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Abstract

Expressive machine learning models such as deep neural networks are highly effective
when they can be trained with large amounts of in-domain labeled training data.
While such annotations may not be readily available for the target task, it is often
possible to find labeled data for another related task. The goal of this thesis is to
develop novel transfer learning techniques that can effectively leverage annotations in
source tasks to improve performance of the target low-resource task. In particular,
we focus on two transfer learning scenarios: (1) transfer across languages and (2)
transfer across tasks or domains in the same language.

In multilingual transfer, we tackle challenges from two perspectives. First, we
show that linguistic prior knowledge can be utilized to guide syntactic parsing with
little human intervention, by using a hierarchical low-rank tensor method. In both
unsupervised and semi-supervised transfer scenarios, this method consistently outper-
forms state-of-the-art multilingual transfer parsers and the traditional tensor model
across more than ten languages. Second, we study lexical-level multilingual transfer
in low-resource settings. We demonstrate that only a few (e.g., ten) word transla-
tion pairs suffice for an accurate transfer for part-of-speech (POS) tagging. Averaged
across six languages, our approach achieves a 37.5% improvement over the monolin-
gual top-performing method when using a comparable amount of supervision.

In the second monolingual transfer scenario, we propose an aspect-augmented
adversarial network that allows aspect transfer over the same domain. We use this
method to transfer across different aspects in the same pathology reports, where tra-
ditional domain adaptation approaches commonly fail. Experimental results demon-
strate that our approach outperforms different baselines and model variants, yielding
a 24% gain on this pathology dataset.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Today, formulating and learning expressive neural models has become a paradigm of

choice across a wide range of natural language processing (NLP) tasks. While flexible

continuous representations afforded by these models often lead to well-performing sys-

tems, learning them requires significant amounts of well-annotated data. To achieve

top performance, these models typically need to be trained on more than millions

of tokens annotated for each specific task, such as syntactic parsing [3], question

answering [105, 45] and machine translation [107, 4].

While such large amounts of annotations exist in some cases, they are not readily

available in other scenarios. For example, the Universal Dependency Treebank [77]

consists of syntactic treebanks for more than 20 languages. However, these treebanks

only cover a small fraction of the thousands of existing world languages. Many of

these languages, such as Kinyarwanda and Malagasy, have insufficient annotated parse

trees, and thus are beyond the scope of state-of-the-art supervised parsers. Even in a

resource-rich language like English, the annotation sparsity issue also exists when we

are confronted with different domains. A common situation is that large amounts of

labeled data are available in one domain, such as news articles, but we truly desire the

model to perform well in another low-resource domain, say medical reports. However,

a state-of-the-art model trained on news articles will have inferior performance in the

medical domain because vocabulary and writing style vary so widely across domains.

Despite the fact that the lack of annotated resources has become significant ob-
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I           eat       a      red        apple 
PRON VERB DET ADJ NOUN

ROOTEnglish

Je       mange  une    pomme  rouge
PRON VERB DET ADJNOUN

ROOTFrench

(I) (eat) (a) (apple) (red)

Figure 1-1: An English sentence and its translation in French annotated with universal
POS tags and dependency trees. Universal POS tags are used as non-lexical features
to alleviate the vocabulary discrepancy between languages.

stacle to achieving high performance, developing such resources in large quantities is

sometimes an extremely laborious task. The development process can be prohibitively

expensive because of the level of linguistic expertise required to produce target anno-

tations, such as syntactic trees. This unforgiving obstacle motivates the ultimate goal

of my research which is to minimize the amount of annotated data required to achieve

the state-of-the-art performance. As a step towards this goal, this thesis explores the

use of transfer learning techniques to address the challenges in low-resource natural

language analysis.

The key idea of transfer learning is to capitalize on rich annotations in a source

field, while our target field is resource-poor [78]. The goal of learning is to auto-

matically and robustly handle the discrepancy between the two fields and enable

information transfer from source to target to improve model performance. In this

thesis, I tackle the challenges in transfer learning in the context of two scenarios:

(1) transfer across languages and (2) transfer across tasks or domains in the same

language.

Transfer Learning across Languages The first transfer learning scenario is to

parse and analyze a target language by utilizing annotations available in other source

languages. In this scenario, a model that depends on lexical features is not directly

applicable because of the vocabulary discrepancy between two languages. As a rem-

edy, recent methods have been relying solely on non-lexical features that are available

20



in both the source and the target languages, such as universal part-of-speech (POS)

tags [68, 75, 97]. Figure 1-1 shows an example sentence in English (left) and its

translation in French (right) annotated with universal POS tags. While the words

are totally different, their POS sequences look similar to each other. Thus, given

these universal POS annotations, a parser trained on an English treebank can also

correctly parse sentences in French.

However, in many NLP tasks those non-lexical features alone are never sufficient

for models to reach respectable performance. For example, a state-of-the-art super-

vised POS tagger primarily relies on lexical features such as context words, prefixes

and suffixes. It is next to impossible to achieve the same level of performance with

only non-lexical features. Therefore, lexical-level transfer is necessary for multilingual

POS tagging. In order to achieve lexical-level transfer, prior methods typically make

use of significant parallel resources such as parallel translations or bilingual dictionar-

ies [26, 96, 92]. These resources act as substitutes for explicit annotations available

in the target language for supervised methods. Such parallel resources, however, are

not always available in sufficient amount in real life. It is less clear what can be

done without such extensive parallel resources. Indeed, one motivation of this thesis

comes from trying to understand how little parallel data is necessary for effective

multilingual transfer.

Another challenge in multilingual transfer is to handle linguistic differences across

languages, such as linguistic typology related to word ordering. As shown in Figure

1-1, an adjective typically comes before a noun in English while this order is reversed

in French. Therefore, such syntactic property should not be transferred between these

two languages. While such linguistic knowledge is publicly available online for many

languages [25], encoding this knowledge in models is non-trivial. Previous work have

implemented this selective transfer idea by heavy feature engineering [97], which is

time consuming and hard to scale. As an alternative to this manual process, it is

necessary to design an automatic and systematic approach of inducing feature repre-

sentations tailored for target tasks (e.g. syntactic parsing) as well as incorporating

prior knowledge on linguistic typology.
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Pathology report:
FINAL DIAGNOSIS: BREAST (LEFT) … INVASIVE CARCINOMA 
Tumor size: num x num x num cm  Grade: 3. Lymphatic vessel 
invasion: Not identified. Blood vessel invasion: Suspicious. 
Margin of invasive carcinoma …

Diagnosis results:
IDC: Positive                LVI: Negative

Pathology report:
FINAL DIAGNOSIS: BREAST (LEFT) … INVASIVE CARCINOMA 
Tumor size: num x num x num cm  Grade: 3. Lymphatic vessel 
invasion: Not identified. Blood vessel invasion: Suspicious. 
Margin of invasive carcinoma …

Diagnosis results:
IDC: Present              
LVI: Absent

Figure 1-2: A snippet of a breast pathology report with diagnosis results for two types
of disease. Evidence for both results is in red and blue, respectively.

