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Abstract

We present an automatic method for mapping
language-specific part-of-speech tags to a set
of universal tags. This unified representation
plays a crucial role in cross-lingual syntactic
transfer of multilingual dependency parsers.
Until now, however, such conversion schemes
have been created manually. Our central hy-
pothesis is that a valid mapping yields POS
annotations with coherent linguistic proper-
ties which are consistent across source and
target languages. We encode this intuition
in an objective function that captures a range
of distributional and typological characteris-
tics of the derived mapping. Given the ex-
ponential size of the mapping space, we pro-
pose a novel method for optimizing over soft
mappings, and use entropy regularization to
drive those towards hard mappings. Our re-
sults demonstrate that automatically induced
mappings rival the quality of their manually
designed counterparts when evaluated in the
context of multilingual parsing.1

1 Introduction

In this paper, we explore an automatic method for
mapping language-specific part-of-speech tags to a
universal tagset. In multilingual parsing, this uni-
fied input representation is required for cross-lingual
syntactic transfer. Specifically, the universal tagset
annotations enable an unlexicalized parser to capi-
talize on annotations from one language when learn-
ing a model for another.

1The source code and data for the work presented in this
paper is available at http://groups.csail.mit.edu/
rbg/code/unitag/emnlp2012

While the notion of a universal POS tagset is
widely accepted, in practice it is hardly ever used
for annotation of monolingual resources. In fact,
available POS annotations are designed to capture
language-specific idiosyncrasies and therefore are
substantially more detailed than a coarse universal
tagset. To reconcile these cross-lingual annotation
differences, a number of mapping schemes have
been proposed in the parsing community (Zeman
and Resnik, 2008; Petrov et al., 2011; Naseem et
al., 2010). In all of these cases, the conversion is
performed manually and has to be repeated for each
language and annotation scheme anew.

Despite the apparent simplicity, deriving a map-
ping is by no means easy, even for humans. In fact,
the universal tagsets manually induced by Petrov
et al. (2011) and by Naseem et al. (2010) disagree
on 10% of the tags. An example of such discrep-
ancy is the mapping of the Japanese tag “PVfin” to
the universal tag “particle” according to one scheme,
and to “verb” according to another. Moreover, the
quality of this conversion has a direct implication on
the parsing performance. In the Japanese example
above, this difference in mapping yields a 6.7% dif-
ference in parsing accuracy.

The goal of our work is to induce the mapping
for a new language, utilizing existing manually-
constructed mappings as training data. The exist-
ing mappings developed in the parsing community
rely on gold POS tags for the target language. A
more realistic scenario is to employ the mapping
technique to resource-poor languages where gold
POS annotations are lacking. In such cases, a map-
ping algorithm has to operate over automatically in-



duced clusters on the target language (e.g., using
the Brown algorithm) and convert them to universal
tags. We are interested in a mapping approach that
can effectively handle both gold tags and induced
clusters.

Our central hypothesis is that a valid mapping
yields POS annotations with coherent linguistic
properties which are consistent across languages.
Since universal tags play the same linguistic role
in source and target languages, we expect similar-
ity in their global distributional statistics. Figure 1a
shows statistics for two close languages, English and
German. We can see that their unigram frequencies
on the five most common tags are very close. Other
properties concern POS tag per sentence statistics –
e.g., every sentence has to have at least one verb. Fi-
nally, the mappings can be further constrained by ty-
pological properties of the target language that spec-
ify likely tag sequences. This information is readily
available even for resource poor language (Haspel-
math et al., 2005). For instance, since English and
German are prepositional languages, we expect to
observe adposition-noun sequences but not the re-
verse (see Figure 1b for sample sentences). We en-
code these heterogeneous properties into an objec-
tive function that guides the search for the optimal
mapping.

Having defined a quality measure for mappings,
our goal is to find the optimal mapping. However,
such partition optimization problems2 are NP hard
(Garey and Johnson, 1979). A naive approach to
the problem is to greedily improve the map, but it
turns out that this approach yields poor quality map-
pings. We therefore develop a method for optimiz-
ing over soft mappings, and use entropy regulariza-
tion to drive those towards hard mappings. We con-
struct the objective in a way that facilitates simple
monotonically improving updates corresponding to
solving convex optimization problems.

