
Yuan Tang Research Statement
My research interest is performance science, an interdisciplinary research area at the intersection
of parallel and concurrent computing, computational and data science, programming languages,
systems and theory. Specifically, my research focuses on designing and implementing provably
efficient and practically fast algorithms and data structures based on solid theoretical foundation
for real-world applications on modern shared-memory and distributed-memory computing systems.
My approach is exploiting the best possible balance among work, time, or equivalently parallelism
in parallel computation, space, caching, and communication. My work ranges from traditional high-
performance computing [YZ08; YCT07; YFD06; Yua+03; Yua+05; YS05], parallel programming
model [Cho+17c; DSY16; Yua+15; Yua+14], domain-specific compilation [Cho+17c; Yua+11a;
Yua+11b], and provably efficient runtime scheduling [Cho+17a; Cho+17b; DSY16], to general
algorithms and data structures [TK18; YY17; Ben+18; Mic+14; Lui+14].

Motivation and Overview
Performance is the currency in the world of computing, which can always be traded for new
functionalities such as security, reliability, portability, usability, modularity, maintainability, among
others. Performance was “free” thanks to Moore’s Law, while is drying due to “Power Wall”, “Heat
Wall”, and “Memory Wall”. Performance is bounded by both computation and communication
overheads. Computation complexity counts the most relevant and expensive arithmetic operations
such as floating point operations or comparisons, while communication complexity characterizes
data movements. In serial setting, it is data exchange between each pair of upper and lower levels
of hierarchical memory; While in parallel setting, it is data movements among different processors.

Classic approaches are inadequate in balancing computation and communication. There
are two classic programming models in parallel setting, one is “processor-aware”, the other is
“processor-oblivious”. Processor-aware model is widely used in distributed-memory setting, as
well as some shared-memory setting (say Pthread model). Such model partitions and maps
statically problem’s computational DAG (Directed Acyclic Graph) onto a given processor grid.
This approach has several concerns. Firstly, lots of processor-aware algorithms do not work for
an arbitrary number, say a prime number, of processors because they require that processor
count be factorized into a 2D or 3D grid. Secondly, some problem (like matrix multiplication)
requires different shapes of processor grid for optimal performance, while any given processor
count is not that flexible to factorize. On the other hand, a processor-oblivious algorithm divides
problem’s computational DAG into as small as possible pieces and relies on a processor-aware
even cache-aware runtime scheduler for a dynamic load balance. This approach again has some
concerns. Firstly, you can not tell an algorithm’s scalability of computation and communication
without assuming some runtime scheduler, thus scheduler actually becomes part of algorithm.
Secondly, some runtime scheduler [ChowdhuryRaSi13; BlellochChGi08; BlellochFiGi11 ]
requires hints or a small set of instructions from algorithm for provably efficiency. By this sense,
algorithm per se is not that “oblivious”. Finally, dynamic load balance may induce too much
runtime overheads, especially when algorithm has a non-polylog (non-low-depth) critical-path
length.
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I have been working on balancing computation and communication for a provable and practical
efficiency by Problem-Aware Cache-Oblivious algorithm, Nested Dataflow Parallel Programming
Model, Cache-Oblivious Wavefront algorithm, Space-Time Adaptive and Reductive techniques ,
and Pochoir Stencil Compiler, as follows.

Problem-Aware Cache-Oblivious Algorithm
In this work, we extended the ideal cache model [FrigoLePr12 ] to shared-memory multi-core
and many-core setting, and formulated a balanced partitioning property by the model with an
emphasis on a linear or near-linear scalability in terms of both computation and communication
on an arbitrary number, even a prime number, of processors within a certain range. We designed
Problem-Aware Cache-Oblivious (PACO) algorithms for several important problems, including
Longest Common Subsequence (LCS), general matrix multiplication (MM) on a semiring, and
comparison based sorting. We also showed how to extend the approach to Strassen-like fast
algorithms and to heterogeneous computing systems. All new algorithms exhibit scalability with
asymptotically better bounds over best known processor-oblivious counterparts. We showed
by experiments that our new algorithms significantly outperform both processor-oblivious and
processor-aware counterparts. For instances, the mean and median speedup of our PACO MM
algorithm for heterogeneous computing system over Intel MKL’s parallel dgemm on a 72-core
machine are 48.6% and 48.8%, and the mean and median speedup of PACO MM algorithm for
homogeneous computing system over MKL on a 24-core machine are 11.1% and 6.4%, respectively.
The mean and median speedup of PACO LCS algorithm over processor-oblivious counterpart on
a 24-core machine are 71.2% and 54.4%, over processor-aware counterpart are 86.3% and 88.3%,
respectively. The mean and median speedup of PACO Sort algorithm over processor-oblivious
and low-depth counterpart [BlellochGiSi10 ] implemented in PBBS [ShunBlFi12 ] are 9.3%
and 9.1%, respectively.