Transfer Learning across Domains In the second scenario, we study how to

learn a model from annotations in a source domain or task that generalizes well to

another related target domain or task. In this thesis we are primarily interested in

transfer between two classification tasks over the same domain, i.e., over the same

set of examples. We call this aspect transfer as the two classification tasks can be

thought to pertain to different aspects of the same examples. As an example, consider

Figure 1-2 that shows a pathology report with diagnosis results (presence or absence)

on two types of breast disease: lymph invasion (LVI) and invasive carcinoma (IDC).

The target goal may be to classify the pathology report for the presence of LVI

but the available training data involve only annotations for IDC in the same report.

Traditional domain adaptation approaches are likely to fail on this task because they

only predict the category based on an overall feature representation of the reports. In

this task, however, both aspects have to be predicted from the same document, so in

both cases the classifier operates over the same representation from the very beginning

and cannot distinguish between different aspects. To address this challenge, the model

should be capable to learn to extract information that is relevant to a particular aspect

while ignoring the rest.

Recently, the employment of deep learning methods brings new challenges in do-

main adaptation problem. While complex neural models have achieved top perfor-

mance in the supervised setting, they typically have little transparency in their inner

mapping process from texts to corresponding vector representations. Essentially, this

hidden mapping process makes it intractable to exactly measure the distribution dis-

similarity across domains, thus opening a new research question on how to explicitly
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encourage the learning of domain-invariant representations for adaptation, which is

another focus of this thesis.

In this thesis, we consider transfer learning in low-resource settings. We are primarily

interested in tackling challenges under the following three low-resource setups:

∙ Little Annotations on Target Tasks: First, as in standard low-resource

scenarios, we assume little or no label annotations on the target side. We only

have raw data for the target task.

∙ Little Parallel Data: Much previous work relies on large amounts of parallel

data to enable transfer. In contrast, we assume no parallel data is available, or

we use only a few (e.g., ten) word translation pairs.

∙ Low Level of Human Effort: Our methods require low level of human in-

tervention on model design, reflected in two perspectives. First, our method

requires little manual feature engineering to encode prior knowledge for trans-

fer in the model. Second, we guide the aspect transfer by using only a small

number of manual keyword rules.

We illustrate our techniques to address the above challenges in the context of three

transfer learning tasks: (1) multilingual dependency parsing with no parallel data

and little manual engineering, (2) multilingual POS tagging with only a few word

translation pairs, and (3) aspect transfer with only a few keyword rules. Next I

will briefly describe the challenges in each task and our approaches to solving these

challenges.
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1.1 Multilingual Parsing without Feature Engineer-

ing

Task and Challenge Our first task is multilingual dependency parsing where the

goal is to train a dependency parser for a resource-poor language by using annotations

in other resource-rich languages. Accurate multilingual transfer parsing typically

relies on careful feature engineering by hand. Figure 1-3 shows examples of manually

crafted features, including ones that are selectively shared and ones that are universal

across languages. However, this manual feature engineering is time consuming. An

appealing alternative to this process is tensor-based scoring models. These models

automatically consider all possible combinations of atomic features, and address the

parameter explosion problem via a low-rank assumption. Figure 1-3 depicts a four-

way tensor that captures all combinations of head POS, modifier POS, arc direction

and typology values. One trait of traditional tensor-based scoring is that no prior

knowledge about feature interactions is assumed. In the multilingual transfer setting,

however, we have some prior knowledge about legitimate feature combinations. As

shown in the bottom part of Figure 1-3, the feature combination in blue is valid, but

the one in red is invalid. This is because the preference of noun-adjective order should

be specifically associated to a noun-adjective arc, not a verb-noun arc. However, the

traditional tensor technique still considers these unobserved feature combinations,

and assigns them non-zero weights.

Our Approach To address this issue, we introduce a hierarchical tensor model

that enables us to incorporate prior knowledge about desired feature interactions,

eliminating invalid feature combinations. The hierarchical structure uses intermediate

embeddings to capture desired feature combinations. Algebraically, this hierarchical

tensor is equivalent to the sum of traditional tensors with shared components, and

thus can be effectively trained with standard online learning algorithms. Empirically,

we demonstrate that our hierarchical tensor consistently improves parsing accuracy

over baselines across more than ten different languages.
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Manual Feature Combination

Tensor Feature Combination

head POS

VERB

NOUN

ADV

ADJ

……

modifier POS
direction typology 

order

LEFT

RIGHT

NOUN-ADJ

ADJ-NOUN

VERB

NOUN

ADV

ADJ

……

NULL NULL
VERB NOUN LEFT ADJ-NOUN^ ^ ^

Invalid Combination

NOUN ADJ RIGHT NOUN-ADJ^ ^ ^
Valid Combination

feature combination

{head POS=NOUN}    {modifier POS=ADJ}
          {direction=RIGHT}    {order=NOUN-ADJ}

^
^ ^

{head POS=VERB}    {modifier POS=NOUN}^
{head POS=VERB}    {modifier POS=ADV}^
{head POS=VERB}    {modifier POS=DET}^

Language universal features Selectively shared features

……
……

Figure 1-3: Examples of manual (top) and tensor features combinations (bottom).
Previous state-of-the-art multilingual transfer parsers require heavy feature engineer-
ing on the design of language universal features and selective shared features. In
contrast, the example tensor automatically captures all feature combinations over
head POS, modifier POS, direction and typology order of noun-adjective. Note that,
however, tensor methods also capture invalid feature combinations.
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1.2 Multilingual POS Tagging with Ten Translation

Pairs

Task and Challenge In our second multilingual transfer application, we choose

POS tagging as the underlying task. Unlike multilingual parsing, lexical-level transfer

is essential in this task. A common solution is to utilize multilingual word embeddings

as a universal representation of words to facilitate the lexical-level transfer. In par-

ticular, monolingual embeddings are aligned between languages such that translation

word pairs have the same representations. This enables the supervised source model

expressed in terms of embeddings to be “directly transferred” on the target language.

However, learning such multilingual embeddings typically requires large amounts of

parallel data that are not available in many cases.

Our Approach In this work, we demonstrate that only ten word translation pairs

suffice for effective multilingual transfer of POS tagging. The key idea is still to

align monolingual embeddings to transfer annotations. However, a full fine-grained

alignment is not possible with only ten translation pairs due to differences between the

languages and variations across raw corpora from which the embeddings are derived.

Instead, we restrict the coarse mapping to be linear and isometric (orthonormal) so

as to leave lengths and angles between the word vectors invariant. One advantage is

that this preserves cosine similarity between vectors, which is viewed as a proxy for

syntactic/semantic similarity [70, 80, 44]. Figure 1-4 shows an example of the coarse

mapping process using three translation pairs.