We evaluate our mapping approach on 19
languages that include representatives of Indo-
European, Semitic, Basque, Japonic and Turkic fam-
ilies. We measure mapping quality based on the
target language parsing accuracy. In addition to
considering gold POS tags for the target language,

2Instances of related hard problems are 3-partition and
subset-sum.

we also evaluate the mapping algorithm on auto-
matically induced POS tags. In all evaluation sce-
narios, our model consistently rivals the quality
of manually induced mappings. We also demon-
strate that the proposed inference procedure outper-
forms greedy methods by a large margin, highlight-
ing the importance of good optimization techniques.
We further show that while all characteristics of
the mapping contribute to the objective, our largest
gain comes from distributional features that capture
global statistics. Finally, we establish that the map-
ping quality has a significant impact on the accuracy
of syntactic transfer, which motivates further study
of this topic.

2 Related Work

Multilingual Parsing Early approaches for multi-
lingual parsing used parallel data to bridge the gap
between languages when modeling syntactic trans-
fer. In this setup, finding the mapping between var-
ious POS annotation schemes was not essential; in-
stead, the transfer algorithm could induce it directly
from the parallel data (Hwa et al., 2005; Xi and
Hwa, 2005; Burkett and Klein, 2008). However,
more recent transfer approaches relinquish this data
requirement, learning to transfer from non-parallel
data (Zeman and Resnik, 2008; McDonald et al.,
2011; Cohen et al., 2011; Naseem et al., 2010).
These approaches assume access to a common input
representation in the form of universal tags, which
enables the model to connect patterns observed in
the source language to their counterparts in the tar-
get language.

Despite ongoing efforts to standardize POS tags
across languages (e.g., EAGLES initiative (Eynde,
2004)), many corpora are still annotated with
language-specific tags. In previous work, their map-
ping to universal tags was performed manually. Yet,
even though some of these mappings have been de-
veloped for the same CoNLL dataset (Buchholz and
Marsi, 2006; Nivre et al., 2007), they are not identi-
cal and yield different parsing performance (Zeman
and Resnik, 2008; Petrov et al., 2011; Naseem et al.,
2010). The goal of our work is to automate this pro-
cess and construct mappings that are optimized for
performance on downstream tasks (here we focus on
parsing). As our results show, we achieve this goal
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-Investors [are appealing] to the Securities 
and Exchange Commission not to [limit] their 
access to information [about stock purchases]
and sales [by corporate insiders]

-Einer der sich [für den Milliardär] [ausspricht] 
[ist] Steve Jobs dem Perot [für den aufbau]
der Computerfirma Next 20 Millionen Dollar 
[bereitstellte]
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Figure 1: Illustration of similarities in POS tag statistics across languages. (a) The unigram frequency statistics on five
tags for two close languages, English and German. (b) Sample sentences in English and German. Verbs are shown in
blue, prepositions in red and noun phrases in green. It can be seen that noun phrases follow prepositions.

on a broad range of languages and evaluation sce-
narios.

Syntactic Category Refinement Our work also
relates to work in syntactic category refinement in
which POS categories and parse tree non-terminals
are refined in order to improve parsing perfor-
mance (Finkel et al., 2007; Klein and Manning,
2003; Matsuzaki et al., 2005; Petrov et al., 2006;
Petrov and Klein, 2007; Liang et al., 2007). Our
work differs from these approaches in two ways.
First, these methods have been developed in the
monolingual setting, while our mapping algorithm is
designed for multilingual parsing. Second, these ap-
proaches are trained on the syntactic trees of the tar-
get language, which enables them to directly link the
quality of newly induced categories with the quality
of syntactic parsing. In contrast, we are not given
trees in the target language. Instead, our model is
informed by mappings derived for other languages.

3 Task Formulation

The input to our task consists of a target corpus writ-
ten in a language T , and a set of non-parallel source
corpora written in languages {S1, . . . , Sn}. In the
source corpora, each word is annotated with both
a language-specific POS tag and a universal POS
tag (Petrov et al., 2011). In the target corpus each
word is annotated only with a language-specific POS
tag, either gold or automatically induced.

Our goal is to find a map from the set of LT target
language tags to the set of K universal tags. We as-

sume that each language-specific tag is only mapped
to one universal tag, which means we never split a
language-specific tag and LT ≥ K holds for every
language. We represent the map by a matrix A of
size K × LT where A(c|f) = 1 if the target lan-
guage tag f is mapped to the universal tag c, and
A(c|f) = 0 otherwise.3 Note that each column of
A should contain a single value of 1. We will later
relax the requirement thatA(c|f) ∈ {0, 1}. A candi-
date mappingA can be applied to the target language
to produce sentences labeled with universal tags.

