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Abstract

In the absence of annotations in the target lan-
guage, multilingual models typically draw on
extensive parallel resources. In this paper, we
demonstrate that accurate multilingual part-
of-speech (POS) tagging can be done with just
a few (e.g., ten) word translation pairs. We
use the translation pairs to establish a coarse
linear isometric (orthonormal) mapping be-
tween monolingual embeddings. This en-
ables the supervised source model expressed
in terms of embeddings to be used directly
on the target language. We further refine the
model in an unsupervised manner by initial-
izing and regularizing it to be close to the di-
rect transfer model. Averaged across six lan-
guages, our model yields a 37.5% absolute
improvement over the monolingual prototype-
driven method (Haghighi and Klein, 2006)
when using a comparable amount of super-
vision. Moreover, to highlight key linguistic
characteristics of the generated tags, we use
them to predict typological properties of lan-
guages, obtaining a 50% error reduction rela-
tive to the prototype model.1

1 Introduction

After two decades of study, the best performing mul-
tilingual methods can in some cases approach their
supervised monolingual analogues. To reach this
level of performance, however, multilingual meth-
ods typically make use of significant parallel re-
sources such as parallel translations or bilingual dic-

1Our code and data are available at https://github.
com/yuanzh/transfer_pos.

tionaries. These resources act as substitutes for ex-
plicit annotations available in the target language for
supervised methods. It is less clear what can be
done without extensive parallel resources. Indeed,
the motivation for our paper comes from trying to
understand how little parallel data is necessary for
effective multilingual transfer.

In this paper, we demonstrate that only ten word
translation pairs suffice for effective multilingual
transfer of part-of-speech (POS) tagging. To achieve
this we make use of and integrate two sources of
statistical signal. First, we enable transfer of infor-
mation from the source to target languages by es-
tablishing a coarse mapping between word embed-
dings in two languages on the basis of the few avail-
able translation pairs. The mapping is useful be-
cause of significant structural similarity of embed-
ding spaces across languages. Second, we lever-
age the potential of unsupervised monolingual mod-
els to capture language-specific syntactic properties.
The two sources of signals are largely complemen-
tary. Embeddings provide a coarse alignment be-
tween languages while unsupervised methods fine
tune the correspondences in service of the task at
hand. While unsupervised methods are fragile and
challenging to estimate in general, they can be help-
ful if initialized and regularized properly, which is
our focus.

In order to transfer annotations, we align mono-
lingual embeddings between languages. However, a
full fine-grained alignment is not possible with only
ten translation pairs due to differences between the
languages and variations across raw corpora from
which the embeddings are derived. Instead, we re-



strict the initial coarse mapping to be linear and iso-
metric (orthonormal) so as to leave lengths and an-
gles between the word vectors invariant. One ad-
vantage is that this preserves cosine similarity be-
tween vectors, which is viewed as a proxy for syn-
tactic/semantic similarity (Mikolov et al., 2013a;
Pennington et al., 2014; Herbelot and Vecchi, 2015).
The resulting coarse alignment is then used to ini-
tialize and guide an unsupervised model over the tar-
get language.

Our unsupervised model is a feature-based hidden
Markov model (HMM) expressed in terms of word
embeddings. By establishing a common multilin-
gual embedding space, we can map the source HMM
estimated from supervised annotations directly to
the target. The resulting “direct transfer” model
should be further adjusted as languages differ, and
the initial alignment obtained based on embeddings
is imperfect. For this reason we cast the direct trans-
fer model as a regularizer for the target HMM, and
permit the HMM to further adjust the embedding
transformations and relations of embeddings to the
tags both globally (overall rotation and scaling) and
locally (introducing small corrections).

Our two phase approach is simple to implement,
performs well, and can be adapted to other NLP
tasks. We evaluate our approach on POS tagging
using the multilingual universal dependency tree-
banks (Nivre et al., 2016). Specifically, we use En-
glish as the source language and test on three Indo-
European languages (Danish, German and Spanish)
and three non-Indo-European-languages (Finnish,
Hungarian and Indonesian). Experimental results
show that our method consistently outperforms var-
ious baselines across languages. On average, our
full model achieves 8% absolute improvement over
the direct transfer counterpart. We also compare
against a prototype-driven tagger (Haghighi and
Klein, 2006) using 14 prototypes as supervision.
Our model significantly outperforms Haghighi and
Klein (2006)’s model by 37.5% (67.5% vs 30%).

