
QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

NAACL 2015

High-order Low-rank Tensors
for Semantic Role Labeling

Yuan Zhang, Tao Lei, Regina Barzilay

Lluís Màrquez, Alessandro Moschitti

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Structural Prediction

2

• Traditional structural prediction requires huge feature
engineering

Example: syntactic dependency parsing

arc

head bigram

!h h m m+1

arbitrary sibling

…
h m s

h m

consecutive sibling

h m s

grandparent

g h m

grand-sibling

g h m s

tri-siblings

h m s t

grand-grandparent

g h mgg

outer-sibling-grandchild

h m sgc h s gcm

inner-sibling-grandchild

more than 10 groups of
features

>100 feature templates

• Problem: feature sparsity, hard to generalize to unseen data

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Structural Prediction

3

• Recent advance:

learn low-dim. representations and their interactions
(compositions) to achieve better generalization

✦ Neural networks (Stenetorp 2013; Socher et al 2013;
Chen and Manning 2014; Weiss et al 2015)

✦ Tensor factorization (Quattoni et al 2014; Lei et al 2014;
Srikumar and Manning 2014)

• In this work,

we extend our tensor factorization method to SRL

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Feature Construction in SRL

4

• Features defined over tuples (pred, arg, role, path)
UNESCO is holding its meetings in Paris

A0
A1

SBJ VC
OBJ

NMOD

AM-LOC

LOC

PMOD

✦ pred — predicate
UNESCO is holding its meetings in Paris

A0
A1

SBJ VC
OBJ

NMOD

AM-LOC

LOC

PMOD

✦ arg — argument

UNESCO is holding its meetings in Paris

A0
A1

SBJ VC
OBJ

NMOD

AM-LOC

LOC

PMOD
✦ path — syntactic path
✦ role — role label

UNESCO is holding its meetings in Paris

A0
A1

SBJ VC
OBJ

NMOD

AM-LOC

LOC

PMOD

UNESCO is holding its meetings in Paris

A0
A1

SBJ VC
OBJ

NMOD

AM-LOC

LOC

PMOD

Example sentence

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Feature Construction in SRL

5

• Features defined over tuples (pred, arg, role, path)

Selecting 1 up to 4 of them to construct features:

holding

meeting

UNESCO

VB
NN
…

holding

meeting

UNESCO

VB
NN
…

A0
A1
A2

AM-LOC
AM-TMP

…

path0

path1

path2

path3

…

Needs to learn the corresponding feature weights (i.e. parameters)

Each combination defines a feature

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

6

• Parameters of feature combinations indexed by a 4-way
tensor:

A Tensor View of the Parameters

A , ,
QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

7

holding

meeting

UNESCO

VB
NN
…

holding

meeting

UNESCO

VB
NN
…

A0

A1

A2

AM-LOC

AM-TMP

…

path0

path1

path2

path3

…[[, , ,

pred arg role path

Entries of A stores the feature weights

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

7

• Learn a low-rank factorization of A, optimized for parsing

r!rank&1!tensors!!

A

Avoid Explosion via Low-rank

* here we use 3-way tensor for better visualization

A =
rX

i=1

P (i)⌦Q(i)⌦R(i)⌦ S(i)

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

8

• Adopt standard mar-margin framework

Online Learning

4 Learning

We now describe the learning method for our SRL
model. Let D = {(ˆx(i)

,

ˆ

ysyn
(i)
,

ˆ

zsem
(i)
)}Ni=1 be the

collection of N training samples. The values of the
set of parameters ✓ = {w, P,Q,R, S} are estimated
on the basis of this training set. Following standard
practice, we optimize the parameter values in a max-
imum soft-margin framework. That is, for the given
sentence ˆ

x and the corresponding syntactic tree ˆ

ysyn,
we adjust parameter values to separate gold seman-
tic parse and other incorrect alternatives:

8zsem 2 Z(

ˆ

x,

ˆ

ysyn) :

Ssem(

ˆ

x,

ˆ

ysyn, ˆ

zsem) � Ssem(

ˆ

x,

ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem) (4)

where Z(

ˆ

x,

ˆ

ysyn) represent the set of all possible se-
mantic parses, and cost(

ˆ

zsem, zsem) is a non-negative
function representing the structural difference be-
tween ˆ

zsem and zsem. The cost is zero when zsem =

ˆ

zsem, otherwise it becomes positive and therefore is
the “margin” to separate the two parses. Follow-
ing previous work (Johansson, 2009; Martins and
Almeida, 2014), this cost function is defined as the
sum of arc errors – we add 1.0 for each false-positive
arc, 2.0 for each false-negative arc (a missing arc)
and 0.5 if the predicate-argument pair (p, a) is in
both parses but the semantic role label r is incorrect.