4 Model

In this section we describe an objective that reflects
the quality of an automatic mapping.

Our key insight is that for a good mapping, the
statistics over the universal tags should be similar for
source and target languages because these tags play
the same role cross-linguistically. For example, we
should expect the frequency of a particular universal
tag to be similar in the source and target languages.

One choice to make when constructing an objec-
tive is the source languages to which we want to be
similar. It is clear that choosing all languages is not a
good idea, since they are not all expected to have dis-
tributional properties similar to the target language.
There is strong evidence that projecting from sin-
gle languages can lead to good parsing performance

3We use c and f to reflect the fact that universal tags are
a coarse version (hence c) of the language specific fine tags
(hence f ).



(McDonald et al., 2011). Therefore, our strategy is
to choose a single source language for comparison.
The choice of the source language is based on sim-
ilarity between typological properties; we describe
this in detail in Section 5.

We must also determine which statistical proper-
ties we expect to be preserved across languages. Our
model utilizes three linguistic phenomena which are
consistent across languages: POS tag global distri-
butional statistics, POS tag per sentence statistics,
and typology-based ordering statistics. We define
each of these below.

4.1 Mapping Characterization
We focus on three categories of mapping properties.
For each of the relevant statistics we define a func-
tion Fi(A) that has low values if the source and tar-
get statistics are similar.
Global distributional statistics: The unigram and
bigram statistics of the universal tags are expected
to be similar across languages with close typological
profiles. We use pS(c1, c2) to denote the bigram dis-
tribution over universal tags in the source language,
and pT (f1, f2) to denote the bigram distribution over
language specific tags in the target language. The
bigram distribution over universal tags in the target
language depends on A and pT (f1, f2) and is given
by:

pT (c1, c2;A) =
∑
f1,f2

A(c1|f1)A(c2|f2)pT (f1, f2)

(1)
To enforce similarity between source and target dis-
tributions, we wish to minimize the KL divergence
between the two: 4

Fbi(A) = DKL[pS(c1, c2)|pT (c1, c2;A)] (2)

We similarly define Funi(A) as the distance be-
tween unigram distributions.

Per sentence statistics: Another defining property
of POS tags is their average count per sentence.
Specifically, we focus on the verb count per sen-
tence, which we expect be similar across languages.

4We use the KL divergence because it assigns low weights
to infrequent universal tags. Furthermore, this choice results in
a simple, EM-like parameter estimation algorithm as discussed
in Section 5.

To express this constraint, we use nv(s,A) to
denote the number of verbs (i.e., the universal
tags corresponding to verbs according to A) in
sentence s. This is a linear function of A. We also
use E[nv(s,A)] to denote the average number of
verbs per sentence, and V [nv(s,A)] to denote the
variance. We estimate these two statistics from
the source language and denote them by ESv, VSv.
Good mappings are expected to follow these
patterns by having a variance upper bounded by
VSv and an average lower bounded by ESv.5 This
corresponds to minimizing the following objectives:

FEv(A) = max [0, ESv − E[nv(s,A)]]

FV v(A) = max [0, V [nv(s,A)]− VSv]

Note that the above objectives are convex in A,
which will make optimization simpler. We refer to
the two terms jointly as Fverb(A).

Typology-based ordering statistics: Typolog-
ical features can be useful for determining the
relative order of different tags. If we know that
the target language has a particular typological
feature, we expect its universal tags to obey the
given relative ordering. Specifically, we expect it to
agree with ordering statistics for source languages
with a similar typology. We consider two such
features here. First, in pre-position languages the
preposition is followed by the noun phrase. Thus, if
T is such a language, we expect the probability of
a noun phrase following the adposition to be high,
i.e., cross some threshold. Formally, we define C1 =
{noun, adj, num, pron, det} and consider the set of
bigram distributions Spre that satisfy the following
constraint: ∑

c∈C1

pT (adp,c) ≥ apre (3)

where apre =
∑

c∈C1
pS(adp,c) is calculated from

the source language. This constraint set is non-
convex in A due to the bilinearity of the bi-
gram term. To simplify optimization6 we take an

5The rationale is that we want to put a lower bound on the
number of verbs per sentence, and induce it from the source
language. Furthermore, we expect the number of verbs to be
well concentrated, and we induce its maximal variance from
the source language.