We further refine the model in an unsupervised manner by initializing and regu-

larizing it to be close to the direct transfer model. While unsupervised methods are

fragile and challenging to estimate in general, they can be helpful if initialized and

regularized properly. The refined model is able to capture language-specific syntactic

properties and to fit the target language better. Averaged across six languages, our

model yields a 37.5% absolute improvement over the monolingual prototype-driven

method [42] when using a comparable amount of supervision.
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Monolingual Embedding

dog

catred

is

Source(English)

Hund
(dog)

Katze
(cat)

rot
(red)

ist
(is)

Target(German) Translation Pairs
dog || Hund

red || rot
  cat || Katze

Isometric Solution

Isometric Constraints

P T P = I dog

catred

is

Hund
(dog)

Katze
(cat)

rot
(red)

ist
(is)

Coarse Isometric Mapping between Monolingual Embeddings

Figure 1-4: An example of coarse mapping between monolingual embeddings with
isometric constraints. Isometric transformation preserves angles and lengths (co-
sine similarity) of word vectors, thus preserving semantic relations. Embeddings are
aligned using three translation pairs in this example.
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1.3 Aspect Transfer with Few Keyword Rules

Task and Challenge We formulate our final task as an aspect transfer problem

where the goal is to predict labels pertaining to a particular aspect in texts. As

illustrated in Figure 1-2, if the model aims to predict labels for lymph invasion (LVI),

it should extract features only from the second sentence (in blue) while ignoring the

rest. To solve this task, the model must learn to properly relate the source and

target aspects. Moreover, unlike both multilingual transfer tasks above, we have no

linguistic prior knowledge to guide transfer in this case. The model needs to learn

domain-invariant feature representations in an unsupervised manner.

Our Approach To enable aspect transfer, we propose an aspect-driven document

encoder that can selectively extract features from aspect-relevant fragments while

ignoring the rest. Specifically, we equip the encoder with a sentence-level relevance

scorer that allows the model to select aspect-relevant sentences from the document.

Instead of target labels, we assume a small set of keywords pertaining to each aspect

as a form of weak supervision for learning the scorer. Such annotations can be easily

provided by domain experts, such as extracting from medical literature such as codex

rules in pathology [79]. On the pathology dataset, we show that this relevance scorer

brings 24% absolute gain in prediction accuracy.

Our relevance-driven encoder returns the aspect transfer problem closer to the

realm of standard domain adaptation. To support generalization across aspects, we

employ an adversarial neural network to learn aspect-invariant representations. Fig-

ure 1-5 illustrates the idea of adversarial training. We train a domain/aspect classifier

that naturally provides an effective measurement on cross-aspect dissimilarities. In

other words, the classifier will perform poorly if features are aspect-invariant. We

therefore jointly optimize the encoder to counteract the classifier as an adversary. Ex-

perimental results show that our model significantly outperforms the no-adversarial-

training baseline, achieving a 12.8% gain on the pathology dataset.
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No Adversarial Training

Source domain input

…

• Domain-specific representations
• Separable by the domain classifier

D

Target domain input
…

With Adversarial Training

…

• Domain-invariant representations
• Not separable by the domain classifier

D

…

Source domain input

Target domain input

Figure 1-5: An illustration of the idea of using adversarial training for domain adap-
tation. When no adversarial training is used (top), learned representations consist of
domain-specific features and are separable by a discriminative domain classifier. In
contrast, adversarial training encourages the emergence of domain-invariant features
that are not separable by the domain classifier (bottom).
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1.4 Contributions

The primary contribution of this thesis is four-fold:

∙ Incorporating linguistic knowledge in tensor-based models We propose

a novel hierarchical tensor based-model for multilingual transfer parsing. This

approach enables us to constrain learned representation based on desired fea-

ture interactions. We demonstrate that our model outperforms state-of-the-art

multilingual transfer parsers and traditional tensors.

∙ Guiding lexical-level transfer with only ten translation pairs We demon-

strate that ten translation pairs suffice for an effective multilingual transfer of

POS tagging. The effectiveness of our approach suggests its potential appli-

cation to a broader range of NLP tasks that require lexical-level multilingual

transfer, such as machine translation and entity recognition.

∙ Handling Aspect-driven transfer using relevance scoring We show that

the aspect-relevance scoring enables aspect transfer. We demonstrate that this

technique is particularly important in scenarios where we transfer across differ-

ent aspects in the same document, such as parsing pathology reports.

∙ Learning domain-invariant representations using adversarial training

We present an adversarial network for domain adaption. As shown by our

results, we demonstrate the effectiveness of adversarial training to guide the

learning of domain-invariant representations. We also provide extensive analysis

on the behavior of adversarial training. The success of our work provides insights

into using adversarial training in many other NLP tasks.
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1.5 Outline

The remainder of this thesis is organized as follows:

∙ Chapter 2 proposes a hierarchical low-rank tensor method for multilingual

transfer parsing. This method uses linguistic typology knowledge to constrain

the feature construction process in the tensor structure.

∙ Chapter 3 presents our coarse embedding mapping method that uses just ten

word translation pairs to achieve effective POS transfer.

∙ Chapter 4 describes our aspect-augmented adversarial network for transfer

learning between two aspects over the same domain.

∙ Chapter 5 summarizes the thesis and directions for future work.

31



32



Chapter 2

Hierarchical Low-Rank Tensors for

Multilingual Transfer Parsing

In this chapter, we consider the task of multilingual transfer for dependency pars-

ing. By using a hierarchical tensor-based approach, we demonstrate that linguistic

typology knowledge can be encoded in a tensor-based model by explicitly modeling

the feature combination process in the tensor structure. In both unsupervised and

semi-supervised settings, we show that our method consistently outperforms previous

state-of-the-art approaches on a broad range of transfer scenarios.

2.1 Introduction

The goal of multilingual syntactic transfer is to parse a resource-lean target language

utilizing annotations in other resource-rich source languages. Recent approaches have

demonstrated that such transfer is possible, even in the absence of parallel data. As

a main source of guidance, these methods rely on the commonalities in dependency

structures across languages. In particular, these commonalities manifest themselves

as a broad and diverse set of indicator features, ranging from standard non-lexical

arc features used in monolingual parsers to linguistic typological properties needed to

guide cross-lingual sharing (e.g., verb-subject ordering preference). Table 2.1 shows

two examples of typological features on word ordering preferences and the correspond-
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ID Description English Spanish French

82A Order of Subject and Verb SV SV SV
87A Order of Adjective and Noun Adj-Noun Noun-Adj Noun-Adj

Table 2.1: Example linguistic typological features from WALS. 82A and 87A denote
the feature codes for verb-subject and noun-adjective ordering preferences, respec-
tively. All three languages have the same preference on verb-subject ordering, but
their noun-adjective ordering preferences are different.

ing feature values of three languages. All three languages have the same preference on

verb-subject ordering, but different values on noun-adjective typology. Therefore, the

parameters pertaining to the direction of a noun-adjective arc should be selectively

shared between French and Spanish, not from English.

Prior state-of-the-art multilingual transfer parsers implement the idea of selective

sharing by careful feature engineering [97]. Consider the example feature in Table 2.2

that combines a standard arc feature with a noun-adjective typological feature value.

This feature only fires when the parser operates on a sentence in Spanish or French

due to the presence of the typological features. When testing on French sentences,

the parser thus selectively transfers the corresponding syntactic pattern from Spanish,

not English. As shown in [97], such selectively shared features play a crucial role in

cross-lingual transfer parsing. However, constructing these features also requires a

high level of expertise and significant amount of human effort.

