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Abstract
The state-of-the-art “trapezoidal decomposition algorithm”
for stencil computations on modern multicore machines use
recursive divide-and-conquer (DAC) to achieve asymptoti-
cally optimal cache complexity cache-obliviously. But the
same DAC approach restricts parallelism by introducing arti-
ficial dependencies among subtasks in addition to those aris-
ing from the defining stencil equations. As a result, the trape-
zoidal decomposition algorithm has suboptimal parallelism.

In this paper we present a variant of the parallel trape-
zoidal decomposition algorithm called “cache-oblivious
wavefront” (COW) that starts execution of recursive sub-
tasks earlier than the start time prescribed by the original al-
gorithm without violating any real dependencies implied by
the underlying recurrences, and thus reducing serialization
due to artificial dependencies. The reduction in serialization
leads to an improvement in parallelism. Moreover, since we
do not change the DAC-based decomposition of tasks used
in the original algorithm, cache performance does not suffer.

We provide experimental measurements of absolute run-
ning times, burdened span by Cilkview, and L1/L2 cache
misses by PAPI to validate our claims.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; G.4 [Mathematical Software]: Algorithm design
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and analysis.; D.2.8 [Software Engineering]: Metrics—
complexity measures, performance measures

General Terms Algorithms, Performance

Keywords parallel cache-oblivious algorithm; stencil; cache-
oblivious wavefront; atomic operation; multi-core; nested
parallel computation; Cilk

1. Introduction
A stencil defines how to compute the value of a grid point
in a spatial grid at any given time step t as a function of
values at neighboring grid points at recent time steps be-
fore t. A stencil computation [3, 13–16, 18, 23–29, 33] per-
forms such computations for every grid point over many
time steps. Frigo and Strumpen [16] presented a serial cache-
oblivious algorithm1 for stencil computation based on a re-
cursive divide-and-conquer approach called “trapezoidal de-
composition”, and then extended it to a multithreaded algo-
rithm with optimal serial cache performance [17, 18]. The
parallelism of the multithreaded trapezoidal decomposition
algorithm was further improved in [31] without losing cache
efficiency by performing a hyper-space cut.

The recursive divide-and-conquer (DAC) approach used
in the trapezoidal decomposition algorithm allows it to
achieve asymptotically optimal serial cache performance
through increased “temporal locality”2 without using any
knowledge of the parameters of the cache hierarchy. How-
ever, for such DAC algorithms scheduling decisions are
made at the level of subtasks that are only a constant fac-
tor smaller than the parent task which introduces artifi-
cial dependencies among recursive subtasks in addition to
those arising from the defining stencil equations. As a result,
though the trapezoidal decomposition algorithm has optimal
serial cache complexity, the parallelism is suboptimal.

1 A cache-oblivious algorithm is designed without mention of any cache parameters
(e.g., cache size and cache line size) in the code [20].
2 Temporal locality — whenever a cache block is brought into the cache, as much
useful work as possible is performed on it before removing it from the cache.

1



For good parallel performance under state-of-the-art
schedulers on modern multicore machines, an algorithm
must show good cache performance on a serial machine and
also have high parallelism. For example, the “randomized
work-stealing scheduler” [1, 5, 19] for distributed caches
guarantees the following bounds w.h.p.3: Tp =O (T1/p+T∞)
and Qp = Q1 + O (p(M/B)T∞), where, p is the number
of processing cores, Tp and Qp are the running time and
the cache complexity of the algorithm, respectively, on p
processing cores, M is the cache size, and B is the cache
line size. The “parallel depth-first scheduler” [4] for shared
caches, on the other hand, guarantees that Qp ≤ Q1 pro-
vided Mp ≥M1+Θ(pT∞), where Mp is the size of the cache
shared by p cores, and M1 is the size of the cache on a serial
machine. In both cases, the lower the value of Q1 (i.e., se-
rial cache complexity) and T∞ (which is called the “span”),
the better the parallel performance. Since “parallelism” is
defined as T1

T∞
, a lower span implies a higher parallelism pro-

vided T1 remains fixed.
With the increase of core count on multicores, and the

emergence of manycore processors with cache hierarchies
(e.g., “Intel MIC” [22]), the need for algorithms with good
cache performance and high parallelism continues to grow.