4.1 Online Update
The parameters are updated successively after each
training sentence. Each update first checks whether
the constraint (4) is violated. This requires “cost-
augmented decoding” to find the maximum viola-
tion with respect to the gold semantic parse:

˜

zsem = argmax

zsem
Ssem(ˆx, ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem)

When the constraint (4) is violated (i.e. ˜

zsem 6=
ˆ

zsem), we seek a parameter update �✓ to fix this vi-
olation. In other words, we define the hinge loss for
this example as follows,

loss(✓) = max{ 0, Ssem(ˆx, ˆ

ysyn, ˜

zsem)

+ cost(

ˆ

zsem, ˜

zsem)� Ssem(ˆx, ˆ

ysyn, ˆ

zsem) }

and we revise the parameter values to minimize this
loss function.

Since this loss function is neither linear nor con-
vex with respect to the parameters ✓ (more precisely
the low-rank component matrices P , Q, R and S),
we can use the same alternating passive-aggressive
(PA) update strategy in our previous work (Lei et
al., 2014) to update one parameter matrix at one
time while fixing the other matrices. However,
as we demonstrated later, modifying the passive-
aggressive algorithm slightly can give us a joint up-
date over all components in ✓. Our preliminary ex-
periment shows this modified version achieves better
results compared to the alternating PA.

4.2 Joint PA Update for Tensor
The original passive-aggressive parameter update
�✓ is derived for a linear, convex loss function by
solving a quadatic optimization problem. Although
our scoring function Ssem(·) is not linear, we can
simply approximate it with its first-order Taylor ex-
pansion:

S(x,y, z;✓ +�✓) ⇡ S(x,y, z;✓) +
dS

d✓
·�✓

In fact, by plugging this into the hinge loss func-
tion and the quadratic optimization problem, we get
a joint closed-form update which can be simply de-
scribed as,

�✓ = max

⇢
C,

loss(✓)

kg✓k2

�
g✓

where

g✓ =

dS

d✓
(

ˆ

x,

ˆ

ysyn, ˆ

zsem)�
dS

d✓
(

ˆ

x,

ˆ

ysyn, ˜

zsem),

and C is a regularization hyper-parameter control-
ling the maximum step size of each update. Note
that ✓ is the set of all parameters, the update jointly
adjusts all low-rank matrices and the traditional
weight vector. The PA update is “adaptive” in the
sense that its step size is propotional to the loss(✓)
of the current training sample. Therefore the step
size is adaptively decreased as the model fits the
training data.

4.3 Tensor Initialization
Since the scoring and loss function with high-order
tensor components is highly non-convex, our model

4 Learning

We now describe the learning method for our SRL
model. Let D = {(ˆx(i)

,

ˆ

ysyn
(i)
,

ˆ

zsem
(i)
)}Ni=1 be the

collection of N training samples. The values of the
set of parameters ✓ = {w, P,Q,R, S} are estimated
on the basis of this training set. Following standard
practice, we optimize the parameter values in a max-
imum soft-margin framework. That is, for the given
sentence ˆ

x and the corresponding syntactic tree ˆ

ysyn,
we adjust parameter values to separate gold seman-
tic parse and other incorrect alternatives:

8zsem 2 Z(

ˆ

x,

ˆ

ysyn) :

Ssem(

ˆ

x,

ˆ

ysyn, ˆ

zsem) � Ssem(

ˆ

x,

ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem) (4)

where Z(

ˆ

x,

ˆ

ysyn) represent the set of all possible se-
mantic parses, and cost(

ˆ

zsem, zsem) is a non-negative
function representing the structural difference be-
tween ˆ

zsem and zsem. The cost is zero when zsem =

ˆ

zsem, otherwise it becomes positive and therefore is
the “margin” to separate the two parses. Follow-
ing previous work (Johansson, 2009; Martins and
Almeida, 2014), this cost function is defined as the
sum of arc errors – we add 1.0 for each false-positive
arc, 2.0 for each false-negative arc (a missing arc)
and 0.5 if the predicate-argument pair (p, a) is in
both parses but the semantic role label r is incorrect.