We also introduce a novel task-based evaluation
of automatic POS taggers, where tagger predictions
are used to determine typological properties of the
target language. This evaluation highlights key lin-
guistic features of the generated tags. On this task,
our model achieves 80% accuracy, yielding 50% er-
ror reduction relative to the prototype model.

2 Related Work

Multilingual POS Tagging Prior work on mul-
tilingual POS tagging has mainly focused on the
tag projection method (Yarowsky et al., 2001; Wis-
niewski et al., 2014; Duong et al., 2013; Duong et
al., 2014; Täckström et al., 2013; Das and Petrov,
2011; Snyder et al., 2008; Naseem et al., 2009; Chen
et al., 2011). All these approaches assume access to
a large amount of parallel sentences to facilitate mul-
tilingual transfer. In our work, we focus on a more
challenging scenario, in which we do not assume ac-
cess to parallel sentences. Instead of projecting tag
information via word alignment, the transfer in our
model is driven by mapping multilingual embedding
spaces. Kim et al. (2015) also use latent word repre-
sentations for multilingual transfer. However, simi-
larly to prior work, this representation is learned us-
ing parallel data.

The feasibility of POS tagging transfer with-
out parallel data has been shown by Hana et al.
(2004). The transfer is performed between ty-
pologically similar languages, which enables the
model to directly transfer the transition probabil-
ities from source to the target. Moreover, emis-
sion probabilities are hand-engineered to capture
language-specific morphological properties. In con-
trast, our method does not require any language-
specific knowledge on the target side.

Multilingual Word Embeddings There is an ex-
pansive body of research on learning multilingual
word embeddings (Gouws et al., 2014; Faruqui and
Dyer, 2014; Lu et al., 2015; Lauly et al., 2014; Lu-
ong et al., 2015). Previous work has shown its effec-
tiveness across a wide range of multilingual transfer
tasks including tagging (Kim et al., 2015), syntac-
tic parsing (Xiao and Guo, 2014; Guo et al., 2015;
Durrett et al., 2012), and machine translation (Zou
et al., 2013; Mikolov et al., 2013b). However, these
approaches commonly require parallel sentences or
bilingual lexicon to learn multilingual embeddings.
Vulic and Moens (2015) have alleviated the require-
ments by inducing multilingual word embeddings
directly from a document-aligned corpus such as a
set of Wikipedia pages on the same theme but in
different languages. However, they still used about
ten thousands aligned documents as parallel super-
vision. Our work demonstrates that useful multi-



lingual embeddings can be learned with a minimal
amount of parallel supervision.

3 Multilingual POS Tagger

Our method is designed to operate in the regime
where there are no parallel sentences or target an-
notations. We assume only a few, in our case ten,
word translation pairs. This small number of transla-
tion pairs together with the tags that they carry from
the source to the target do not provide sufficient in-
formation to train a reasonable supervised tagger,
even for very close languages where word transla-
tions would be mostly one-to-one and tags fully pre-
served in translation. Other cues are necessary.

The few translation pairs provide just enough in-
formation to obtain a coarse global alignment be-
tween the source and target language embeddings.
We limit the initial linear transformation between
embeddings to isometric (orthonormal) mappings so
as to preserve norms and angles (e.g., cosine simi-
larities) between words. Once the embeddings are
aligned, any source language model expressed in
terms of embeddings can be mapped to a target lan-
guage model. The approach is akin to direct trans-
fer commonly applied in parsing (McDonald et al.,
2011; Zeman and Resnik, 2008) though often with
more information. We use the term “direct trans-
fer” to mean the process where no further adjust-
ment is performed beyond the immediate mapping
via (coarsely) aligned embeddings.