6In Section 5 we shall see that this makes optimization eas-
ier.



approach inspired by the posterior regularization
method (Ganchev et al., 2010) and use the objective:

Fc(A) = min
r(c1,c2)∈Spre

DKL[r(c1, c2)|pT (c1, c2;A)]

(4)
The above objective will attain lower values for A
such that pT (c1, c2;A) is close to the constraint set.
Specifically, it will have a value of zero when the
bigram distribution induced by A has the property
specified in Spre. We similarly define a set Spost
for post-positional languages.

As a second typological feature, we consider the
Demonstrative-Noun ordering. In DN languages we
want the probability of a determiner to come be-
fore C2 = {noun, adj, num}, (i.e., frequent universal
noun-phrase tags), to cross a threshold. This con-
straint translates to:∑

c∈C2

pT (det, c) ≥ adet (5)

where adet =
∑

c∈C2
pS(det, c) is a threshold de-

termined from the source language. We denote the
set of distributions that have this property by SDN,
and add them to the constraint in (4). The overall
constraint set is denoted by S.

4.2 The Overall Objective
We have defined a set of functions Fi(A) that are
expected to have low values for good mappings. To
combine those, we use a weighted sum: Fα(A) =∑

i αi · Fi(A). (The weights in this equation are
learned; we discussed the procedure in Section 5)

Optimizing over the set of mappings is difficult
since each mapping is a discrete set whose size is
exponential size in LT . Technically, the difficulty
comes from the requirement that elements of A are
integral and its columns sum to one. To relax this
restriction, we will allow A(c|f) ∈ [0, 1] and en-
courage A to correspond to a mapping by adding an
entropy regularization term:

H[A] = −
∑
f

∑
c

A(c|f) logA(c|f) (6)

This term receives its minimal value when the con-
ditional probability of the universal tags given a
language-specific tag is 1 for one universal tag and
zero for the others.

The overall objective is then: F (A) = Fα(A) +
λ ·H[A], where λ is the weight of the entropy term.7

The resulting optimization problem is:

min
A∈∆

F (A) (7)

where ∆ is the set of non-negative matrices whose
columns sum to one:

∆ =

{
A :

A(c|f) ≥ 0 ∀c, f∑K
c=1A(c|f) = 1 ∀f

}
(8)

5 Parameter Estimation

In this section we describe the parameter estimation
process for our model. We start by describing how
to optimize A. Next, we discuss the weight selec-
tion algorithm, and finally the method for choosing
source languages.

5.1 Optimizing the Mapping A

Recall that our goal is to solve the optimization
problem in Eq. (7). This objective is non convex
since the function H[A] is concave, and the objec-
tive F (A) involves bilinear terms in A and loga-
rithms of their sums (see Equations (1) and (2)).

While we do not attempt to solve the problem
globally, we do have a simple update scheme that
monotonically decreases the objective. The update
can be derived in a similar manner to expectation
maximization (EM) (Neal and Hinton, 1999) and
convex concave procedures (Yuille and Rangarajan,
2003). Figure 2 describes our optimization algo-
rithm. The key ideas in deriving it are using pos-
terior distributions as in EM, and using a variational
formulation of entropy. The term Fc(A) is handled
in a similar way to the posterior regularization algo-
rithm derivation. A detailed derivation is provided
in the supplementary file. 8

The kth iteration of the algorithm involves several
steps:

• In step 1, we calculate the current esti-
mate of the bigram distribution over tags,
pT (c1, c2;Ak).

7Note that as λ → ∞, only valid maps will be selected by
the objective.

8The supplementary file is available at http://groups.
csail.mit.edu/rbg/code/unitag/emnlp2012.



• In step 2, we find the bigram distribution in
the constraint set S that is closest in KL di-
vergence to pT (c1, c2;Ak), and denote it by
rk(c1, c2). This optimization problem is con-
vex in r(c1, c2).

• In step 3, we calculate the bigram posterior
over language specific tags given a pair of uni-
versal tags. This is analogous to the standard
E-step in EM.

• In step 4, we use the posterior in step 3 and the
bigram distributions pS(c1, c2) and rk(c1, c2)
to obtain joint counts over language specific
and universal bigrams.

