, as well as cache misses,
is proportional to total work.

A. The SAR algorithm for Strassen

Lemma 6: There is a SAR-STRASSEN algorithm that has
optimal O(log n) time, O(nlog2 7) work, O(pn2) space, and
optimal O(n2/B + nlog2 7/(BM1/2 log2 7−1) cache bound.

Proof: Observing that on any processor three copies of
temporary matrices of size n/2k-by-n/2k is sufficient for all
subtasks at the depth k, we have the following improved space
recurrences with no change made to the time recurrences (of
Lemma 5), which solve to S(n) = pn2.

S(n) = pS1(n) S1(n) = S1(n/2) + 3(n/2)2

The three copies of temporary matrices are used to hold the
input and output matrices of Pr = Sr⊗Tr at each depth, with
Sr and Tr computed on the fly from A and B respectively. The
final quadrants of C can be computed by reusing the space of
C and P ’s. Analogous to the SAR-MM algorithm, the only
change to cache recurrences of Lemma 5 is the stop condition.

Q1(n) = 7Q1(n/2) +O(n2/B)

Q1(n) = O(n2/B) if (1 + 1/4 + . . .)3n2 + 3n2 ≤ εM

In the stop condition, the term (1 + 1/4 + . . .)3n2 ac-
counts for the summation of temporary space reused for
the same-sized memory requests on the same processor and
3n2 accounts for input and output quadrants of A, B, and
C. The cache recurrences solve to the optimal O(n2/B +
nlog2 7/(BM1/2 log2 7−1). Again, this is because the SAR
algorithm enforces the reuse of temporary storage of every
depth on each processor.

B. The STAR algorithm for Strassen

Theorem 7: There is a STAR-STRASSEN algorithm that
has an O(p1/2 log n) time, O(p0.09nlog2 7) work, optimal
O(n2) space, and O(p0.09 · nlog2 7/(BM1/2 log2 7−1) + p1/2 ·
n2/B) serial cache bound.



Proof: We construct the STAR-STRASSEN by employing
the TAR-MM algorithm (Theorem 1) at upper levels of
recursion and switching to the SAR-STRASSEN algorithm
(Lemma 6) after depth k , where k is a parameter to be
determined later.

The recurrences of the total work, time and space bounds
of the hybrid algorithm become:

T∞(v) = 2T∞(v/2) +O(1) if v > n/2k

T1(v) = 8T1(v)

S(v) = S(v/2)

Q1(v) = 8Q1(v/2)

T∞(v) = O(log2 v) if v ≤ n/2k

T1(v) = O(vlog2 7)

S(v) = O(pv2)

Q1(v) = O(vlog2 7/(BM1/2 log2 7−1) + v2/B)

Before the depth reaches k , it inherits the same recur-
rences of the TAR-MM algorithm and switches to those of
SAR-STRASSEN after depth k . Making k = (1/2) log2 p,
we have the total work bound of O(p1/2(3−log2 7)nlog2 7 ≈
O(p0.09nlog2 7), a factor of O(p0.09) larger than the original
Strassen, the time bound of T∞(n) = O(p1/2 log2(n/

√
p)) =

O(p1/2 log2 n), a factor of O(p1/2) longer, the space bound
of S(n) = O(n2) , a factor of O(nlog2 7−2) ≈ O(n0.8)
improvement, and the serial cache bound of O(p3/2−1/2 log2 7 ·
nlog2 7/(BM1/2 log2 7−1) + p1/2 · n2/B), where 3/2 −
1/2 log2 7 ≈ 0.09. Notice that the constant hidden in the
big-Oh of space bound is just 1. That is, besides the 3n2

space for the input and output matrices A, B , and C , the
STAR-STRASSEN algorithm just requires a total of 1n2 extra
temporary storage.

Though a factor of O(p0.09) increase in work and cache
bound seems small in theory, in practice the increase can mat-
ter. Since the expected running time of a processor-oblivious
algorithm on a p-processor system under an RWS scheduler
is T1/p + O(T∞) [21], the T1/p term will dominate given
sufficient parallelism as in the case of our STAR-STRASSEN
whose T∞ = O(p1/2 log2 n).

Theorem 8: There is an alternative STAR-STRASSEN al-
gorithm that has an optimal O(nlog2 7) work, optimal
O(log n) time, near-optimal O(nlog2 7/(BM1/2 log2 7−1) +
p1/2 log2 7−1n2/B) cache and an O(p1/2 log2 7n2) space bound.