Direct transfer is insufficient between languages
that are syntactically (even moderately) divergent.
Instead, we use the directly transferred model
to initialize and regularize an unsupervised tag-
ger. Specifically, we employ a feature-based
HMM (Berg-Kirkpatrick et al., 2010) tagger for both
the source and target languages with two impor-
tant modifications. The emission probabilities in the
source language HMM are expressed solely in terms
of word embeddings (cf. skip-gram models). Such
distributions can be directly transferred to the tar-
get domain. Our target language HMM is, however,
equipped with additional adjustable parameters that
can be learned in an unsupervised manner. These
include parameters for modifying the initial global
linear transformation between embeddings. Beyond
this linear transformation, we also add “correction

terms” to each tag-word pair that are in principle
sufficient to specify any HMM. Both of these ad-
ditional sets of parameters are regularized towards
keeping the initial direct transfer model. As a result,
our strongly governed unsupervised tagger can suc-
ceed where an unguided unsupervised tagger would
typically fail.

In the remainder of this section, we describe the
approach more formally, starting with the coarse
alignment between embeddings, followed by the su-
pervised feature-based HMM, and the unsupervised
target language HMM.

3.1 Isometric Alignment of Word Embeddings
Here we find a linear transformation from the target
language embeddings to the source language em-
beddings using the translation pairs. The result-
ing transformation permits us to directly apply any
source language model on the target language, i.e., it
enables direct transfer. To this end, let V s ∈ Rns×d

and V t ∈ Rnt×d be the word embeddings estimated
for the source and target languages, respectively,
with vocabulary sizes ns and nt. All the embeddings
are of dimension d. The submatrices of embeddings
pertaining to k anchor words (from translation pairs)
are denoted as Σs and Σt, where Σs,Σt ∈ Rk×d.

We find a linear transformation P ∈ Rd×d that
best aligns the embeddings of the translation pairs
in the sense of minimizing

||ΣtP −Σs||2 (1)

subject to the isometric (orthonormal) constraint
P TP = I . We use the steepest descent algo-
rithm (Abrudan et al., 2008) to solve this optimiza-
tion problem.2 Once P is available, we can map
all the target language embeddings V t to the source
language space with V tP . Note that since typically
in our setting k < d (e.g. k = 10) additional con-
straints such as isometry are required.

Motivation behind the Isometric Constraint We
impose isometry on the linear transformation so as
to preserve angles and lengths of the word vectors
after the transformation. A number of recent studies
have explored the use of cosine similarity of word

2Our implementation is based on the toolkit available
at http://legacy.spa.aalto.fi/sig-legacy/
unitary_optimization/.
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Figure 1: Cumulative fraction of word translation pairs among

top 1,000 most frequent words where the nearest neighbor of

a German word (vector) appears as the rth nearest neighbor

after translation, measured in terms of their monolingual word

embeddings.

vectors as a measure of semantic relations between
words. Thus, for example, if two words have high
cosine similarity in German (target), the correspond-
ing words in English (source) should also be simi-
lar. To validate our isometric constraint further, we
verify whether nearest neighbors are preserved in
monolingual embeddings after translation. To this
end, we take the top 1,000 most frequent words in
German and their translations into English and ask
whether nearest neighbors are preserved if measured
in terms of their monolingual embeddings. For each
word vector w1 and its nearest neighbor w2 in Ger-
man, let e1 and e2 be the corresponding English vec-
tors. We compute the rank of e2 in the ordered list
of nearest neighbors of e1. As Figure 1 shows, in
more than 50% of word pairs, e2 is among the top-2
neighbors of e1. In over 90% of the word pairs e2 is
among e1’s top-10 closest neighbors.

For the purposes of comparison (see Section 5),
we introduce also a linear transformation without
isometry. In other words, we find P that minimizes
||ΣtP − Σs||2 via the Moore–Penrose pseudoin-
verse (Moore, 1920; Penrose, 1955). Specifically,
let Σ+

t be the pseudoinverse of Σt. Then the solu-
tion takes the form P = Σ+

t Σs, and has the mini-
mum Frobenius norm among all possible solutions.

3.2 Supervised Source Language HMM
Here we briefly describe how we train a supervised
tagger on the source language. The resulting model,
together with aligned embeddings, specifies the di-
rect transfer model. It will also be used to initialize
and guide the unsupervised tagger on the target lan-

guage.
Our model has the same structure as the standard

HMM but we replace the transition and emission
probabilities with log-linear models (cf. feature-
based HMM by Berg-Kirkpatrick et al. (2010)). The
transition probabilities include all indicator features
and therefore impose no additional constraints. The
emission probabilities, in contrast, are expressed en-
tirely in terms of word embeddings vx as features.
More formally, the emission probability of word x
given tag y is given by

pθ(x|y) ∝ exp{vTxµy } (2)

Note that the parameters µy (one vector per tag)
can be viewed as tag embeddings. This supervised
tagging model is trained to maximize the joint log-
likelihood with l2-regularization over parameters.
We use the L-BFGS (Liu and Nocedal, 1989) algo-
rithm to optimize the parameters.