Recursive parallel DAC-based algorithms typically di-
vide the input task into a small number (upper bounded by
a constant) of smaller subtasks at each level of recursion,
and solve them recursively. The order of execution of these
subtasks are decided based on the dependency relationships
at the granularity of the subtasks themselves. If a subtask
u depends only on a very small portion of another subtask
v, this approach fails to start the execution of u as soon as
the dependency relations are resolved even if there are idle
processing cores. Thus artificial dependency relations im-
posed by the structure of the decomposition prevents many
completely independent subtasks from executing in parallel
which leads to lower parallelism. However, one can reduce
the number of artificial dependencies and thus improve par-
allelism by dividing the input task into more subtasks of even
smaller sizes at each level of recursion. Unfortunately, the
faster the rate at which task sizes decrease during recursive
calls, the worse it is for Q1 because if task sizes decrease fast
the largest subproblems that fit into the cache is often much
smaller than the size of the cache leading to cache under-
utilization and loss of temporal locality. In the light of the
discussion above, traditional wisdom may suggest that one
should find a balance point between parallelism and cache
complexity in order to get good performance in practice.

Contrary to conventional wisdom, in this paper we show
that one can achieve optimal Q1 without trading off par-
allelism in recursive DAC-based algorithms. Indeed, we
present a mechanism to execute the recursive subtasks gener-

3 For an input of size n, an event E occurs w.h.p. (with high probability) if, for any
α ≥ 1 and c independent of n, Pr(E) ≥ 1− c

nα . The larger the value of n, the closer
Pr(E) is to 1, and limn→∞ Pr(E) = 1.

ated by trapezoidal decomposition algorithm in such a way
that the execution order does not violate any real depen-
dencies, but reduces stallings due to artificial dependencies.
Since we do not change the recursive divide-and-conquer
structure of the original algorithm, the algorithm remains
cache-oblivious and Q1 remains optimal. Our technique
works by propagating a wavefront of executing and ready-
to-be-executed subtasks (satisfying all real dependency con-
straints) through a dynamically unfolding recursive divide-
and-conquer tree which is essentially different from state-
of-the-art parallel task graph execution systems [2, 32] that
usually unroll the entire execution beforehand and execute
all subtasks in a parallel looping fashion.

Our Contributions. Our major contributions are as follows.

• [Algorithmic Contribution] We present a variant of the
parallel trapezoidal decomposition algorithm which per-
forms divide-and-conquer of the input task in exactly the
same way as the original cache-optimal recursive DAC-
based algorithm, but considers a recursive subtask ready
for execution as soon as all its real dependency con-
straints are satisfied. Artificial dependency constraints
introduced by the DAC structure no longer prevent in-
dependent subtasks from executing in parallel, and thus
leading to potentially improved parallelism. The new al-
gorithm works by propagating a wavefront of execut-
ing and ready-to-be-executed subtasks through a dynam-
ically unfolding recursive DAC tree. We call our new al-
gorithm the “Cache-Oblivious Wavefront” (COW) based
trapezoidal decomposition algorithm.
• [Experimental Results] We have implemented the new

trapezoidal decomposition variant and compared it with
the standard parallel trapezoidal decomposition algo-
rithm based on recursive DAC as well as parallel looping
implementations with and without tiling on 16-core and
32-core machines. Experimental measurements of abso-
lute running times, relative speedups w.r.t. direct parallel
loops, burdened span by Cilkview [21], and L1/L2 cache
misses by PAPI [6] validate our claims.

Organization of the Paper. The rest of the paper is orga-
nized as follows. We explain our new algorithm in Section 2.
Experimental results are presented in Section 3, and a survey
of related work in Section 4. Finally, we include some con-
cluding remarks in Section 5.