4.1 Online Update
The parameters are updated successively after each
training sentence. Each update first checks whether
the constraint (4) is violated. This requires “cost-
augmented decoding” to find the maximum viola-
tion with respect to the gold semantic parse:

˜

zsem = argmax

zsem
Ssem(ˆx, ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem)

When the constraint (4) is violated (i.e. ˜

zsem 6=
ˆ

zsem), we seek a parameter update �✓ to fix this vi-
olation. In other words, we define the hinge loss for
this example as follows,

loss(✓) = max{ 0, Ssem(ˆx, ˆ

ysyn, ˜

zsem)

+ cost(

ˆ

zsem, ˜

zsem)� Ssem(ˆx, ˆ

ysyn, ˆ

zsem) }

and we revise the parameter values to minimize this
loss function.

Since this loss function is neither linear nor con-
vex with respect to the parameters ✓ (more precisely
the low-rank component matrices P , Q, R and S),
we can use the same alternating passive-aggressive
(PA) update strategy in our previous work (Lei et
al., 2014) to update one parameter matrix at one
time while fixing the other matrices. However,
as we demonstrated later, modifying the passive-
aggressive algorithm slightly can give us a joint up-
date over all components in ✓. Our preliminary ex-
periment shows this modified version achieves better
results compared to the alternating PA.

4.2 Joint PA Update for Tensor
The original passive-aggressive parameter update
�✓ is derived for a linear, convex loss function by
solving a quadatic optimization problem. Although
our scoring function Ssem(·) is not linear, we can
simply approximate it with its first-order Taylor ex-
pansion:

S(x,y, z;✓ +�✓) ⇡ S(x,y, z;✓) +
dS

d✓
·�✓

In fact, by plugging this into the hinge loss func-
tion and the quadratic optimization problem, we get
a joint closed-form update which can be simply de-
scribed as,

�✓ = max

⇢
C,

loss(✓)

kg✓k2

�
g✓

where

g✓ =

dS

d✓
(

ˆ

x,

ˆ

ysyn, ˆ

zsem)�
dS

d✓
(

ˆ

x,

ˆ

ysyn, ˜

zsem),

and C is a regularization hyper-parameter control-
ling the maximum step size of each update. Note
that ✓ is the set of all parameters, the update jointly
adjusts all low-rank matrices and the traditional
weight vector. The PA update is “adaptive” in the
sense that its step size is propotional to the loss(✓)
of the current training sample. Therefore the step
size is adaptively decreased as the model fits the
training data.

4.3 Tensor Initialization
Since the scoring and loss function with high-order
tensor components is highly non-convex, our model

score of gold
structure

score of pred.
structure margin

Optimize parameters to satisfy this as much as possible

• Jointly update all parameter matrices via a new modified
version of passive-aggressive algorithm

4 Learning

We now describe the learning method for our SRL
model. Let D = {(ˆx(i)

,

ˆ

ysyn
(i)
,

ˆ

zsem
(i)
)}Ni=1 be the

collection of N training samples. The values of the
set of parameters ✓ = {w, P,Q,R, S} are estimated
on the basis of this training set. Following standard
practice, we optimize the parameter values in a max-
imum soft-margin framework. That is, for the given
sentence ˆ

x and the corresponding syntactic tree ˆ

ysyn,
we adjust parameter values to separate gold seman-
tic parse and other incorrect alternatives:

8zsem 2 Z(

ˆ

x,

ˆ

ysyn) :

Ssem(

ˆ

x,

ˆ

ysyn, ˆ

zsem) � Ssem(

ˆ

x,

ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem) (4)

where Z(

ˆ

x,

ˆ

ysyn) represent the set of all possible se-
mantic parses, and cost(

ˆ

zsem, zsem) is a non-negative
function representing the structural difference be-
tween ˆ

zsem and zsem. The cost is zero when zsem =

ˆ

zsem, otherwise it becomes positive and therefore is
the “margin” to separate the two parses. Follow-
ing previous work (Johansson, 2009; Martins and
Almeida, 2014), this cost function is defined as the
sum of arc errors – we add 1.0 for each false-positive
arc, 2.0 for each false-negative arc (a missing arc)
and 0.5 if the predicate-argument pair (p, a) is in
both parses but the semantic role label r is incorrect.