Once the HMM has been trained, we can specify
the direct transfer model. It has the same transition
probabilities but the emission probabilities are mod-
ified according to pdtθ (x|y) ∝ exp{vTxPµy } where
vx is now the monolingual target embedding, trans-
formed into the source space via vTxP . We apply the
Viterbi algorithm to predict the most likely POS tag
sequence.

3.3 Unsupervised Target Language HMM
Our unsupervised HMM for the target language
is strictly more expressive than the direct transfer
model so as to better tailor it to the target lan-
guage. Let vx again be the monolingual target em-
beddings estimated separately, prior to the HMMs.
We map these vectors to the source language em-
bedding space via vTxP as discussed earlier, where
P is already set and no longer considered a parame-
ter. The form of the emission probabilities

ptθ(x|y) ∝ exp{vTxPMµy + θx,y} (3)

includes two modifications to the direct transfer
model. First, we have introduced an additional
global linear transformationM to correct the initial
alignment represented by P . Second, we include
per-symbol parameters θx,y which, in principle, are
capable of specifying any emission distribution on
their own. The adjustable parameters in this model



(denoted collectively θ) are M , {µy}, {θx,y}, and
the parameters pertaining to the transition probabil-
ities. If we setM = I , θx,y = 0 for all x and y, and
borrowµy and the transition parameters from the su-
pervised HMM, then we recover the direct transfer
model. Let θ0 denote this setting of the parameters.
In other words, the unsupervised HMM with initial
parameters θ0 is the direct transfer model.

Our approach include initializing θ = θ0 and later
regularizing θ to remain close to θ0. The motivation
behind this approach is two-fold. First, the initial
alignment between embeddings was obtained only
on the basis of the few available anchor words and
may therefore need to be adjusted. Note that the
linear transformation of embeddings now involves
scaling and is no longer necessarily isometric. Sec-
ond, the source and target languages differ and the
embeddings are not strictly related to each other
via any global linear transformation. We can inter-
pret parameters θx,y as local (per word) non-linear
deformations of the embedding vectors that spec-
ify the emission probabilities. We allow only small
non-linear corrections by regularizing θx,y to remain
close to zero, i.e., the values they have in θ0.

Our unsupervised HMM is estimated by maxi-
mizing the regularized log-likelihood

L(θ) =

n∑
i=1

logPθ(xi)−
β

2
||θ − θ0||22 (4)

where xi is the ith target language sentence, Pθ(xi)
is the HMM with parameters θ, and n is the number
of sentences in the target text to be annotated. Since
all the parameters in the model are in a log-linear
form, we simply use the regularization parameter β.
Once estimated, we use the Viterbi algorithm to pre-
dict the most likely POS tag sequence.

Estimation Details We maximize L(θ) using the
Expectation-maximization (EM) algorithm. In the
E-step, we evaluate expected counts ey′,y for tag-
tag and ex,y for word-tag pairs, using the forward-
backward algorithm. The M-step searches for θ that
maximizes

l(θ) =
∑
y′,y

ey′,y log p
t
θ(y
′|y) +

∑
x,y

ex,y log p
t
θ(x|y)

− β

2
||θ − θ0||22 (5)

The maximization can be be done via L-BFGS
which involves computing the gradients of
log ptθ(y

′|y) and log ptθ(x|y) with respect to θ
at every iteration. Because the conditional probabil-
ities are expressed in a log-linear form, the gradients
take on typical forms such as

dl(θ)

dµy
=

∑
x

ex,y(v
T
xPM −

∑
x′

ptθ(x
′|y)vTx′PM)

− β(µy − µ0y)

dl(θ)

dM
=

∑
x,y

ex,y(P
Tvxµ

T
y −

∑
x′

ptθ(x
′|y)P Tvx′µ

T
y )

− β(M − I) (6)

where µ0y are initial values for µy.