2. Improving Parallelism of Cache-optimal
Stencil Computations

This section shows how to apply the cache-oblivious wave-
front technique on the cache-oblivious trapezoidal decompo-
sition algorithm [16–18, 31] to improve its parallelism with-
out any asymptotic loss in cache performance.
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The COW algorithm tries to execute a subtask as soon
as all its real dependency constraints are satisfied while still
following the same recursive divide-and-conquer scheme of
a cache-optimal DAC algorithm. For example, suppose X
and Y are two tasks in such an algorithm and subtask Xi of
X has a real dependency on subtask Yj of Y , and there are no
other real dependencies between X and Y . Let’s assume for
simplicity that each subtask of X and Y takes only O (1) time
to execute. The standard DAC algorithm will not let X ex-
ecute until all subtasks of Y completes execution though Yj
has perhaps completed execution much earlier and there was
no need for X to delay execution. In our approach, task X is
spawned at the same time as Y . Instead of the task X waiting
for the completion of the entire task Y , subtasks of X are
spawned in parallel with those of Y . Subtask Xi will be busy
waiting for the completion of Yj by continuously checking
the wavefront data structure. When Yj completes execution
it updates the wavefront and within constant time Xi (and
thus X) starts its execution. This approach works efficiently
provided the structure of computation guarantees that real
dependency constraints of X are satisfied within O (1) time
of the start of execution of Y .

Figure 1: A 1D 3-point stencil.

A simple description of the trapezoidal decomposition is
given below. We assume for simplicity that we are given a
1D 3-point stencil (see Figure 1) to be computed on an array
of length n = 2h for h time steps, where h is a power of 2.
Hence, the space-time grid X for stencil updates will be an
isosceles triangle X of base 2h and height h. The algorithm
then works as follows (as shown in Figure 2). It first per-
forms a “time cut” which splits X into the top isosceles tri-
angle XT (of height h/2 and base h) and the bottom isosceles
trapezoid XLBR (of height h/2 and bases h and 2h). It solves
XLBR recursively first which involves performing a “space
cut” of the trapezoid. It takes the midpoint of the larger of the
two parallel sides and splits the trapezoid into three isosceles
triangles (two upright triangles XL and XR with one inverted
triangle XB between them) by drawing lines parallel to the
two lateral sides (legs). The algorithm then first recursively
solves XL and XR in parallel, and then solves XB. The al-
gorithm recursively solves XT after it is done solving XLBR.

Figure 2: Illustration of how the standard trapezoidal decom-
position algorithm [17] performs a stencil computation using
recursive divide-and-conquer. We assume for simplicity that
we are applying a 1D 3-point stencil and updating a stencil
array of length 2h for h time steps, where h is a power of
2. Hence, the space-time grid X for stencil updates will be
an isosceles triangle X of base 2h and height h. The trape-
zoidal decomposition algorithm first performs a time cut of
X to split it into an upper triangle XT and a bottom trape-
zoid XLBR (= XL +XB +XL). The bottom trapezoid is solved
recursively first. But a space cut is used to split the bottom
trapezoid into two upright triangles XL and XR with one in-
verted triangle XB between them. The algorithm then first
recursively solves XL and XR in parallel, and then solves XB
recursively. After it is done solving the bottom trapezoid it
recursively solves XT .

Frigo and Stumpen prove that this algorithm has optimal se-
rial cache complexity [16–18].

The span (and thus parallelism) of the simple version of
the trapezoidal algorithm described above can be improved
by increasing the number of sub-trapezoids created during
each space cut from 3 to at least 2r− 1 for some r > 2.
As shown in [17] the resulting algorithm has a span of

O
(

rhn
1

lg2(r−1)

)
, where h is the number of time steps to exe-

cute. The span can be improved further by using “compound
space-time cuts” as explained in Figure 3. A compound
space-time cut performs multiple time cuts and then space
cuts inside each time slice. Such an approach can improve
the span significantly. However, the resulting sub-trapezoids
can become too small for the cache to fully exploit the tem-
poral locality. As a result, the cache performance will drop.

We apply the COW technique on the version of the trape-
zoidal algorithm with r = 2. That means each task still gen-
erates at most 3 recursive subtasks. There is no compound
space-time cut. However, during a space cut all sibling sub-
tasks (i.e., XL, XB and XR in Figure 2) are spawned at the
same recursion level simultaneously, and atomic operations
are used to guard the data dependency on neighboring sub-
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(a) Standard algorithm: timecuts =
0, parallel steps = 2.

(b) Standard algorithm: timecuts =
1, parallel steps = 6.

(c) Standard algorithm: timecuts =
3, parallel steps = 18.

(d) Compound space-time cut:
timecuts = 0, parallel steps = 2.