Proof: An alternative way to construct a STAR-
STRASSEN algorithm is to employ the straightforward par-
allel Strassen algorithm (Lemma 5) for the top k levels of
recursion before switching to the SAR-STRASSEN algorithm
(Lemma 6). Obviously the work and time bound will stay
asymptotically optimal because both upper and lower levels
are pure Strassen with no control or data dependency inserted
on critical path. The recurrences for space and cache are as

follows.

S(v) = 7S(v/2) +O(v2) if v ≥ n/2k
Q1(v) = 7Q1(v/2) +O(v2/B)

S(v) = O(pv2) if v < n/2k

Q1(v) = O(vlog2 7/(BM1/2 log2 7−1) + v2/B)

Solving the recurrences, we have S(n) = O(p1/2 log2 7n2) and
Q1(n) = O(nlog2 7/(BM1/2 log2 7−1)+p1/2 log2 7−1n2/B).

The alternative STAR-STRASSEN in Theorem 8 has asymp-
totically optimal work, time, and near-optimal cache bound, so
it may perform better in practice.

V. EXPERIMENTS

We have implemented the TAR, SAR, and STAR algorithms
for general matrix multiplication of data type “double”, and
compared their performance with classic CO2 and CO3
algorithms on a 24-core shared-memory machine (Fig. 7).

In order for a Fair performance comparison, we require
that all competing algorithms call the same kernal func-
tion for serial base-case computation in the same round of
comparison. Moreover, we mandate the same base-case size
for serial computation in all competing algorithms. Thus,
the only difference among competing algorithms is how
they partition and schedule tasks. We compute speedup by
“(running timepeer alg./running timeSTAR − 1)× 100%”.
Brief Summary: Our TAR algorithm performs consistently
the fastest even with an O(n3) additional overheads of daxpy;
Other new algorithms are generally faster than CO2 and
CO3, especially when problem dimension is reasonably large.
Interestly, with a relative faster kernel, i.e. MKL’s dgemm
and daxpy, CO2 is faster than CO3. While with a slower
manually implemented kernel, CO3 becomes faster. More
experimenting data can be presented in a full version.

VI. CONCLUSION AND RELATED WORKS

Concluding Remarks: In this paper, we reviewed and ana-
lyzed classic matrix multiplication algorithms, CO2 and CO3,
in modern processor-oblivious runtime. The CO2 algorithm
has provably best work, space, and serial cache bounds, while
its longer critical-path length may incur more parallel cache
missees in a parallel setting. On the contrary, people used
to over-estimated CO3 algorithm’s space and cache require-
ments. We show that by the busy-leaves property [12], we can
derive Theorem 2, which is verified in popular Cilk runtime,
such that there are no more than p subtasks of the same depth
in a p-processor system. Moreover, by the Last-In First-Out
memory allocation strategy, which seems to be true in modern
heap and TLS (Thread-Local Storage) allocators, memory
blocks are largely reused in the CO3 algorithm. By the above
two properties, the classic CO3 algorithm does not perform
too bad compared with CO2 algorithm in modern processor-
oblivious runtime such as Intel Cilk Plus. Interestingly, when
employed a manually implemented (slower) kernel for base-
case computation, CO3 algorithm can even be faster than
CO2 probably due to its shorter critical-path length. To further



reduce space requirement or in other words maximize space
reuse, thus minimize un-necessary cold cache misses, we
propose a “lazy allocation” strategy for our SAR and STAR
algorithms. Though we utilize atomic operations to check
subtask’s status for lazy allocation, we believe that it’s possible
for runtime system to provide such facility, which can be
our future work. We also show how to possibly extend our
approach to Strassen-like fast algorithms.
Related Works:

Various optimizations, tradeoffs among work, space, time,
communication bounds, on the general MM on a semiring or
Strassen-like fast algorithm has been studied for decades, in-
cluding at least [23], [24], [25], [9], [26], [27], [28], [29]. The
basic idea behind these prior works is to switch manually back
and forth between a serial algorithm to save and reuse space
and a parallel algorithm to increase parallelism. Our approach
differs in the following ways. Firstly, our approach is dynamic
load-balance, which is arguably more flexible and adaptive
on shared-memory system; Moreover, by generalizing the
“busy-leaves” property of runtime schedulers, our technique
upper-bounds space requirement to be asymptotically optimal
without tuning; By a “Last-In First-Out” memory allocator
and lazy allocation strategy, we bound cache efficiency to be
asymptotically optimal without tuning; By having a sublinear
critical-path length, we reduce asymptotically parallel cache
misses.