4.1 Online Update
The parameters are updated successively after each
training sentence. Each update first checks whether
the constraint (4) is violated. This requires “cost-
augmented decoding” to find the maximum viola-
tion with respect to the gold semantic parse:

˜

zsem = argmax

zsem
Ssem(ˆx, ˆ

ysyn, zsem)

+ cost(

ˆ

zsem, zsem)

When the constraint (4) is violated (i.e. ˜

zsem 6=
ˆ

zsem), we seek a parameter update �✓ to fix this vi-
olation. In other words, we define the hinge loss for
this example as follows,

loss(✓) = max{ 0, Ssem(ˆx, ˆ

ysyn, ˜

zsem)

+ cost(

ˆ

zsem, ˜

zsem)� Ssem(ˆx, ˆ

ysyn, ˆ

zsem) }

and we revise the parameter values to minimize this
loss function.

Since this loss function is neither linear nor con-
vex with respect to the parameters ✓ (more precisely
the low-rank component matrices P , Q, R and S),
we can use the same alternating passive-aggressive
(PA) update strategy in our previous work (Lei et
al., 2014) to update one parameter matrix at one
time while fixing the other matrices. However,
as we demonstrated later, modifying the passive-
aggressive algorithm slightly can give us a joint up-
date over all components in ✓. Our preliminary ex-
periment shows this modified version achieves better
results compared to the alternating PA.

4.2 Joint PA Update for Tensor
The original passive-aggressive parameter update
�✓ is derived for a linear, convex loss function by
solving a quadatic optimization problem. Although
our scoring function Ssem(·) is not linear, we can
simply approximate it with its first-order Taylor ex-
pansion:

S(x,y, z;✓ +�✓) ⇡ S(x,y, z;✓) +
dS

d✓
·�✓

In fact, by plugging this into the hinge loss func-
tion and the quadratic optimization problem, we get
a joint closed-form update which can be simply de-
scribed as,

�✓ = max

⇢
C,

loss(✓)

kg✓k2

�
g✓

where

g✓ =

dS

d✓
(

ˆ

x,

ˆ

ysyn, ˆ

zsem)�
dS

d✓
(

ˆ

x,

ˆ

ysyn, ˜

zsem),

and C is a regularization hyper-parameter control-
ling the maximum step size of each update. Note
that ✓ is the set of all parameters, the update jointly
adjusts all low-rank matrices and the traditional
weight vector. The PA update is “adaptive” in the
sense that its step size is propotional to the loss(✓)
of the current training sample. Therefore the step
size is adaptively decreased as the model fits the
training data.

4.3 Tensor Initialization
Since the scoring and loss function with high-order
tensor components is highly non-convex, our model

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

9

• Performance can be impacted by initial values of P,Q,R,S

Tensor Initialization

• Basic initialization steps:

(i) learn a traditional model, obtain sparse
subset of parameter values

(ii) store the values as a sparse tensor T

(iii) find a low-rank approximation of T

performance can be impacted by the initialization of
the matrices P , Q, R and S. In addition to intial-
izing these low-rank components randomly, we also
experiment with a strategy to provide a good guess
of the low-rank tensor.

First, note that the traditional manually-selected
feature set (i.e., �(p, a, r) in our notation) is an ex-
pressive and informative subset of the huge feature
expansion covered in the feature tensor. We can train
our model using only the manual feature set and then
use the corresponding feature weights w to intialize
the tensor. Specifically, we create a sparse tensor
T 2 Rn⇥n⇥m⇥l by putting each parameter weight
in w into its corresponding entry in T . We then try
to find a low-rank approximation of sparse tensor T
by approximately minimizing the squared error:

min

P,Q,R,S
kT �

X

i

P (i)⌦Q(i)⌦R(i)⌦ S(i)k22

In the low-rank dependency parsing work (Lei et
al., 2014), this is achieved by unfolding the sparse
tensor T into a n⇥ nml matrix and taking the SVD
to get the top low-rank components. Unfortunately
this strategy does not apply in our case (and other
high-order tensor cases) because even the number
of columns in the unfolded matrix is huge, nml >

10

11, and simply taking the SVD would fail because
of memory limits.