• In step 5, we use the joint counts from step 4
to obtain counts over pairs of language specific
and universal tags.

• In step 6, analogous to the M-step in EM, we
optimize over the mapping matrix A. The ob-
jective is similar to the Q function in EM, and
also includes the Fverb(A) term, and a linear
upper bound on the entropy term. The objec-
tive can be seen to be convex in A.

As mentioned above, each of the optimization prob-
lems in steps 2 and 6 is convex, and can therefore be
solved using standard convex optimization solvers.
Here, we use the CVX package (Grant and Boyd,
2008; Grant and Boyd, 2011). It can be shown that
the algorithm improves F (A) at every iteration and
converges to a local optimum.

The above algorithm generates a mapping A that
may contain fractional entries. To turn it into a hard
mapping we round A by mapping each f to the c
that maximizes A(c|f) and then perform greedy im-
provement steps (one f at a time) to further improve
the objective. The regularization constant λ is tuned
to minimize the Fα(A) value of the rounded A.

5.2 Learning the Objective Weights

Our Fα(A) objective is a weighted sum of the in-
dividual Fi(A) functions. In the following, we de-
scribe how to learn the αi weights for every target
language. We would like Fα(A) to have low values
when A is a good map. Since our performance goal
is parsing accuracy, we consider a map to be good

Initialize A0.
Repeat

Step 1 (calculate current bigram estimate):

pT (c1, c2;Ak) =
∑
f1,f2

Ak(c1|f1)Ak(c2|f2)pT (f1, f2)

Step 2 (incorporate constraints):

rk(c1, c2) = arg min
r∈S

DKL[r(c1, c2)|pT (c1, c2;Ak)]

Step 3 (calculate model posterior):

p(f1, f2|c1, c2;Ak) ∝ Ak(c1|f1)Ak(c2|f2)pT (f1, f2)

Step 4: (complete joint counts):

N
k
(c1, c2, f1, f2) = p(f1, f2|c1, c2;A

k
)
(
r
k
(c1, c2) + pS(c1, c2)

)
Step 5 (obtain pairwise):

Mk(c, f) = Nk
1 (c, f) +Nk

2 (c, f)

where Nk
1 (c, f) =

∑
c2,f2

Nk(c, c2, f, f2) and similarly for
Nk

2 (c, f).
Step 6 (M step with entropy linearization): Set Ak+1 to be the
solution of

min
A∈∆

−
∑
c,f

[
M

k
(c, f) logA(c|f) + A(c|f) logA

k
(c|f)

]
+ Fverb(A)

Until Convergence of Ak

Figure 2: An iterative algorithm for minimizing our ob-
jective in Eq. (7). For simplicity we assume that all the
weights αi and λ are equal to one. It can be shown that
the objective monotonically decreases in every iteration.

if it results in high parsing accuracy, as measured
when projecting a parser from to S to T .

Since we do not have annotated parses in T , we
use the other source languages S = {S1, . . . , Sn}
to learn the weight. For each Si as the target, we
first train a parser for each language in S \ {Si} as
if it was the source, using the map of Petrov et al.
(2011), and choose S∗i ∈ S \ {Si} which gives the
highest parsing accuracy on Si. Next we generate
7000 candidate mappings for Si by randomly per-
turbing the map of (Petrov et al., 2011). We evalu-
ate the quality of each candidate A by projecting the
parser of S∗i to Si, and recording the parsing accu-
racy. Among all the candidates we choose the high-
est accuracy one and denote it by A∗(Si). We now
want the score F (A∗(Si)) to be lower than that of all
other candidates. To achieve this, we train a ranking
SVM whose inputs are pairs of mapsA∗(Si) and an-



other worse A(Si). These map pairs are taken from
many different traget languages, i.e. many different
Si. The features given to the SVM are the terms of
the score Fi(A). The goal of the SVM is to weight
these terms such that the better map A∗(Si) has a
lower score. The weights assigned by the SVM are
taken as αi.