Tensor-based models are an appealing alternative to this manual feature design

process. These models represent the high-dimensional feature vectors as tensor-

products of multiple smaller vectors that encode atomic features, such as the head

POS. The associated parameters are viewed as a tensor of low rank. By factorizing

the tensor represented in a low-rank form, the model automatically induces a com-

pact low-dimensional feature representation that are specifically tailored for parsing

accuracy. These tensor-based methods assume no prior knowledge about feature in-

teractions. As a result, the model considers all possible combinations of these atomic
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Verb-subject:
{head POS=VERB} ∧ {modifier POS=NOUN} ∧ {label=subj} ∧ {direction
=LEFT} ∧ {82A=SV}

Noun-adjective:
{head POS=NOUN} ∧ {modifier POS=ADJ} ∧ {direction=RIGHT} ∧ {87A=
Noun-Adj}

Table 2.2: Example verb-subject and noun-adjective typological features. 82A and
87A denote the WALS [25] feature codes for verb-subject and noun-adjective ordering
preferences.

features, and addresses the parameter explosion problem via a low-rank assumption.

In the multilingual transfer setting, however, we have some prior knowledge about

legitimate feature combinations. For instance, consider the linguistic typological fea-

ture that encodes verb-subject preferences, as shown in Table 2.2. This features is

expressed as a conjunction of five atomic features. Ideally, we would like to treat this

composition as a single non-decomposable feature. However, the traditional tensor

model decomposes this feature into five dimensions, and considers various combi-

nations of these features as well as their individual interactions with other features.

Specifically, the model captures all possible combinations of atomic features over head

POS, modifier POS, label, direction and typological feature values. In practice, we

want to avoid invalid combinations that conjoin the typological feature with unrelated

atomic features. For instance, there is no point to constructing features of the form

{head POS=ADJ} ∧ {head POS=VERB} ∧ · · · ∧ {82A=SV} as the head POS can only

take a single value. However, the traditional tensor technique still considers these un-

observed feature combinations, and assigns them non-zero weights (see Section 2.7).

This inconsistency between prior knowledge and the low-rank assumption results in

a sub-optimal parameter estimation.

To address this issue, we introduce a hierarchical tensor model that constrains pa-

rameter representation. The model encodes prior knowledge by explicitly excluding

undesired feature combinations over the same atomic features. At the bottom level
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of the hierarchy, the model constructs combinations of atomic features, generating in-

termediate embeddings that represent the legitimate feature groupings. For instance,

these groupings will not combine the verb-subject ordering feature and the POS head

feature. At higher levels of the hierarchy, the model combines these embeddings as

well as the expert-defined typological features over the same atomic features. The

hierarchical tensor is thereby able to capture the interaction between features at var-

ious subsets of atomic features. Algebraically, the hierarchical tensor is equivalent to

the sum of traditional tensors with shared components. Thus, we can use standard

online algorithms for optimizing the low-rank hierarchical tensor.

We evaluate our model on labeled dependency transfer parsing using several uni-

versal dependency treebanks. We first use the multilingual universal dependency

treebank v2.0 [77, 69]. We compare our model against the state-of-the-art multilin-

gual transfer dependency parser [97] and the direct transfer model [68]. All the parsers

utilize the same training resources but with different feature representations. When

trained on source languages alone, our model outperforms the baselines for seven out

of ten languages on both unlabeled attachment score (UAS) and labeled attachment

score (LAS). On average, it achieves 1.1% UAS improvement over [97]’s model and

4.8% UAS over the direct transfer. We also consider a semi-supervised setting where

multilingual data is augmented with 50 annotated sentences in the target language.

In this case, our model achieves improvement of 1.7% UAS over [97]’s model and 4.5%

UAS over the direct transfer. Moreover, we demonstrate that our model closes the

performance gap between training on the 50 sentences and on the full training set by

about 30% on UAS and LAS.

In addition, we evaluate our model on the multilingual universal dependency tree-

bank v1.0 [77, 69]. We use 3,000 annotated tokens in the target language as well

as all annotations from other source languages. We compare our model against a

recent neural network-based multilingual transfer parser [29]. Both our method and

this baseline parser use the same amount of annotations as supervision. Out of nine

languages, our model achieves better LAS on seven languages. On average, our model

outperforms the baseline by 2.5% on LAS. We also compare against the state-of-the-
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art supervised parser. By utilizing source languages, our model achieves a 0.9% gain

on LAS.

The remainder of this chapter is organized as follows. We first describe prior

related work on multilingual parsing and tensor-based models in Section 2.2. In

Section 2.3, we introduce background of tensor-based methods for parsing followed

by detail description of our proposed hierarchical tensor approach for multilingual

transfer parsing. The following two sections, 2.4 and 2.5 describe details on model

learning and features, respectively. Finally, we present applications and experimental

results of our model in Section 2.6 and 2.7 before concluding in Section 2.8.
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2.2 Related Work

2.2.1 Multilingual Parsing

The lack of annotated parsing resources for the vast majority of world languages has

kindled significant interest in multi-source parsing transfer [46, 30, 118, 116, 19, 86,

41]. Recent research has focused on the non-parallel setting, where transfer is driven

by cross-lingual commonalities in syntactic structure [74, 97, 5, 18, 29].

Our work is closely related to the selective-sharing approaches [75, 97]. The core

of these methods is the assumption that head-modifier attachment preferences are

universal across different languages. However, the sharing of arc direction is selec-

tive and is based on linguistic typological features. While this selective sharing idea

was first realized in the generative model [75], higher performance was achieved in a

discriminative arc-factored model [97]. These gains were obtained by a careful con-

struction of features templates that combine standard dependency parsing features

and typological features. However, manually constructing these features require a

high level of expertise and significant human effort. In contrast, we propose an au-

tomated, tensor-based approach that can effectively capture the interaction between

these features, yielding a richer representation for cross-lingual transfer. Moreover,

our model handles labeled dependency parsing while previous work only focused on

the unlabeled dependency parsing task.

2.2.2 Tensor-based Models

Our approach also relates to prior work on tensor-based modeling. Lei et al. [53] em-

ploy three-way tensors to obtain a low-dimensional input representation optimized for

parsing performance. Later, Lei et al. [54] apply the same idea and introduce a four-

way tensor-based approach to semantic role labeling (SRL). Srikumar et al. [95] learn

a multi-class label embedding tailored for document classification and POS tagging in

the tensor framework. Yu et al. [115] and Fried et al. [34] apply low-rank tensor de-

compositions to learn task-specific word and phrase embeddings. Other applications
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of tensor framework include low-rank regularization [83, 84, 90] and neural tensor

networks [93, 114]. While these methods can automatically combine atomic features

into a compact composite representation, they cannot take into account constraints

on feature combination. In contrast, our method can capture features at different

composition levels, and more generally can incorporate structural constraints based

on prior knowledge. As our experiments show, this approach delivers higher transfer

accuracy.
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2.3 Hierarchical Low-rank Scoring for Transfer Pars-

ing

2.3.1 Background

Desired Feature Combination We start by briefly reviewing the desired fea-

ture combinations that has been shown to play a crucial role in multilingual transfer

parsing [97]. Figure 2-1 shows examples of desired feature templates in three major

categories: (1) language universal features, (2) selectively shared features and (3)

typology group features. The first category aims at capturing language universal

syntactic properties such as head-modifier attachment preferences. The second cat-

egory of templates selectively transfers syntactic properties of specific types of arcs

based on typological features. For instance, we design a feature by conjoining the

WALS typological feature 87A with the standard directional features that fires only

for noun-adjective arcs (as shown in Figure 2-1). This feature will be shared only be-

tween languages that have the same noun-adjective ordering preference. Thirdly, the

typology group feature templates conjoin standard arc features with all typological

features. Thus languages with exactly the same typological properties will share the

same set of features.