Cache-Oblivious Wavefront Algorithm
A Cache-Oblivious Wavefront (COW) algorithm [Yua+15; Cho+16; Cho+17a; Cho+17b] performs
the same divide-and-conquer recursion as classic cache-oblivious parallel algorithm, but aligns
subtasks across different levels of recursion to a proceeding wavefront. Essentially, a COW algorithm
schedules only on data dependency and eliminates all control dependency, thus usually yields a
better time bound than classic cache-oblivious parallel counterpart. In the meantime, a COW
algorithm keeps a recursive computing order among subtasks so as to preserve communication
efficiency in a cache-oblivious fashion. I have developed COW algorithm for several typical
dynamic-programming problems with either constant or non-constant dependency such as stencils,
Floyd-Warshall All-Pairs-Shortest-Paths, Longest Common Subsequence, GAP (computing the
edit distance when allowing gaps of insertions and deletions), and Parenthesis (computing the
minimum cost of parenthesizing n elements). All new algorithms are provably and practically
efficient in the processor-oblivious world.

Nested Dataflow Parallel Programming Model
Since classic Nested Parallel (NP) programming model (also known as fork-join model) is unable
to express partial dependency in a recursive divide-and-conquer algorithm, we extend it to
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Nested Dataflow (ND) model (both models belong to the processor-oblivious class). If we view a
parallel computation as a DAG , where each vertex stands for a piece of code without parallel
construct and each edge stands for a data dependency. There are only two possible relations
between any pair of tasks a and b. If there is no path of edges connecting a and b, these two
tasks can run in parallel, or no dependency; If there exists some path connecting a and b, they
have to run by some serial order, or full dependency. However, a classic nested parallel algorithm
has to specify a relation for any pair of subtasks derived from its recursive divide-and-conquer
partitioning, where each subtask may contain several vertices of DAG. Hence it can be a partial
dependency. We generalized the linguistic constructs of NP model to ND model so that it can
express clearly partial dependency, as well as how it is possibly refined throughout recursion.
Moreover, we designed a provably efficient space-bounded runtime scheduler for the model.

Space-Time Adaptive and Reductive Algorithm
Besides the tradeoff between computation and communication, I also studied the tradeoff between
space and time. My research [YY17; Yua17] shows that a sub-linear time bound is achievable
while keeping asymptotically optimal space and cache bounds for the general matrix multiplication
on a semiring, Strassen-like fast matrix multiplication on a ring, and several typical dynamic-
programming problems with non-constant dependencies such as Least Weight Subsequence (LWS),
GAP, and Parenthesis.

The Pochoir Stencil Compiler
I have worked at MIT since 2009 on the project of “The Pochoir (Pronounced “PO-shwar”) Stencil
Compiler” [Yua+14; Yua+11a; Yua+11b]. Stencil computation is a special case of dynamic-
programming where each cell in a multi-dimensional table is updated by a constant number
of neighboring cells. Stencil is widely used in iterative PDE (Partial Differential Equation)
solvers such as Jacobi, multi-grid, and adaptive mesh refinement, as well as in image processing
and geometric modeling. In this project, I worked with the Pochoir team and made following
contributions:
{ improving the parallelism asymptotically without losing cache efficiency for higher-dimensional

stencil by inventing a “hyperspace cut” algorithm;
{ unifying the handling of periodic and aperiodic boundary conditions in one algorithm;
{ designing and developing an embedded DSL (Domain-Specific Language) for stencil in C++;
{ designing and developing a novel two-phase compilation strategy for the stencil DSL. The new

compilation strategy reduces the cost of parsing and type-checking of an embedded DSL in
C++.

Summary and Future Directions
I have been exploiting performance on modern multi-core and many-core computing systems by
proposing Problem-Aware Cache-Oblivious (PACO) Algorithm, Nested Dataflow (ND) Parallel
Programming Model, Cache-Oblivious Wavefront (COW) algorithm, and Space-Time Adaptive
and Reductive (STAR) algorithm. My work centers around the balance of computation and
communication with an emphasis on linear or near-linear scalability of communication overheads
on an arbitrary number, even a prime number, of processors. Going forward, my work opens up
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new opportunities in more areas of parallel algorithms and data structures, including but not
limited to, dense / sparse linear algebra, machine learning, or more generally artificial intelligence,
big data, among others.
Applications to computational biology, image processing, Big Data, and large-scale
machine learning: Core algorithms behind computational biology and image processing
are stencil or more generally dynamic-programming computations. For instances, “Basic RNA
Secondary Structure Prediction”, which is a fundamental problem in computational biology,
and Viterbi algorithm , which is widely used in speech recognition, are essentially dynamic-
programming problems with non-constant dependencies; the H.264 video coding algorithm has a
similar data dependency pattern to LCS (Longest Common Subsequence), thus a similar algorithm
is applicable. My expertise in optimizing general dynamic-programming algorithms can give me
big advantages in dealing with these applications.

The key of Big Data is to process larger sets of higher dimensional data faster, which lies
in the sweet spot of my research. Some potential application of my research on big data can be
high-performance / parallel data analytics, among others.

One of the hot research on large-scale machine learning focuses on scheduling algorithm
for efficient resource management, minimizing communication and caching overhead on both
distributed and shared-memory systems. My expertise in provably efficient runtime scheduling
algorithms and cache- / processor-oblivious wavefront algorithms, as well as parallel programming
model, can be of potential help in the field.

Conditional dependency is the dependency that can be changed by runtime values. Conditional
dependencies are common in irregular computation and data structures such as (social) graphs,
trees and sets. There have been extensive studies on the best way to formulate either regular or
irregular parallelism. I am interested in such field.
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