Instead, we adopt the generalized high-order
power method, a.k.a. power iteration (De Lathauwer
et al., 1995), to incrementally obtain the most im-
portant rank-1 component one-by-one – P (i), Q(i),
R(i) and S(i) for each i = 1..k. This method is
a very simple iterative algorithm and is used to find
the largest eigenvalues and eigenvectors (or singular
values and vectors in SVD case) of a matrix. Its gen-
eralization directly applies to our high-order tensor
case.

5 Implementation Details
Decoding Following Lluı́s et al. (2013), the de-
coding of SRL is formulated as a bipartite maximum
assignment problem, where we assign arguments to
semantic roles for each predicate. We use the maxi-
mum weighted assignment algorithm (Kuhn, 1955).
For syntactic dependency parsing, we employ the
randomized hill-climbing algorithm from our previ-
ous work (Zhang et al., 2014).

Input: sparse tensor T , rank number i
and fixed rank-1 components P (j), Q(j),
R(j) and S(j) for j = 1..(i� 1)

Output: new component P (i), Q(i), R(i) and
S(i).

1: Randomly initialize four unit vectors p, q, r
and s

2: T

0
= T �

P
j P (j)⌦Q(j)⌦R(j)⌦ S(j)

3: repeat
4: p = hT 0

,�, q, r, si and normalize it
5: q = hT 0

, p,�, r, si and normalize it
6: r = hT 0

, p, q,�, si and normalize it
7: s = hT 0

, p, q, r,�i
8: norm = ksk22
9: until norm converges

10: P (i) = p and Q(i) = q

11: R(i) = r and S(i) = s

Figure 2: The iterative power method for high-
order tensor initialization. The operator p =

hT 0
,�, q, r, si is the multiplication between the

tensor and three vectors, defined as pi =P
jkl Tijklqjrksl. Similarly, qj =

P
ikl Tijklpirksl

etc.

Features Table 1 summarizes the first-order fea-
ture templates. These features are mainly drawn
from previous work (Johansson, 2009). In addition,
we extend each template with the argument label.

Table 2 summarizes the atomic features used in
�(p) and �(a) for the tensor component. For each
predicate or argument, the feature vector includes its
word form and POS tag, as well as the POS tags of
the context words. We also add unsupervised word
embeddings learned on raw corpus.4 For atomic
vectors �(path) and �(r) representing the path and
the semantic role label, we use the indicator feature
and a bias term.

6 Experimental Setup

Dataset We evaluate our model on the English
dataset and other 4 datasets in the CoNLL-2009
shared task (Surdeanu et al., 2008). We use the

4
https://github.com/wolet/

sprml13-word-embeddings

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

10

• Performance can be impacted by initial values of P,Q,R,S

Tensor Initialization

• Basic initialization steps:

(i) learn a traditional model, obtain sparse
subset of parameter values

(ii) store the values as a sparse tensor T

(iii) find a low-rank approximation of T

performance can be impacted by the initialization of
the matrices P , Q, R and S. In addition to intial-
izing these low-rank components randomly, we also
experiment with a strategy to provide a good guess
of the low-rank tensor.

First, note that the traditional manually-selected
feature set (i.e., �(p, a, r) in our notation) is an ex-
pressive and informative subset of the huge feature
expansion covered in the feature tensor. We can train
our model using only the manual feature set and then
use the corresponding feature weights w to intialize
the tensor. Specifically, we create a sparse tensor
T 2 Rn⇥n⇥m⇥l by putting each parameter weight
in w into its corresponding entry in T . We then try
to find a low-rank approximation of sparse tensor T
by approximately minimizing the squared error:

min

P,Q,R,S
kT �

X

i

P (i)⌦Q(i)⌦R(i)⌦ S(i)k22

In the low-rank dependency parsing work (Lei et
al., 2014), this is achieved by unfolding the sparse
tensor T into a n⇥ nml matrix and taking the SVD
to get the top low-rank components. Unfortunately
this strategy does not apply in our case (and other
high-order tensor cases) because even the number
of columns in the unfolded matrix is huge, nml >

10

11, and simply taking the SVD would fail because
of memory limits.

Instead, we adopt the generalized high-order
power method, a.k.a. power iteration (De Lathauwer
et al., 1995), to incrementally obtain the most im-
portant rank-1 component one-by-one – P (i), Q(i),
R(i) and S(i) for each i = 1..k. This method is
a very simple iterative algorithm and is used to find
the largest eigenvalues and eigenvectors (or singular
values and vectors in SVD case) of a matrix. Its gen-
eralization directly applies to our high-order tensor
case.