Tensor Scoring for Parsing Next we briefly introduce the traditional three-way

tensor scoring function for parsing [53]. The three-way tensor characterizes each

arc ℎ → 𝑚 using the tensor-product over three feature vectors: the head vector

(𝜑ℎ ∈ R𝑛), the modifier vector (𝜑𝑚 ∈ R𝑛) and the arc vector (𝜑ℎ→𝑚 ∈ R𝑙). 𝜑ℎ

captures atomic features associated with the head, such as its POS tag and its word

form. Similarly, 𝜑𝑚 and 𝜑ℎ→𝑚 capture atomic features associated with the modifier

and the arc respectively. The tensor-product of these three vectors is a rank-1 tensor:

𝜑ℎ ⊗ 𝜑𝑚 ⊗ 𝜑ℎ→𝑚 ∈ R𝑛×𝑛×𝑙
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Language universal Selectively shared Typology group

{head POS}    {modifier POS}^
{head POS}    {label}^
{modifier POS}    {label}^
……

{head POS=NOUN}    {modifier POS=ADJ}
          {direction}    {87A}

^
^ ^

{head POS=NOUN}    {modifier POS=ADJ}
          {label=subj}    {direction}    {82A}

^
^ ^ ^

……

{head POS}    {modifier POS}
          {82A}    {87A}    ……

^
^ ^ ^

{head POS}    {modifier POS}
          {direction}    {82A}    {87A} ……

^
^ ^^

……

✦ 82A: order of subject and verb ✦ 87A: order of adjective and noun

head POS

VERB

NOUN

ADV

ADJ

……

modifier POS
direction 87A

LEFT

RIGHT

NOUN-ADJ

ADJ-NOUN

VERB

NOUN

ADV

ADJ

……

NULL NULL
VERB NOUN LEFT ADJ-NOUN^ ^ ^

Invalid Combination

NOUN ADJ RIGHT NOUN-ADJ^ ^ ^
Valid Combination

feature combination

✦ 87A: order of adjective and noun Tensor Feature Combination

Figure 2-1: Examples of feature templates desired for multilingual transfer parsing.
Language universal features capture universal syntactic properties, such as a verb
typically taking a noun or an adverb as a dependent. Selectively shared features cap-
ture the arc direction preference selectively transfer information based on typological
features. Typology group features are shared between languages with exactly the
same typological properties.

This rank-1 tensor captures all possible combinations of the atomic features in each

vector, and therefore significantly expands the feature set. The tensor score is the

inner product between a three-way parameter tensor 𝐴 ∈ R𝑛×𝑛×𝑙 and this rank-1

feature tensor:

𝑣𝑒𝑐(𝐴) · 𝑣𝑒𝑐(𝜑ℎ ⊗ 𝜑𝑚 ⊗ 𝜑ℎ→𝑚)

where 𝑣𝑒𝑐(·) denotes the vector representation of a tensor. This tensor scoring method

avoids the parameter explosion and overfitting problem by assuming a low-rank fac-

torization of the parameters 𝐴. Specifically, 𝐴 is decomposed into the sum of 𝑟 rank-1

components:

𝐴 =
𝑟∑︁

𝑖=1

𝑈(𝑖)⊗ 𝑉 (𝑖)⊗𝑊 (𝑖)

where 𝑟 is the rank of the tensor, 𝑈, 𝑉 ∈ R𝑟×𝑛 and 𝑊 ∈ R𝑟×𝑙 are parameter matrices.

𝑈(𝑖) denotes the 𝑖-th row of matrix 𝑈 and similarly for 𝑉 (𝑖) and 𝑊 (𝑖). With this

factorization, the model effectively alleviates the feature explosion problem by pro-

jecting sparse feature vectors into dense 𝑟-dimensional embeddings via 𝑈 , 𝑉 and 𝑊 .

Subsequently, the score is computed as follows:

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ→ 𝑚) =
𝑟∑︁

𝑖=1

[𝑈𝜑ℎ]𝑖[𝑉 𝜑𝑚]𝑖[𝑊𝜑ℎ→𝑚]𝑖
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Language universal Selectively shared Typology group
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✦ 87A: order of adjective and noun

Figure 2-2: An illustration of feature combination by a four-way tensor. The tensor
captures all possible concatenations of atomic features over head POS, modifier POS,
direction and typology, including combinations that should never trigger.

where [·]𝑖 denotes the 𝑖-th element of the matrix.

In multilingual transfer, however, we want to incorporate typological features

without introducing feature combinations that are never observed. For example, if

we add the noun-adjective ordering preference into 𝜑ℎ→𝑚, the tensor will represent

the concatenation of this preference with a verb-noun arc, even though this feature

should never trigger. Figure 2-2 illustrates this issue with a four-way tensor that

captures both valid and invalid combinations.

2.3.2 Hierarchical Low-rank Tensor

To address this issue, we propose the hierarchical factorization of tensor parameters.1

The key idea is to generate intermediate embeddings that capture the interaction

of the same set of atomic features as other expert-defined features (e.g. typological

features). As a motivating example, consider again the example four-way tensor in

Figure 2-2. The typological feature 87A already specifies the head and the modifier

POS as noun and adjective. By taking the tensor-product over the typological fea-

ture vector and the head POS feature vector, the tensor generates conflict values for

1In this section we focus on delexicalized transfer, and describe the lexicalization process in
Section 2.3.3.
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Notation Description

𝐻,𝜑ℎ Head/modifier POS tag
𝑀,𝜑𝑚

𝐷,𝜑𝑑 Arc length and direction
𝐿, 𝜑𝑙 Arc label

𝑇𝑢, 𝜑𝑡𝑢

Typological features that depend on head/modifier POS
but not arc label

𝑇𝑙, 𝜑𝑡𝑙 Typological features that depend on arc label
𝐻𝑐, 𝜑ℎ𝑐 POS tags of head/modifier neighboring words
𝑀𝑐, 𝜑𝑚𝑐

Table 2.3: Notations and descriptions of parameter matrices and feature vectors in
our hierarchical tensor model. 𝜑· denote the feature vectors and capital letters denote
the corresponding parameter matrices.

head POS. Therefore, we apply an additive operation rather than the tensor-product

between the two feature vectors.

We will illustrate this idea in the context of multilingual parsing. Table 2.3 summa-

rizes the notations of the feature vectors and the corresponding parameters. 𝜑ℎ ∈ R𝑛ℎ

is the feature vector for head POS with size 𝑛ℎ. 𝐻 ∈ R𝑟×𝑛ℎ is the parameter matrix

for head POS and 𝑟 is the rank of the tensor. We consider eight different atomic

feature vectors in total, ranging from head and modifier POS, arc properties, ty-

pological features and neighboring word POS. In general, we use 𝜑· to denote the

feature vectors and use capital letters to denote the corresponding parameter ma-

trices. Traditional tensor-based models characterizes each arc by directly taking the

tensor-product over all eight feature vectors. Figure 2-3 illustrates the visual struc-

ture of traditional multiway tensors which assumes no prior knowledge on legitimate

feature combinations.