5.3 Source Language Selection

As noted in Section 4 we construct F (A) by choos-
ing a single source language S. Here we describe the
method for choosing S. Our goal is to choose S that
is closest to T in terms of typology. Assume that
languages are described by binary typological vec-
tors vL. We would like to learn a diagonal matrix
D such that d(S, T ;D) = (vS − vT )TD(vS − vT )
reflects the similarity between the languages. In our
context, a good measure of similarity is the perfor-
mance of a parser trained on S and projected on T
(using the optimal map A). We thus seek a matrix
D such that d(S, T ;D) is ranked according to the
parsing accuracy. The matrix D is trained using an
SVM ranking algorithm that tries to follow the rank-
ing of parsing accuracy. Similar to the technique for
learning the objective weights, we train across many
pairs of source languages.9

The typological features we use are a subset
of the features described in “The World Atlas of
Languages Structure” (WALS, (Haspelmath et al.,
2005)), and are shown in Table 1.

6 Evaluation Set-Up

Datasets We test our model on 19 languages: Ara-
bic, Basque, Bulgarian, Catalan, Chinese, Czech,
Danish, Dutch, English, German, Greek, Hungar-
ian, Italian, Japanese, Portuguese, Slovene, Span-
ish, Swedish, and Turkish. Our data is taken from
the CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007). The
CoNLL datasets consist of manually created depen-
dency trees and language-specific POS tags. Fol-
lowing Petrov et al. (2011), our model maps these
language-specific tags to a set of 12 universal tags:
noun, verb, adjective, adverb, pronoun, determiner,
adposition, numeral, conjunction, particle, punctua-
tion mark and X (a general tag).

9Ties are broken using the F (A) objective.

Evaluation Procedure We perform a separate ex-
periment for each of the 19 languages as the tar-
get and a source language chosen from the rest (us-
ing the method from Section 5.3). For the selected
source language, we assume access to the mapping
of Petrov et al. (2011).

Evaluation Measures We evaluate the quality of
the derived mapping in the context of the target lan-
guage parsing accuracy. In both the training and
test data, the language-specific tags are replaced
with universal tags: Petrov’s tags for the source lan-
guages and learned tags for the target language. We
train two non-lexicalized parsers using source anno-
tations and apply them to the target language. The
first parser is a non-lexicalized version of the MST
parser (McDonald et al., 2005) successfully used in
the multilingual context (McDonald et al., 2011). In
the second parser, parameters of the target language
are estimated as a weighted mixture of parameters
learned from supervised source languages (Cohen et
al., 2011). For the parser of Cohen et al. (2011), we
trained the model on the four languages used in the
original paper — English, German, Czech and Ital-
ian. When measuring the performance on each of
these four languages, we selected another set of four
languages with a similar level of diversity.10

Following the standard evaluation practice in
parsing, we use directed dependency accuracy as our
measure of performance.

Baselines We compare mappings induced by our
model against three baselines: the manually con-
structed mapping of Petrov et al. (2011), a randomly
constructed mapping and a greedy mapping. The
greedy mapping uses the same objective as our full
model, but optimizes it using a greedy method. In
each iteration, this method makes |LT | passes over
the language-specific tags, selecting a substitution
that contributes the most to the objective.

Initialization To reduce the dimension of our al-
gorithm’s search space and speed up our method, we
start by clustering the language-specific POS tags of
the target into |K| = 12 clusters using an unsuper-

10We also experimented with a version of the Cohen et al.
(2011) model trained on all the source languages. This set-up
resulted in decreased performance. For this reason, we chose to
train the model on the four languages.



ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-Adjective
88A Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative, before and after

Table 1: The set of typological features that we use for source language selection. The first column gives the ID of
the feature as listed in WALS. The second column describes the feature and the last column enumerates the allowable
values for each feature; besides these values each feature can also have a value of ‘No dominant order’.

vised POS induction algorithm (Lee et al., 2010).11

Our mapping algorithm then learns the connection
between these clusters and universal tags.

For initialization, we perform multiple random
restarts and select the one with the lowest final ob-
jective score.

7 Results

We first present the results of our model using the
gold POS tags for the target language. Table 2 sum-
marizes the performance of our model and the base-
lines.

Comparison against Baselines On average, the
mapping produced by our model yields parsers with
higher accuracy than all of the baselines. These re-
sults are consistent for both parsers (McDonald et
al., 2011; Cohen et al., 2011). As expected, random
mappings yield abysmal results — 20.2% and 12.7%
for the two parsers. The low accuracy of parsers that
rely on the Greedy mapping — 29.9% and 25.4% —
show that a greedy approach is a poor strategy for
mapping optimization.