5 Implementation Details
Decoding Following Lluı́s et al. (2013), the de-
coding of SRL is formulated as a bipartite maximum
assignment problem, where we assign arguments to
semantic roles for each predicate. We use the maxi-
mum weighted assignment algorithm (Kuhn, 1955).
For syntactic dependency parsing, we employ the
randomized hill-climbing algorithm from our previ-
ous work (Zhang et al., 2014).

Input: sparse tensor T , rank number i
and fixed rank-1 components P (j), Q(j),
R(j) and S(j) for j = 1..(i� 1)

Output: new component P (i), Q(i), R(i) and
S(i).

1: Randomly initialize four unit vectors p, q, r
and s

2: T

0
= T �

P
j P (j)⌦Q(j)⌦R(j)⌦ S(j)

3: repeat
4: p = hT 0

,�, q, r, si and normalize it
5: q = hT 0

, p,�, r, si and normalize it
6: r = hT 0

, p, q,�, si and normalize it
7: s = hT 0

, p, q, r,�i
8: norm = ksk22
9: until norm converges

10: P (i) = p and Q(i) = q

11: R(i) = r and S(i) = s

Figure 2: The iterative power method for high-
order tensor initialization. The operator p =

hT 0
,�, q, r, si is the multiplication between the

tensor and three vectors, defined as pi =P
jkl Tijklqjrksl. Similarly, qj =

P
ikl Tijklpirksl

etc.

Features Table 1 summarizes the first-order fea-
ture templates. These features are mainly drawn
from previous work (Johansson, 2009). In addition,
we extend each template with the argument label.

Table 2 summarizes the atomic features used in
�(p) and �(a) for the tensor component. For each
predicate or argument, the feature vector includes its
word form and POS tag, as well as the POS tags of
the context words. We also add unsupervised word
embeddings learned on raw corpus.4 For atomic
vectors �(path) and �(r) representing the path and
the semantic role label, we use the indicator feature
and a bias term.

6 Experimental Setup

Dataset We evaluate our model on the English
dataset and other 4 datasets in the CoNLL-2009
shared task (Surdeanu et al., 2008). We use the

4
https://github.com/wolet/

sprml13-word-embeddings

In our previous work (Lei et al
2014), we use SVD initialization,
which doesn’t apply here

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

11

Iterative Power Method for Initialization

• Approximately find one component — P(i), Q(i), R(i) and S(i)
using an iterative algorithm, one by one

Optimize one vector while fixing the other three

performance can be impacted by the initialization of
the matrices P , Q, R and S. In addition to intial-
izing these low-rank components randomly, we also
experiment with a strategy to provide a good guess
of the low-rank tensor.

First, note that the traditional manually-selected
feature set (i.e., �(p, a, r) in our notation) is an ex-
pressive and informative subset of the huge feature
expansion covered in the feature tensor. We can train
our model using only the manual feature set and then
use the corresponding feature weights w to intialize
the tensor. Specifically, we create a sparse tensor
T 2 Rn⇥n⇥m⇥l by putting each parameter weight
in w into its corresponding entry in T . We then try
to find a low-rank approximation of sparse tensor T
by approximately minimizing the squared error:

min

P,Q,R,S
kT �

X

i

P (i)⌦Q(i)⌦R(i)⌦ S(i)k22

In the low-rank dependency parsing work (Lei et
al., 2014), this is achieved by unfolding the sparse
tensor T into a n⇥ nml matrix and taking the SVD
to get the top low-rank components. Unfortunately
this strategy does not apply in our case (and other
high-order tensor cases) because even the number
of columns in the unfolded matrix is huge, nml >

10

11, and simply taking the SVD would fail because
of memory limits.

Instead, we adopt the generalized high-order
power method, a.k.a. power iteration (De Lathauwer
et al., 1995), to incrementally obtain the most im-
portant rank-1 component one-by-one – P (i), Q(i),
R(i) and S(i) for each i = 1..k. This method is
a very simple iterative algorithm and is used to find
the largest eigenvalues and eigenvectors (or singular
values and vectors in SVD case) of a matrix. Its gen-
eralization directly applies to our high-order tensor
case.