Now, we explain our hierarchical tensor scoring for transfer parsing. Figure 2-4

shows the visual representation of the hierarchical structure. This design enables

the model to handle expert-defined features (e.g. typological features) over various
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Figure 2-3: Visual representation for traditional multiway tensor. The tensor char-
acterizes each arc using the tensor-product over the eight feature vectors. The arc
representation is computed as the element-wise product over the eight 𝑟-dimensional
feature embeddings pertaining to head POS (𝐻𝜑ℎ), modifier POS (𝑀𝜑𝑚) etc. The
final arc score is computed as the sum of elements in the arc representation.
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Figure 2-4: Visual representation for hierarchical tensor, represented as a tree struc-
ture. The tensor first captures the low-level interaction (𝐻𝜑ℎ, 𝑀𝜑𝑚 and 𝐷𝜑𝑑) by
an element-wise product, and then combines the intermediate embedding with other
components higher in the hierarchy, e.g. 𝑒2 and 𝐿𝜑𝑙. The equations show that we
composite two representations by an element-wise sum.
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subsets of the atomic features. Specifically, for each arc ℎ→ 𝑚 with label 𝑙, we first

compute the intermediate feature embedding 𝑒1 that captures the interaction between

the head 𝜑ℎ, the modifier 𝜑𝑚 and the arc direction and length 𝜑𝑑, by an element-wise

product.

[𝑒1]𝑖 = [𝐻𝜑ℎ]𝑖[𝑀𝜑𝑚]𝑖[𝐷𝜑𝑑]𝑖 (2.1)

where [·]𝑖 denotes the 𝑖-th value of the feature embedding, and 𝐻, 𝑀 and 𝐷 are the

parameter matrices as in Table 2.3. The embedding 𝑒1 captures the unconstrained

interaction over the head, the modifier and the arc. Note that 𝜑𝑡𝑢 includes expert-

defined typological features that rely on the specific values of the head POS, the

modifier POS and the arc direction, such as the example noun-adjective feature in

Table 2.2. Therefore, the embedding 𝑇𝑢𝜑𝑡𝑢 captures an expert-defined interaction

over the head, the modifier and the arc. Thus 𝑒1 and 𝑇𝑢𝜑𝑡𝑢 provide two different

representations of the same set of atomic features (e.g. the head) and our prior

knowledge motivates us to exclude the interaction between them. Otherwise, the

model will capture invalid conjoining between typological features (e.g. verb-subject)

and Thus, we combine 𝑒1 and 𝑇𝑢𝜑𝑡𝑢 as 𝑒2 using an element-wise sum

[𝑒2]𝑖 = [𝑒1]𝑖 + [𝑇𝑢𝜑𝑡𝑢 ]𝑖 (2.2)

and thereby avoid such combinations. As Figure 2-4 shows, 𝑒2 in turn is used to

capture the higher level interaction with arc label features 𝜑𝑙,

[𝑒3]𝑖 = [𝐿𝜑𝑙]𝑖[𝑒2]𝑖 (2.3)

Now 𝑒3 captures the interaction between head, modifier, arc direction, length and

label. It is over the same set of atomic features as the typological features that depend

on arc labels 𝜑𝑡𝑙 , such as the example verb-subject ordering feature in Table 2.2.

Therefore, we sum over these embeddings as

[𝑒4]𝑖 = [𝑒3]𝑖 + [𝑇𝑙𝜑𝑡𝑙 ]𝑖 (2.4)
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Finally, we capture the interaction between 𝑒4 and context feature embeddings

𝐻𝑐𝜑ℎ𝑐 and 𝑀𝑐𝜑𝑚𝑐 and compute the tensor score as

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) =

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ][𝑒4]𝑖 (2.5)

By combining Equation 2.1 to 2.5, we observe that our hierarchical tensor score

decomposes into three multiway tensor scoring functions.

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) =

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖{︁
[𝑇𝑙𝜑𝑡𝑙 ]𝑖 + [𝐿𝜑𝑙]𝑖

(︁
[𝑇𝑢𝜑𝑡𝑢 ]𝑖 + [𝐻𝜑ℎ]𝑖[𝑀𝜑𝑚]𝑖[𝐷𝜑𝑑]𝑖

)︁}︁
=

𝑟∑︁
𝑖=1

{︁
[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝑇𝑙𝜑𝑡𝑙 ]𝑖 + [𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝑇𝑢𝜑𝑡𝑢 ]𝑖

+ [𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝐻𝜑ℎ]𝑖[𝑀𝜑𝑚]𝑖[𝐷𝜑𝑑]𝑖

}︁
(2.6)

This decomposition provides another view of our tensor model. That is, our hier-

archical tensor is algebraically equivalent to the sum of three multiway tensors, where

𝐻𝑐, 𝑀𝑐 and 𝐿 are shared.2 From this perspective, we can see that our tensor model

effectively captures the following three sets of combinations over atomic features, as

shown in Table 2.4. The last set of features 𝑓3 captures the interaction across stan-

dard atomic features. The other two sets of features 𝑓1 and 𝑓2 focus on combining

atomic typological features with atomic label and context features. Consequently, we

explicitly assign zero weights for invalid assignments, by excluding the combination

of 𝜑𝑡𝑢 with 𝜑ℎ and 𝜑𝑚.

2.3.3 Lexicalization Components

In order to encode lexical information in our tensor-based model, we add two addi-

tional components, 𝐻𝑤𝜑ℎ𝑤 and 𝑀𝑤𝜑𝑚𝑤 , for head and modifier lexicalization respec-

tively. We compute the final score as the interaction between the delexicalized feature

2We could also associate each multiway tensor with a different weight. In our work, we keep
them weighted equally.
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∙ 𝑓1: 𝜑ℎ𝑐 ⊗ 𝜑𝑚𝑐 ⊗ 𝜑𝑡𝑙

∙ 𝑓2: 𝜑ℎ𝑐 ⊗ 𝜑𝑚𝑐 ⊗ 𝜑𝑙 ⊗ 𝜑𝑡𝑢

∙ 𝑓3: 𝜑ℎ𝑐 ⊗ 𝜑𝑚𝑐 ⊗ 𝜑𝑙 ⊗ 𝜑ℎ ⊗ 𝜑𝑚 ⊗ 𝜑𝑑

Table 2.4: Three feature groups captured by our hierarchical tensor model. Descrip-
tions of each feature vector 𝜑· are summarized in Table 2.3.

embedding in Equation 2.5 and the lexical components. Specifically:

[𝑒5]𝑖 = [𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝑒4]𝑖

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) =

𝑟∑︁
𝑖=1

[𝐻𝑤𝜑ℎ𝑤 ]𝑖[𝑀𝑤𝜑𝑚𝑤 ]𝑖[𝑒5]𝑖 (2.7)

where 𝑒5 is the embedding that represents the delexicalized transfer results. We

describe the features in 𝜑ℎ𝑤 and 𝜑𝑚𝑤 in Section 2.5.