Surprisingly, our model slightly outperforms the
mapping of (Petrov et al., 2011), yielding an aver-
age accuracy of 56.7% as compared to the 55.4%
achieved by its manually constructed counterpart for
the direct transfer method (McDonald et al., 2011).
Similar results are observed for the mixture weights
parser (Cohen et al., 2011). The main reason for
these differences comes from mistakes introduced in
the manual mapping. For example, in Czech tag “R”
is labeled as “pronoun”, while actually it should be
mapped to “adposition”. By correcting this mistake,
we gain 5% in parsing accuracy for the direct trans-
fer parser.

11This pre-clustering results in about 3% improvement, pre-
sumably since it uses contextual information beyond what our
algorithm does.

Overall, the manually constructed mapping and
our model’s output disagree on 21% of the assign-
ments (measured on the token level). However,
the extent of disagreement is not necessarily predic-
tive of the difference in parsing performance. For
instance, the manual and automatic mappings for
Catalan disagree on 8% of the tags and their pars-
ing accuracy differs by 5%. For Greek on the other
hand, the disagreement between mappings is much
higher — 17%, yet the parsing accuracy is very
close. This phenomenon shows that not all mistakes
have equal weight. For instance, a confusion be-
tween “pronoun” and “noun” is less severe in the
parsing context than a confusion between “pronoun”
and “adverb”.

Impact of Language Selection To assess the
quality of our language selection method, we com-
pare the model against an oracle that selects the best
source for a given target language. As Table 2 shows
our method is very close to the oracle performance,
with only 0.7% gap between the two. In fact, for
10 languages our method correctly predicts the best
pairing. This result is encouraging in other contexts
as well. Specifically, McDonald et al. (2011) have
demonstrated that projecting from a single oracle-
chosen language can lead to good parsing perfor-
mance, and our technique may allow such projection
without an oracle.

Relations between Objective Values and Opti-
mization Performance The suboptimal perfor-
mance of the Greedy method shows that choosing
a good optimization strategy plays a critical role in
finding the desired mapping. A natural question to
ask is whether the objective value is predictive of the
end goal parsing performance. Figure 3 shows the
objective values for the mappings computed by our
method and the baselines for four languages. Over-



Direct Transfer Parser (Accuracy) Mixture Weight Parser (Accuracy)
Tag Diff.

Random Greedy Petrov Model Best Pair Random Greedy Petrov Model.
Catalan 15.9 32.5 74.8 79.3 79.3 12.6 24.6 65.6 73.9 8.8
Italian 16.4 41.0 68.7 68.3 71.4 11.7 33.5 64.2 61.9 6.7
Portuguese 15.8 24.6 72.0 75.1 75.1 10.7 14.1 70.4 72.6 12.2
Spanish 11.5 27.4 72.1 68.9 68.9 6.4 26.5 58.8 62.8 7.5
Danish 35.5 23.7 46.6 46.5 49.2 4.2 23.7 51.4 51.7 5.0
Dutch 18.0 22.1 58.2 56.8 57.3 7.1 15.3 54.9 53.2 4.9
English 14.7 19.0 51.6 49.0 49.0 13.3 15.1 47.5 41.8 17.7
German 15.8 24.3 55.7 50.4 51.6 20.9 18.7 52.4 51.8 15.0
Swedish 15.1 26.3 63.1 63.1 63.1 9.1 36.5 55.7 55.9 8.2
Bulgarian 17.4 28.0 51.6 63.4 63.4 22.6 39.9 64.6 60.4 35.7
Czech 19.0 34.4 47.7 57.3 57.3 12.7 26.2 48.3 55.7 28.5
Slovene 15.6 21.8 43.5 51.4 52.8 11.3 20.7 42.2 53.0 38.8
Greek 17.3 19.5 62.3 59.7 59.8 22.0 15.2 56.2 57.0 17.0
Hungarian 28.4 44.1 53.8 52.3 52.3 4.0 43.8 46.4 51.7 18.1
Arabic 22.1 45.4 51.5 51.2 52.9 3.9 40.9 48.3 51.1 15.7
Basque 18.0 19.2 27.9 33.1 35.1 6.3 8.3 32.3 30.6 43.8
Chinese 22.4 34.1 46.0 47.6 49.5 17.7 34.9 44.0 40.4 38.1
Japanese 36.5 46.2 51.4 53.6 53.6 15.4 18.0 25.7 28.7 73.8
Turkish 28.8 34.9 53.2 49.8 49.8 19.7 20.3 27.7 27.5 9.9
Average 20.2 29.9 55.4 56.7 57.4 12.7 25.4 50.8 51.7 21.3