5 Implementation Details
Decoding Following Lluı́s et al. (2013), the de-
coding of SRL is formulated as a bipartite maximum
assignment problem, where we assign arguments to
semantic roles for each predicate. We use the maxi-
mum weighted assignment algorithm (Kuhn, 1955).
For syntactic dependency parsing, we employ the
randomized hill-climbing algorithm from our previ-
ous work (Zhang et al., 2014).

Input: sparse tensor T , rank number i
and fixed rank-1 components P (j), Q(j),
R(j) and S(j) for j = 1..(i� 1)

Output: new component P (i), Q(i), R(i) and
S(i).

1: Randomly initialize four unit vectors p, q, r
and s

2: T

0
= T �

P
j P (j)⌦Q(j)⌦R(j)⌦ S(j)

3: repeat
4: p = hT 0

,�, q, r, si and normalize it
5: q = hT 0

, p,�, r, si and normalize it
6: r = hT 0

, p, q,�, si and normalize it
7: s = hT 0

, p, q, r,�i
8: norm = ksk22
9: until norm converges

10: P (i) = p and Q(i) = q

11: R(i) = r and S(i) = s

Figure 2: The iterative power method for high-
order tensor initialization. The operator p =

hT 0
,�, q, r, si is the multiplication between the

tensor and three vectors, defined as pi =P
jkl Tijklqjrksl. Similarly, qj =

P
ikl Tijklpirksl

etc.

Features Table 1 summarizes the first-order fea-
ture templates. These features are mainly drawn
from previous work (Johansson, 2009). In addition,
we extend each template with the argument label.

Table 2 summarizes the atomic features used in
�(p) and �(a) for the tensor component. For each
predicate or argument, the feature vector includes its
word form and POS tag, as well as the POS tags of
the context words. We also add unsupervised word
embeddings learned on raw corpus.4 For atomic
vectors �(path) and �(r) representing the path and
the semantic role label, we use the indicator feature
and a bias term.

6 Experimental Setup

Dataset We evaluate our model on the English
dataset and other 4 datasets in the CoNLL-2009
shared task (Surdeanu et al., 2008). We use the

4
https://github.com/wolet/

sprml13-word-embeddings

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

12

Experimental Setup

• Decoding: weighted bipartite assignment (Lluís et al. 2013)

• Dataset: CoNLL-2009 joint syntactic and semantic parsing

• Features:

 a traditional set of 14 templates (Johansson, 2009)

+ our tensor component

• Baselines:

best systems participated CoNLL-2009 and their
improved versions 
(Che et al., 2009; Zhao et al., 2009; Bjorkelund et al., 2010; Roth and Woodsend, 2014)

All explored much richer feature sets, language-
specific tuning and system combination

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Result on English

13

81.2%

82.08%

82.51%

WSJ$test$set$

68.86%

69.84%

70.77%

Brown$test$set$

!  Our%system%!  CoNLL%2nd% !  CoNLL%1st%

outperforms best single system (w/o reranking) with
statistical significance

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

3-way vs. 4-way tensor

14

80.84%

82.19%
82.51%

WSJ$test$set$

• basic features

• +3-way tensor

• +4-way tensor

3-way tensor by merging “role” and “path” into one mode

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

80.84%

81.63%

82.51%

WSJ$test$set$

Random vs. PM Initialization

15

• basic features

• random init.

• power method init

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Overall Improvement

16

Adding tensor component leads to > 2% absolute
gain in F-score

�Dataset& w/&tensor& w/o&tensor&

�English(82.51(80.84(

Catalan(74.67(71.86(

Chinese(�9.16(68.43(

German(76.94(74.03(

Spanish(75.58(72.85(

Average& 75.77(73.60(

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Thank you!

• RBG dependency parser 
https://github.com/taolei87/RBGParser

• Semantic role labeling parser 
https://github.com/taolei87/SRLParser

17

https://github.com/taolei87/RBGParser
https://github.com/taolei87/SRLParser

QCRI/MIT-CSAIL Annual Meeting – March 2014
‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015
‹#›

Overall Improvement

18

�Dataset& w/&tensor& w/o&tensor& CoNLL/1&
(Zhao&et&al)&

�English(82.51& 80.84(82.08(

Catalan(74.67(71.86(76.78&

Chinese(69.16& 68.43(68.52(

German(76.94& 74.03(74.65(

Spanish(75.58(72.85(77.33&

Average& 75.77(73.60(75.84(