2.3.4 Combined Scoring

Similar to previous work on low-rank tensor scoring models [53, 54], we combine the

traditional scoring and the low-rank tensor scoring. More formally, for a sentence x

and a dependency tree y, our final scoring function has the form

𝑆(x,y) = 𝛾
∑︁

ℎ
𝑙−→𝑚∈y

w · 𝜑(ℎ
𝑙−→ 𝑚) + (1− 𝛾)

∑︁
ℎ

𝑙−→𝑚∈y

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) (2.8)

where 𝜑(ℎ
𝑙−→ 𝑚) is the traditional features for arc ℎ → 𝑚 with label 𝑙 and w is

the corresponding parameter vector. 𝛾 ∈ [0, 1] is the balancing hyper-parameter

and we tune the value on the development set. The parameters in our model are

𝜃 = (w, 𝐻,𝑀,𝐷,𝐿, 𝑇𝑢, 𝑇𝑙, 𝐻𝑐,𝑀𝑐), and our goal is to optimize all parameters given

the training set.
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2.4 Learning

In this section, we describe our learning method.3 Following standard practice, we op-

timize the parameters 𝜃 = (w, 𝐻,𝑀,𝐷,𝐿, 𝑇𝑢, 𝑇𝑙, 𝐻𝑐,𝑀𝑐) in a maximum soft-margin

framework, using online passive-aggressive (PA) updates [20].

For tensor parameter update, we employ the joint update method originally used

by Lei et al. [54] in the context of four-way tensors. While our tensor has a very high

order (8 components for the delexicalized parser and 10 for the lexicalized parser) and

is hierarchical, the gradient computation is nevertheless similar to that of traditional

tensors. As described in Section 2.3.2, we can view our hierarchical tensor as the

combination of three multiway tensors with parameter sharing. Therefore, we can

compute the gradient of each multiway tensor and take the sum accordingly (see

Appendix A.1 for more details). For example, the gradient of the label component is

𝜕𝐿 =
∑︁

ℎ
𝑙−→𝑚∈ŷ

(︁
(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ [(𝑇𝑢𝜑𝑡𝑢) + (𝐻𝜑ℎ)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]

)︁
⊗ 𝜑𝑙

−
∑︁

ℎ
𝑙−→𝑚∈ỹ

(︁
(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ [(𝑇𝑢𝜑𝑡𝑢) + (𝐻𝜑ℎ)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]

)︁
⊗ 𝜑𝑙

(2.9)

where ⊙ is the element-wise product and + denotes the element-wise addition. ŷ and

ỹ are the gold tree and the maximum violated tree respectively. For each sentence x,

we find ỹ via cost-augmented decoding.

Tensor Initialization Given the high tensor order, initialization has a significant

impact on the learning quality. We extend the previous power method for high-order

tensor initialization [54] to the hierarchical structure using the algebraic view as in

computing the gradient.

Figure 2-5 shows the framework of the tensor initialization algorithm. First, note

that the traditional manually constructed features 𝜑(ℎ
𝑙−→ 𝑚) is an expressive and

3Our description focuses on delexicalized transfer, and we can easily extend the method to the
lexicalized case.
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Input: sparse parameter vector w from the pre-trained model
tensor rank 𝑟

Output: initial tensor parameter matrices 𝐻,𝑀,𝐷,𝐿, 𝑇𝑢, 𝑇𝑙, 𝐻𝑐,𝑀𝑐

1: create sparse tensors 𝑇1, 𝑇2, 𝑇3 for feature groups 𝑓1, 𝑓2, 𝑓3 (see Table 2.4) by
putting each weight in w into its corresponding entry in tensors.

2: for 𝑖 := 1 . . . 𝑟 do
3: Randomly initialize unit vectors ℎ,𝑚, 𝑑, 𝑙, 𝑡𝑢, 𝑡𝑙, ℎ𝑐, ℎ𝑚

4: 𝑇 ′
1 = 𝑇1 −

∑︀𝑖−1
𝑗=1𝐻𝑐(𝑗)⊗𝑀𝑐(𝑗)⊗ 𝑇𝑙(𝑗)

5: 𝑇 ′
2 = 𝑇2 −

∑︀𝑖−1
𝑗=1𝐻𝑐(𝑗)⊗𝑀𝑐(𝑗)⊗ 𝐿(𝑗)⊗ 𝑇𝑢(𝑗)

6: 𝑇 ′
3 = 𝑇3 −

∑︀𝑖−1
𝑗=1𝐻𝑐(𝑗)⊗𝑀𝑐(𝑗)⊗ 𝐿(𝑗)⊗𝐻(𝑗)⊗𝑀(𝑗)⊗𝐷(𝑗)

7: repeat
8: ℎ = ⟨𝑇 ′

3, ℎ𝑐,𝑚𝑐, 𝑙,−,𝑚, 𝑑⟩ and normalize it
9: 𝑚 = ⟨𝑇 ′

3, ℎ𝑐,𝑚𝑐, 𝑙, ℎ,−, 𝑑⟩ and normalize it
10: 𝑑 = ⟨𝑇 ′

3, ℎ𝑐,𝑚𝑐, 𝑙, ℎ,𝑚,−⟩ and normalize it
11: 𝑡𝑢 = ⟨𝑇 ′

2, ℎ𝑐,𝑚𝑐, 𝑙,−⟩ and normalize it
12: 𝑡𝑙 = ⟨𝑇 ′

1, ℎ𝑐,𝑚𝑐,−⟩ and normalize it
13: 𝑙 = ⟨𝑇 ′

3, ℎ𝑐,𝑚𝑐,−, ℎ,𝑚, 𝑑⟩+ ⟨𝑇 ′
2, ℎ𝑐,𝑚𝑐,−, 𝑡𝑢⟩ and normalize it

14: ℎ𝑐 = ⟨𝑇 ′
3,−,𝑚𝑐, 𝑙, ℎ,𝑚, 𝑑⟩+ ⟨𝑇 ′

2,−,𝑚𝑐, 𝑙, 𝑡𝑢⟩+ ⟨𝑇 ′
1,−,𝑚𝑐, 𝑡𝑙⟩ and normalize it

15: 𝑚𝑐 = ⟨𝑇 ′
3, ℎ𝑐,−, 𝑙, ℎ,𝑚, 𝑑⟩+ ⟨𝑇 ′

2, ℎ𝑐,−, 𝑙, 𝑡𝑢⟩+ ⟨𝑇 ′
1, ℎ𝑐,−, 𝑡𝑙⟩

16: until ||𝑚𝑐||2 converges
17: 𝐻(𝑖) = ℎ, 𝑀(𝑖) = 𝑚, 𝐷(𝑖) = 𝑑, 𝐿(𝑖) = 𝑙

𝑇𝑢(𝑖) = 𝑡𝑢, 𝑇𝑙(𝑖) = 𝑡𝑙, 𝐻𝑐(𝑖) = ℎ𝑐,𝑀𝑐(𝑖) = 𝑚𝑐

18: end for
19: return 𝐻,𝑀,𝐷,𝐿, 𝑇𝑢, 𝑇𝑙, 𝐻𝑐,𝑀𝑐

Figure 2-5: The iterative power method for hierarchical tensor initialization. This
method finds a low-rank approximation to the sparse tensors created from the param-
eter vector w of a pre-trained model on manual constructed features. 𝐻(𝑖) denotes
the 𝑖-th row of the parameter matrix 𝐻. The operator 𝑡𝑙 = ⟨𝑇 ′