(e) Compound space-time cut:
timecuts = 1, parallel steps = 4.

(f) Compound space-time cut:
timecuts = 3, parallel steps = 8.

Figure 3: Comparison of the number of parallel steps exe-
cuted by standard trapezoidal decomposition algorithm [17]
and trapezoidal algorithm with compound space-time cuts.
All blocks with the same number are executed together with
blocks numbered i are executed before blocks numbered
i+ 1. Vertical axis is time dimension and horizontal axis is
space dimension.

tasks. A single array of length n suffices to implement all
guards. Figure 4b shows the resulting COW algorithm while
Figure 4a shows the original cache-oblivious trapezoidal de-
composition algorithm with r = 2 (named 2-way CO).

Experimental results in Section 3 validate our claim that
the COW version of the trapezoidal decomposition algo-
rithm, indeed, improves span of the standard algorithm with-
out losing cache-obliviousness and cache-efficiency.

3. Experimental Results
In this section we report empirical results on 1D 3-point
stencils comparing our COW algorithm with parallel loops
(without tiling), blocked parallel loops (with tiling) and the
original trapezoidal decomposition algorithm.

For a fair comparison, we have used the same base case
function and base case size for blocked loops, original trape-
zoidal decomposition and COW implementations of the
same benchmark problem. As a result, the main difference
between the original trapezoidal decomposition algorithm
and the corresponding COW algorithm is in the approach
used to choose the execution order of the recursive subtasks.
In order to validate our claim that COW algorithms improve
parallelism without sacrificing cache efficiency, we measure
the burdened span of all algorithms using Cilkview [21] and
L1/L2 cache misses using PAPI [6]. All measurement results
reported in this section are “min” of at least three indepen-
dent runs. The hardware platforms on which the experiments

Name Intel32 Intel16

System Intel Xeon E5-4650 Intel Xeon E5-2680
Clock 2.70 GHz 2.70 GHz
#Cores 4x8 2x8
L1 data cache 32 KB 32 KB
Last-level cache 20 MB 20 MB
Memory 1 TB 32 GB
OS CentOS 6.3 CentOS 6.3
Compiler icc v14.0 icc v14.0

Figure 5: Machine specifications.

were performed are listed in Figure 5.

In Figure 6a we show the burdened span measured by
Cilkview [21] for 1D stencil. The horizontal axis is the “side
length n” which corresponds to the spatial dimension for 1D
stencil (assuming that the length of 1D stencil array = 2× the
number of time steps). The vertical axis corresponds to the
“burdened span” in log scale. Span is the length of the criti-
cal path in the directed acyclic graph (DAG) representation
of a parallel program. Since parallelism is the average work
performed by the program per unit length of the span, the
smaller the span, the higher the parallelism assuming that
the total work performed remains fixed. Burdened span adds
the contributions of scheduling overhead to theoretical span.
Cilkview [21] measures this span by counting the number
of binary instructions on the critical path. Figure 6a shows
that our COW algorithm (solid line with empty square) al-
ways has the lowest span among all algorithms compared.
Parallel loops (without tiling) implementations (solid line
with solid diamond), on the other hand, have the worst bur-
dened span among the four algorithms because the loops
are parallelized with granularity 1, which is too fine-grained
to amortize the scheduling cost. Blocked loops and 2-way
CO are in between although 2-way CO (solid line with solid
square) generally has higher burdened span than blocked
loops (solid line with empty diamond) because of the over-
head of recursion in 2-way CO.

In Figure 6b we plot the L1 cache misses incurred by
the algorithms on Intel32. The misses were measured by
PAPI [6] by tracking hardware counters. The vertical axis
corresponds to “L1 cache misses” and the horizontal axis to
“base case size”. Both axes are in log scale. Observe that our
COW algorithm always has the best cache behavior. When
the problem size is fixed, the gap between COW and blocked
loops reduces with the increase of base case size as both im-
plementations approach theoretical optimum. Cache misses
incurred by blocked loop implementations approach that of
COW algorithm as the base case size approaches cache size.
L2 cache misses show similar patterns, and so are omitted.

Figure 7a plots absolute performance (updated points /
second) of all algorithms on Intel32. Suffix 32 indicates re-
sults on Intel32 and suffix 16 is used for Intel16. We mea-
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(a) Procedure A of trapezoidal decomposition in 2-way CO algorithm
(r = 2).