Table 2: Directed dependency accuracy of our model and the baselines using gold POS tags for the target language.
The first section of the table is for the direct transfer of the MST parser (McDonald et al., 2011). The second section
is for the weighted mixture parsing model (Cohen et al., 2011). The first two columns (Random and Greedy) of each
section present the parsing performance with a random or a greedy mapping. The third column (Petrov) shows the
results when the mapping of Petrov et al. (2011) is used. The fourth column (Model) shows the results when our
mapping is used and the fifth column in the first section (Best Pair) shows the performance of our model when the best
source language is selected for every target language. The last column (Tag Diff.) presents the difference between our
mapping and the mapping of Petrov et al. (2011) by showing the percentage of target language tokens for which the
two mappings select a different universal tag.

all, our method and the manual mappings reach sim-
ilar values, both considerably better than other base-
lines. While the parsing performance correlates with
the objective, the correlation is not perfect. For in-
stance, on Greek our mapping has a better objective
value, but lower parsing performance.

Ablation Analysis We next analyze the contribu-
tion of each component of our objective to the result-
ing performance.12 The strongest factor in our ob-
jective is the distributional features capturing global
statistics. Using these features alone achieves an
average accuracy of 51.1%, only 5.6% less than
the full model score. Adding just the verb-related
constraints to the distributional similarity objectives
improves the average model performance by 2.1%.

12The results are consistent for both parsers, here we report
the accuracy for the direct transfer method (McDonald et al.,
2011).

Adding just the typological constraints yields a very
modest performance gain of 0.5%. This is not sur-
prising — the source language is selected to be typo-
logically similar to the target language, and thus its
distributional properties are consistent with typolog-
ical features. However, adding both the verb-related
constraints and the typological constraints results in
a synergistic performance gain of 5.6% over the dis-
tributional similarity objective, a gain which is much
better than the sum of the two individual gains.

Application to Automatically Induced POS Tags
A potential benefit of the proposed method is to re-
late automatically induced clusters in the target lan-
guage to universal tags. In our experiments, we in-
duce such clusters using Brown clustering,13 which

13In our experiments, we employ Liang’s implementation
http://cs.stanford.edu/∼pliang/software/. The number of clus-
ters is set to 30.
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Figure 3: Objective values for the different mappings
used in our experiments for four languages. Note that
the goal of the optimization procedure is to minimize the
objective value.

has been successfully used for similar purposes in
parsing research (Koo et al., 2008). We then map
these clusters to the universal tags using our algo-
rithm.

The average parsing accuracy on the 19 languages
is 45.5%. Not surprisingly, automatically induced
tags negatively impact parsing performance, yield-
ing a decrease of 11% when compared to mappings
obtained using manual POS annotations (see Ta-
ble 2). To further investigate the impact of inaccu-
rate tags on the mapping performance, we compare
our model against the oracle mapping model that
maps each cluster to the most common universal tag
of its members. Parsing accuracy obtained using this
method is 45.1%, closely matching the performance
of our mapping algorithm.

An alternative approach to mapping words into
universal tags is to directly partition words into K
clusters (without passing through language specific
tags). In order for these clusters to be meaningful
as universal tags, we can provide several prototypes
for each cluster (e.g., “walk” is a verb etc.). To test
this approach we used the prototype driven tagger of
Haghighi and Klein (2006) with 15 prototypes per
universal tag.14 The resulting universal tags yield
an average parsing accuracy of 40.5%. Our method
(using Brown clustering as above) outperforms this

14Oracle prototypes were obtained by taking the 15 most
frequent words for each universal tag. This yields almost the
same total number of prototypes as those in the experiment of
(Haghighi and Klein, 2006).

baseline by about 5%.

8 Conclusions

We present an automatic method for mapping
language-specific part-of-speech tags to a set of uni-
versal tags. Our work capitalizes on manually de-
signed conversion schemes to automatically create
mappings for new languages. Our experimental re-
sults demonstrate that automatically induced map-
pings rival the quality of their hand-crafted coun-
terparts. We also establish that the mapping quality
has a significant impact on the accuracy of syntactic
transfer, which motivates further study of this topic.
Finally, our experiments show that the choice of
mapping optimization scheme plays a crucial role in
the quality of the derived mapping, highlighting the
importance of optimization for the mapping task.
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