

معهد قطر لبحوث الحوسية Qatar Computing Research Institute

عـضـو فـي مـؤسسـة قـطـر Member of Qatar Foundation

High-order Low-rank Tensors for Semantic Role Labeling Yuan Zhang, Tao Lei, Regina Barzilay

NAACL 2015

Structural Prediction

 Traditional structural prediction requires huge feature engineering

• Problem: feature sparsity, hard to generalize to unseen data

Structural Prediction

Recent advance:

learn low-dim. representations and their interactions (compositions) to achieve better generalization

- Neural networks (Stenetorp 2013; Socher et al 2013; Chen and Manning 2014; Weiss et al 2015)
- Tensor factorization (Quattoni et al 2014; Lei et al 2014; Srikumar and Manning 2014)

• In this work,

we extend our tensor factorization method to SRL

Feature Construction in SRL

• Features defined over tuples (pred, arg, role, path)

- + arg argument UNESCO
- + role role label
- *path* syntactic path

Feature Construction in SRL

• Features defined over tuples (pred, arg, role, path)

Selecting 1 up to 4 of them to construct features:

Each combination defines a feature

Needs to learn the corresponding feature weights (i.e. parameters)

l'airead ann agust Aireac ag Ardaith Iric an Aireadh a _g àrgaite r d'**Dhr rus dhu**r

A Tensor View of the Parameters

Parameters of feature combinations indexed by a 4-way tensor:

Entries of A stores the feature weights

an Chinese San Jugar Charles Chinese Archive Chinese Chi Fili annah ay ya kapatan Ingar Willing Angalan

Avoid Explosion via Low-rank

• Learn a low-rank factorization of A, optimized for parsing

* here we use 3-way tensor for better visualization

Online Learning

Adopt standard mar-margin framework

Optimize parameters to satisfy this as much as possible

 Jointly update all parameter matrices via a new modified version of passive-aggressive algorithm

$$\Delta \boldsymbol{\theta} = \max \left\{ C, \; \frac{loss(\boldsymbol{\theta})}{\|g\boldsymbol{\theta}\|^2} \; \right\} \; g\boldsymbol{\theta}$$

Tensor Initialization

- Performance can be impacted by initial values of P,Q,R,S
- Basic initialization steps:
 - (i) learn a traditional model, obtain sparse subset of parameter values

(ii) store the values as a sparse tensor T

(iii) find a low-rank approximation of T
$$\min_{P,Q,R,S} \|T - \sum_{i} P(i) \otimes Q(i) \otimes R(i) \otimes S(i)\|_{2}^{2}$$

an Frieger ann Agent 19 Ann An Ag Anderste Process 18 Annaig a _{Ch}airpeach 19 A Bhernendatae

Tensor Initialization

- Performance can be impacted by initial values of P,Q,R,S
- Basic initialization steps:
 - (i) learn a traditional model, obtain sparse subset of parameter values

(ii) store the values as a sparse tensor T

(iii) find a low-rank approximation of T $\min_{P,Q,R,S} ||T - \sum_{i} P(i) \otimes Q(i) \otimes R(i)$ In our previous work (Lei et al 2014), we use SVD initialization, which doesn't apply here

Iterative Power Method for Initialization

- Approximately find one component P(i), Q(i), R(i) and S(i) using an iterative algorithm, one by one
 - 1: Randomly initialize four unit vectors p, q, rand s2: $T' = T - \sum_{j} P(j) \otimes Q(j) \otimes R(j) \otimes S(j)$ 3: **repeat** 4: $p = \langle T', -, q, r, s \rangle$ and normalize it 5: $q = \langle T', p, -, r, s \rangle$ and normalize it 6: $r = \langle T', p, q, -, s \rangle$ and normalize it 7: $s = \langle T', p, q, r, - \rangle$ 8: $norm = ||s||_2^2$ 9: **until** norm converges 10: P(i) = p and Q(i) = q11: R(i) = r and S(i) = s

Optimize one vector while fixing the other three

Experimental Setup

- Decoding: weighted bipartite assignment (Lluís et al. 2013)
- Dataset: CoNLL-2009 joint syntactic and semantic parsing
- Features:

a traditional set of 14 templates (Johansson, 2009) + our tensor component

• Baselines:

best systems participated CoNLL-2009 and their improved versions

(Che et al., 2009; Zhao et al., 2009; Bjorkelund et al., 2010; Roth and Woodsend, 2014)

All explored much richer feature sets, languagespecific tuning and system combination

12

Result on English

outperforms best single system (w/o reranking) with statistical significance

nte company para fonglari 19 anti-les: angl-dimelarati finesi san 19 anti-les: angl-dimelari 19 anti-les: angl-dime

3-way vs. 4-way tensor

3-way tensor by merging "role" and "path" into one mode

- basic features
- +3-way tensor
- +4-way tensor

WSJ test set

and histophic and hannes a submitted age developed a trace was defined as you have har the of the most defined

Random vs. PM Initialization

WSJ test set

- basic features
- random init.
- power method init

an aran an an ann ann 20 amhar ag deòlach mar a' 16 mailte a chaolach

Overall Improvement

Dataset	w/ tensor	w/o tensor
English	82.51	80.84
Catalan	74.67	71.86
Chinese	6 9.16	68.43
German	76.94	74.03
Spanish	75.58	72.85
Average	75.77	73.60

Adding tensor component leads to > 2% absolute gain in F-score

na increase page again. Factoriae aga deslarette trace con Factoriae g_{a de} page tere Incord Disconsecutation.

Thank you!

- RBG dependency parser <u>https://github.com/taolei87/RBGParser</u>
- Semantic role labeling parser
 <u>https://github.com/taolei87/SRLParser</u>

gan, Françoise, Japan, Japan, 19 Constant, Age Hondowsto (Francisco) 20 Annosida ya ₁₉ Angeletan 19 Col Obton International

Overall Improvement

Dataset	w/ tensor	w/o tensor	CoNLL-1 (Zhao et al)
English	82.51	80.84	82.08
Catalan	74.67	71.86	76.78
Chinese	69.16	68.43	68.52
German	76.94	74.03	74.65
Spanish	75.58	72.85	77.33
Average	75.77	73.60	75.84

na in constant dana bagian na anti-bar ng Andrea China an an Sila antaly a _{sh}atapatan Inna C**inte**r mandalan