4 Experimental Setup

Dataset We evaluate our method on the latest
Version 1.2 of the Universal Dependencies Tree-
banks (Nivre et al., 2016; McDonald et al., 2013).
We use English as the source language and six other
languages as targets. Specifically, we choose three
Indo-European languages: Danish (da), German
(de), Spanish (es), and three non-Indo-European lan-
guages: Finnish (fi), Hungarian (hu), Indonesian
(id). All treebanks are annotated with the same uni-
versal POS tagset. In our work, we map proper
nouns to nouns and map symbol marks3 and inter-
jections to a catch-all tag X because it is hard and
unnecessary to disambiguate them in a low-resource
learning scenario. After mapping, our tagset in-
cludes the following 14 tags: noun, verb, auxiliary
verb, adjective, adverb, pronoun, determiner, adpo-
sition, numeral, conjunction, sentence conjunction,
particle, punctuation mark, and a catch-all tag X.
Note that this universal tagset contains two more
tags than the traditional universal tagset proposed
by Petrov et al. (2011): auxiliary verb and sentence
conjunction. We follow the standard split of the tree-
banks for every language. For each target language,
we use the sentences in the training set as unlabeled
data, and evaluate on the testing set.

Word Embeddings To induce monolingual word
embeddings, we use the processed Wikipedia text
dumps (Al-Rfou et al., 2013) for each language.

3Examples of symbol mark include “-”, “/” etc.



Language English Danish German Spanish Finnish Hungarian Indonesian
Tokens (106) 1,888 44 687 399 66 89 41

Table 1: Number of tokens of the Wikipedia dumps used for inducing word embeddings.

While Wikipedia texts may contain parallel articles,
we show in Table 1 that the amount of text varies sig-
nificantly across languages. Smith et al. (2010) also
demonstrated that parallel information in Wikipedia
is very noisy. Therefore, direct translations are diffi-
cult to get from these texts. We use the word2vec
tool with the skip-gram learning scheme (Mikolov
et al., 2013a). In our experiments we use d = 20
for the dimension of word embeddings and w = 1
for the context window size of the skip-gram, which
yields the best overall performance for our model.
In our analysis, we also explore the impact of em-
bedding dimension and window size.

Word Translation Pairs For each target lan-
guage, we collect English translations for the top
ten most frequent words in the training corpus. Our
preliminary experiments show that this selection
method performs the best. The selected words are
typically from closed classes, such as punctuation
marks, determiners and prepositions. We find trans-
lations using Wiktionary.4

Model Variants Our model varies along two di-
mensions. On one dimension, we use two differ-
ent methods for inducing multilingual word embed-
dings: Pseudoinverse and Isometric alignment as
described in Section 3.1. On the other dimension,
we experiment with two different multilingual trans-
fer models. We use Direct Transfer to denote our
direct transfer model, and Transfer+EM for our
unsupervised model trained in the target language.

Baselines We also compare against the prototype-
driven method of Haghighi and Klein (2006).
Specifically, we use the publicly available imple-
mentation provided by the authors.5 Note that their
model requires at least one prototype for each POS
category. Therefore, we select 14 prototypes (the
most frequent word from each category) for the
baseline, while our method only uses ten translation
pairs.

4https://www.wiktionary.org/
5http://code.google.com/p/

prototype-sequence-toolkit/

Evaluation Unlike other unsupervised methods,
all models in our experiments can identify the label
for each POS tag because of knowledge from either
the source languages or prototypes. Therefore, we
directly report the token-level POS accuracy for all
experiments.

Other Details For all experiments, we use the fol-
lowing regularization weights: γ = 0.001 for su-
pervised models learned on the source language and
β = 0.01 for unsupervised models learned on the
target language. During training, we also normalize
the log-likelihood of labeled or unlabeled data by the
total number of tokens. As a result, the magnitude
of the objective value is independent of the corpus
size, hence we do not need to tune the regularization
weight for each target language. We run ten itera-
tions of the EM algorithm.

5 Results

In this section, we first show the main comparison
between the tagging performance of our model and
the baselines. In addition, we include an experiment
on typology prediction. In Section 5.2, we provide a
more detailed analysis of model properties.