Smith et al. [29] noticed divots in the performance curves of
Intel MKL’s dgemm when multiplying a matrix of size m-by-
k with a matrix of size k-by-n (a rank-k update), where both
m and n are fixed to 14400 and k is very slightly larger than
a multiple of 240. We find the divots of Intel MKL’s dgemm
in square matrix multiplication where problem dimension is
powers of two.
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TAR-MM(C , A, B )
1 // C ← A× B
2 if (sizeof(C ) ≤ BASE SIZE)
3 // Request space from the program-managed memory pool
4 D ← GET-STORAGE(sizeof(C))
5 BASE-KERNEL(D , A, B )
6 // Write the intermediate results in D to C atomically
7 ATOMIC-MADD(C , D)
8 // Return storage to the memory pool
9 free(D)

10 return
11 // Run all 8 sub-MMs concurrently
12 TAR-MM(C00,A00,B00) ‖ TAR-MM(C01,A00,B01)
13 ‖ TAR-MM(C10,A10,B00) ‖ TAR-MM(C11,A10,B01)
14 ‖ TAR-MM(C00,A01,B10) ‖ TAR-MM(C01,A01,B11)
15 ‖ TAR-MM(C10,A11,B10) ‖ TAR-MM(C11,A11,B11)
16 return

(a) TAR-MM algorithm

HLP(Parent , A, B , d )
1 if (parent .trylock())
2 // work right on parent’s storage
3 D ← parent
4 else
5 // request space for depth d
6 D ← GET-STORAGE(sizeof(n/2d))
7 if (sizeof(n/2d) ≤ BASE SIZE)
8 BASE-KERNEL(D , A, B )
9 else

10 SAR-MM(D , A, B , d )
11 if (D 6= parent)
12 // Update D to parent atomically
13 ATOMIC-MADD(parent , D)
14 // Return storage to the memory pool
15 free(D)
16 else
17 parent .unlock()
18 return
(b) The helper function request temporary storage from the program-
managed memory pool iff parent’s storage is occupied. If computation
is on a local temporary storage, the helper function will write back
results to parent by atomic addition.

SAR-MM(C , A, B , d )
1 // Computes SAR-MM at recursion level d
2 // Run all 8 sub-MMs concurrently
3 HLP(C00,A00,B00, d + 1) ‖ HLP(C01,A00,B01, d + 1)
4 ‖ HLP(C10,A10,B00, d + 1) ‖ HLP(C11,A10,B01, d + 1)
5 ‖ HLP(C00,A01,B10, d + 1) ‖ HLP(C01,A01,B11, d + 1)
6 ‖ HLP(C10,A11,B10, d + 1) ‖ HLP(C11,A11,B11, d + 1)
7 return

(c) SAR-MM algorithm

Fig. 4: TAR-MM and SAR-MM algorithms.
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Fig. 5: TAR-MM’s speedup over CO2 and CO3 with MKL
kernel

with MKL kernel

Mean/Median Spdp (%) TAR SAR STAR
CO2 −0.7/0.5 −2.0/−1.0 −2.6/−1.8
CO3 38.4/38.1 36.6/36.5 35.8/34.0

with manual kernel

Mean/Median Spdp (%) TAR SAR STAR
CO2 11.8/9.2 9.3/6.8 10.5/8.0
CO3 1.6/1.5 −0.6/−0.5 0.5/0.5

Fig. 6: Mean and Median Speedup of TAR, SAR, and STAR
algorithms over CO2 and CO3 with MKL kernel and with
manually implemented kernel. All numbers shown in cell
are in percentage. For an instance, In above rows of “with
MKL kernel”, the cell in intersection of TAR and CO2 reads
“−0.7/0.5”, which means with MKL kernel, the mean speedup
of TAR algorithm over CO2 is 0.7% slower, while the median
is 0.5% faster.

Fig. 7: Experiementing Machine

Name 24-core machine

OS CentOS 7 x86 64
Compiler ICC 19.0.3
CPU type Intel Xeon E5-2670 v3

Clock Freq 2.30 GHz
# sockets 2

# cores / socket 12
Dual Precision
FLOPs / cycle 16

Hyper-Threading disabled
L1 dcache / core 32 KB
L2 cache / core 256 KB

L3 cache (shared) 30 MB
memory 132 GB
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