(b) Procedure A of trapezoidal decomposition using the COW technique.

Figure 4: Comparison between standard parallel cache-oblivious and COW algorithms for trapezoidal decomposition. The
solid arrows indicate the dependencies from defining recurrence. The dashed arrows indicate the dependencies introduced by
the divide-and-conquer structure of the algorithm. We assume that stencil computations on a space-time grid X is performed
by calling A(X).
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CO, and COW algorithms. bsize is the base case size. Both vertical and horizontal axes are log scale in both subfigures.

sured absolute performance using the clock gettime func-
tion in Linux with monotonic clock (i.e., CLOCK MONOTONIC).
The vertical axis is “points updated per second” in lin-
ear scale and horizontal axis is “side length (n)” (please
see the discussion on burdened span for the definition of
“side length”) in log scale. Blocked loops always have better
performance than 2-way CO when using exactly the same
base case function and base case size. Higher parallelism
of blocked loops may have contributed to its better perfor-
mance. However, our COW algorithm beats blocked loops
in almost all cases because it catches up with blocked loops
in parallelism.

Figure 7b plots relative performance (speedup w.r.t. par-
allel loops) of various algorithms on Intel32 and Intel16.
The vertical axis represents “speedup w.r.t. parallel loops”
in linear scale and horizontal axis is “side length (n)” in
log scale. Observe that the COW algorithm generally ben-
efits when the number of cores in the machine increases,
especially for problem sizes between small and medium.
Since the COW algorithm has been designed with the goal
to improve parallelism without increasing cache complexity
beyond that of standard 2-way CO algorithms, the behav-
ior shown in the plots matches our expectations. When the
problem size becomes very large compared to the base case
size, all algorithms will have enough parallelism, and hence
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the running time will be bounded by work law (reduced gap
in Figure 7b), i.e., the running time on p processing cores
won’t be smaller than the running time on 1 core divided by
p, i.e., Tp(n)≥ T1(n)/p.

4. Related Work
Recursive DAC algorithms, both serial and parallel, most of
them having optimal serial cache complexity have been de-
veloped, implemented, and evaluated for LCS [7, 10], pair-
wise sequence alignment [11], parenthesis problem [8], gap
problem [7], Floyd-Warshall’s APSP [9], stencil computa-
tion [16–18, 30] etc. Some of these algorithms, such as algo-
rithms for parenthesis and gap problems also achieved better
parallelism than their parallel looping counterparts.

Hybrid r-way DAC algorithms with different values of
r at different levels of recursion have been considered in
[8]. These algorithms can reach parallel cache complexity
matching the best sequential cache complexity, but the al-
gorithms then become complicated to program, processor-
aware, and often cache-aware.

Current implementation of our cache-oblivious wavefront
technique relies on atomic operations on the data depen-
dency path to guard the correctness of the algorithm in ad-
dition to the fork-join primitives. Atomic operations are also
commonly used to implement parallel task graph execution
systems such as Nabbit [2], BDDT [32], etc. The key dif-
ference between our technique and these task parallel graph
execution systems is that these systems usually unroll the
entire execution beforehand and execute all subtasks in a
parallel looping fashion and as a result may lose cache ef-
ficiency. In case of our algorithm, recursion unfolds dynam-
ically on-the-fly, and it inherits the cache-obliviousness and
cache-optimality properties of the underlying 2-way recur-
sive DAC algorithm.

5. Conclusion
We have shown how to achieve locality-preserving improve-
ments in parallelism of the trapezoidal decomposition al-
gorithm – a standard recursive DAC-based cache-oblivious
stencil algorithm. Our approach works by propagating a
wavefront of executing and ready-to-execute tasks through
the dynamically unfolding recursive DAC tree. We have pro-
vided experimental results to validate our claims.

In stencil computations each cell in the space-time grid
depends only on local/neighboring cells in the previous few
time steps. We plan to extend our technique to recursive dy-
namic programming algorithms with more general depen-
dency patterns, e.g., with dependencies on variable number
of nonlocal cells (parenthesis problem) and horizontal de-
pendencies (e.g., edit distance) [12].
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