5.1 Main Results

Table 2 summarizes the results of the prototype
baseline and different variations of our transfer
model. Averaged across languages, our model sig-
nificantly outperforms the prototype baseline by
about 37.5% (67.5% vs 30%), demonstrating the
effectiveness of multilingual transfer. Moreover,
Table 2 shows that our full model (Transfer+EM
with the isometric alignment mapping) consistently
achieves the best performance compared to other
model variations. Our model performs better on
Indo-European languages than on other languages
(72.9% vs. 62.1% on average), because Indo-
European languages are linguistically more similar
to the source language (English).

Impact of Training in the Target Language We
observe that training on unlabeled data in the tar-



Method Indo-European Non-Indo-European

da de es Avg. fi hu id Avg.

Prototype Model 41.3 25.5 28.7 31.8 8.2 44.5 30.1 27.6

Pseudoinverse
Direct Transfer 56.7 49.4 68.4 58.2 54.3 60.1 57.7 57.4
Transfer+EM 64.4 65.8 74.9 68.4 57.5 65.3 62.7 61.8

Isometric Alignment
Direct Transfer 59.8 55.4 67.4 60.9 54.4 61.4 57.2 57.7
Transfer+EM 72.5 68.7 77.5 72.9 58.2 63.4 64.8 62.1

Table 2: Token-level POS tagging accuracy (%) for different variants of our transfer model. We always use English as the source

language. Target languages include Danish (da), German (de), Spanish (es), Finnish (fi), Hungarian (hu) and Indonesian (id).

We average the results separately for Indo-European and non-Indo-European languages. The first row shows performance of the

prototype-driven baseline (Haghighi and Klein, 2006). The rest shows results of our model when multilingual embeddings are

induced with the pseudoinverse or isometric alignment method. “Direct Transfer” and “Transfer+EM” indicates our direct transfer

model and our transfer model trained in the target language respectively.

get language (Transfer+EM model) consistently im-
proves over the direct transfer counterpart. As the
bottom part of Table 2 shows, running EM on unla-
beled data yields an average of 12% absolute gain
on Indo-European languages, while on non-Indo-
European languages the gain is only 4.4%.

Impact of the Isometric Alignment Constraint
As Table 2 shows, when we use Transfer+EM
models, the isometric alignment method yields a
4.5% improvement over the pseudoinverse method
(72.9% vs. 68.4%) on Indo-European languages.
However, the improvement margin drops to 0.3% on
non-Indo-European languages (62.1% vs. 61.8%).
We hypothesis that this discrepancy is due to the dif-
ference in the degree of ambiguities of the anchor
words across languages. For example, the anchor
words of Spanish have an average of 1.5 possible
translations to English, while for Indonesian the av-
erage ambiguity is 2.7. Therefore, the isometric as-
sumption holds better and the EM algorithm finds a
better local optimum for Indo-European languages
than for non-Indo-European languages. We also ob-
serve a similar pattern in the direct transfer scenario.

Prediction of Linguistic Typology To assess the
quality of automatically generated tags, we use them
to determine typological properties of the target lan-
guage. We predict values of the following five
typological properties for each language: subject-

Tagging Method Typology Accuracy
Prototype 60.0
Direct Transfer 66.7
Transfer + EM 80.0
Gold 93.3

Table 3: The accuracy (%) of typological properties prediction

using the outputs from different taggers. “Gold” indicates the

result using gold POS annotations.

verb, verb-object, adjective-noun, adposition-noun
and demonstrative-noun. More specifically, the goal
is to predict word ordering preferences such as
whether an adjective comes before a noun (as in En-
glish) or after a noun (as in Spanish). We collect
the true ordering preferences from “The World At-
las of Language Structure (WALS)” (Dryer et al.,
2005). To make predictions, we train a multiclass
support vector machine (SVM) classifier (Tsochan-
taridis et al., 2004) on a multilingual corpus using
bigrams and trigrams of POS tags as features. The
training data for SVM comes from a combination of
the Universal Dependencies Treebanks, CoNLL-X,
and CoNLL-07 datasets (Buchholz and Marsi, 2006;
Nilsson et al., 2007), excluding all sentences in the
target language. We train one classifier for each ty-
pological property, and make predictions for each
of the six target languages. For evaluation, we di-
rectly report the overall accuracy on all 30 test cases
(six languages combined with five typological prop-
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Figure 2: Accuracy of our models and the prototype baseline

as a function of the amount of supervision, in German. x-axis
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vision. Our models use multilingual embeddings induced with

the isometric alignment method. The minimum number of pro-

totypes used by the prototype baseline is 14.

erties).
Table 3 shows the accuracy of predicting typo-

logical properties with different tagging models.
“Gold” corresponds to the result with gold POS an-
notations and is an upper bound of the prediction
accuracy. We observe that the typology prediction
accuracy correlates with the tagging quality. With
the output of our best model, we predict the correct
values for 80% of the typological properties. This
corresponds to a 50% error reduction relative to the
prototype model.

5.2 Analyses
Impact of the Amount of Supervision Fig-
ure 2 shows the accuracy of the Direct Transfer,
Transfer+EM models, and prototype baseline with
different amounts of supervision in German. Specif-
ically, the x-axis is the number of translation pairs
or prototypes used as supervision. The numbers
with ten pairs or prototypes are the same as that
in Table 2. We automatically extract more transla-
tion pairs using the Europarl parallel corpus (Koehn,
2005) and select pairs based on the word frequency
in the target language. For the prototype model, we
select the most frequent words as prototypes based
on annotations in the training data, and guarantee
that each POS category has at least one prototype.
Note that the minimum number of prototypes used
by the prototype model is 14.

One particularly interesting observation is that our
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Figure 3: The average tagging accuracy (%) with different em-

bedding dimensions and context window sizes. The model is

Transfer+EM with the isometric alignment projection method.

model with ten pairs achieves an equivalent perfor-
mance as that of the prototype-driven method with
150 prototypes. Multilingual transfer compensates
for 15 times the amount of supervision. We also ob-
serve that the prototype-driven model outperforms
our model when large amount of annotations are
available. This can be explained by noise in the
translation and the limitation from the linear embed-
ding mapping process, which makes POS tags not
preserve well across languages.

When comparing between our models, Figure 2
shows that Transfer+EM consistently improves over
the Direct Transfer, while the gains are more pro-
found in the low-supervision scenario. This is not
surprising because with more translation pairs, we
are able to induce higher quality multilingual em-
beddings, which is more beneficial to the direct
transfer model.

Impact of Embedding Dimensions and Window
Size Figure 3 shows the average accuracy across
six target languages with different embedding di-
mensions and context window sizes. First, we ob-
serve that a small window size w = 1 consistently
outperforms window size w = 5, demonstrating that
smaller window sizes appear to produce word em-
beddings better for POS tagging. This observation
is in line with the finding by Lin et al. (2015). More-
over, we obtain the best performance with dimen-
sion d = 20 whenw = 1. On one hand, embeddings
with smaller dimension (e.g. d = 10) have too little
syntactic information for good POS tagging. On the
other hand, if the embedding space has larger dimen-



Model da de es fi hu id Average
All features 72.5 68.7 77.5 58.2 63.4 64.8 67.5
- Indicator features 70.8 64.8 73.9 53.7 62.9 56.8 63.8
- Transformation matrix M 60.2 65.6 73.2 58.6 59.6 70.8 64.7

Table 4: The accuracy (%) of our best Transfer+EM model with different feature sets, removing either indicator features or

transformation matrix M at a time.

sion, the space will be more complex and mapping
embedding spaces will be more difficult given only
ten translation pairs. Therefore, we observe a perfor-
mance drop with either smaller or larger dimensions.

Ablation Analysis on Features In our
Transfer+EM model, we add indicator fea-
tures and transformation matrix M to enhance the
emission distribution (see Section 3.3). To analyze
their contribution, we remove these features in turn
and report the results in Table 4. Averaged over
all languages, adding indicator features improves
the accuracy by 3.7%, and adding a transformation
matrix increases the accuracy by 2.8%.

6 Conclusions

In this paper, we demonstrate that ten translation
pairs suffice for an effective multilingual transfer of
POS tagging. Experimental results show that our
model significantly outperforms the direct transfer
method and the prototype baseline. The effective-
ness of our approach suggests its potential applica-
tion to a broader range of NLP tasks that require
word-level multilingual transfer, such as multilin-
gual parsing and machine translation.
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