1, ℎ𝑐,𝑚𝑐,−⟩ returns a
vector in which the 𝑘-th element is computed as

∑︀
𝑖𝑗 𝑇

′
1(𝑖, 𝑗, 𝑘)ℎ𝑐(𝑖)𝑚𝑐(𝑗).

informative subset of the huge feature expansion covered in the tensor. We pre-train

our model using only the manual features and then use the corresponding feature

parameter vector w to initialize the tensor. Specifically, we create sparse tensors

𝑇1, 𝑇2, 𝑇3 for feature groups 𝑓1, 𝑓2, 𝑓3 (as shown in Table 2.4) from w (line 1 in

Figure 2-5). We then find a low-rank approximation of the sparse tensors using the

power method. Briefly, the power method incrementally computes the most important
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rank-1 component for 𝐻(𝑖), 𝑀(𝑖) etc, for 𝑖 = 1 . . . 𝑟. In each iteration, the algorithm

updates each component by taking the multiplication between the tensor 𝑇 and the

rest of the components (line 8-15). For instance, when we update the label component

𝑙, we do the multiplication for different multiway tensors and then take the sum.

𝑙 = ⟨𝑇 ′
3, ℎ𝑐,𝑚𝑐,−, ℎ,𝑚, 𝑑⟩+ ⟨𝑇 ′

2, ℎ𝑐,𝑚𝑐,−, 𝑡𝑢⟩

where the operator ⟨𝑇 ′
2, ℎ𝑐,𝑚𝑐,−, 𝑡𝑢⟩ returns a vector in which the 𝑘-th element is

computed as
∑︀

𝑖𝑗𝑙 𝑇
′
2(𝑖, 𝑗, 𝑘, 𝑙)ℎ𝑐(𝑖)𝑚𝑐(𝑗)𝑡𝑢(𝑙). The algorithm updates other compo-

nents in a similar fashion until convergence.
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2.5 Features

Linear Scoring Features Our traditional linear scoring features in 𝜑(ℎ
𝑙−→ 𝑚)

are mainly drawn from previous work [97]. Table 2.5 lists the typological features

from “The World Atlas of Language Structure (WALS)” [25] used to build the fea-

ture templates in our work. We use 82A and 83A for verb-subject and verb-object

order respectively because we can distinguish between these two relations based on

dependency labels. Table 2.6 summarizes the typological feature templates we use.

In addition, we expand features with dependency labels to enable labeled dependency

parsing.

Tensor Scoring Features For our tensor model, feature vectors listed in Table 2.3

capture the five types of atomic features as follows:

(a) 𝜑ℎ, 𝜑𝑚: POS tags of the head or the modifier.

(b) 𝜑ℎ𝑐 , 𝜑𝑚𝑐 : POS tags of the left/right neighboring words.

(c) 𝜑𝑙: dependency labels.

(d) 𝜑𝑑: dependency length conjoined with direction.

(e) 𝜑𝑡𝑢 , 𝜑𝑡𝑙 : selectively shared typological features, as described in Table 2.6.

We further conjoin atomic features (b) and (d) with the family and the typology class

of the language, because the arc direction and the word order distribution depends on

the typological property of languages [97]. We also add a bias term into each feature

vector.

Partial Lexicalization We utilize multilingual word embeddings to incorporate

partial lexical information in our model. We use the CCA method [33] to generate

multilingual word embeddings. Specifically, we project word vectors in each non-

English language to the English embedding space. To reduce the noise from the

automatic projection process, we only incorporate lexical information for the top-100
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ID Feature Description Possible Values

82A Order of Subject and Verb SV, VS, No dominant order
83A Order of Object and Verb VO, OV, No dominant order
85A Order of Adposition and Noun Prepositions, Postpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-adjective

Table 2.5: Typological features from WALS [25] used to build the feature templates
in our work, inspired by Naseem et al. [75]. Unlike previous work [75, 97], we use 82A
and 83A instead of 81A (order of subject, object and verb) because we can distinguish
between subject and object relations based on dependency labels.

Vector Feature Templates

𝜑𝑡𝑙

𝑑𝑖𝑟·82A·𝛿(ℎ𝑝=VERB∧𝑚𝑝=NOUN∧subj∈ 𝑙)
𝑑𝑖𝑟·82A·𝛿(ℎ𝑝=VERB∧𝑚𝑝=PRON∧subj∈ 𝑙)
𝑑𝑖𝑟·83A·𝛿(ℎ𝑝=VERB∧𝑚𝑝=NOUN∧obj∈ 𝑙)
𝑑𝑖𝑟·83A·𝛿(ℎ𝑝=VERB∧𝑚𝑝=PRON∧obj∈ 𝑙)

𝜑𝑡𝑢

𝑑𝑖𝑟·85A·𝛿(ℎ𝑝=ADP∧𝑚𝑝=NOUN)
𝑑𝑖𝑟·85A·𝛿(ℎ𝑝=ADP∧𝑚𝑝=PRON)
𝑑𝑖𝑟·86A·𝛿(ℎ𝑝=NOUN∧𝑚𝑝=NOUN)
𝑑𝑖𝑟·87A·𝛿(ℎ𝑝=NOUN∧𝑚𝑝=ADJ)

Table 2.6: Typological feature templates used in our work. 𝜑𝑡𝑙 and 𝜑𝑡𝑢 are typological
feature vectors as described in Table 2.3. ℎ𝑝/𝑚𝑝 are POS tags of the head/modifier.
𝑑𝑖𝑟 ∈ {LEFT, RIGHT} denotes the arc direction. 82A-87A denote the WALS typological
feature value. 𝛿(·) is the indicator function. subj ∈ 𝑙 denotes that the arc label 𝑙
indicates a subject relation, and similarly for obj ∈ 𝑙.
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most frequent words in the following closed classes: pronoun, determiner, adposition,

conjunction, particle and punctuation mark. Therefore, we call this feature extension

partial lexicalization.4

We follow previous work [53] for adding embedding features. For the linear scoring

model, we simply append the head and the modifier word embeddings after the feature

vector. For the tensor-based model, we add each entry of the word embedding as a

feature value into 𝜑ℎ𝑤 and 𝜑𝑚𝑤 . In addition, we add indicator features for the English

translation of words because this improves performance in preliminary experiments.

For example, for the German word 𝑢𝑛𝑑, we add the word 𝑎𝑛𝑑 as a feature.

4In our preliminary experiments, we observe that our lexicalized model usually outperforms the
unlexicalized counterparts by about 2% (see Section 2.7).
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2.6 Experimental Setup

2.6.1 Dataset

Universal Dependency Treebank v2.0 We evaluate our model on the newly re-

leased multilingual universal dependency (UD) treebank v2.0 [69] that consists of ten

languages: English (EN), French (FR), German (DE), Indonesian (ID), Italian (IT),

Japanese (JA), Korean (KO), Brazilian-Portuguese (PT), Spanish (ES) and Swedish

(SV). This multilingual treebank is annotated with a universal POS tagset and a

universal dependency label set. Therefore, this dataset is an excellent benchmark

for cross-lingual transfer evaluation. For POS tags, the gold universal annotation

used the coarse tagset [82] that consists of twelve tags: noun, verb, adjective, adverb,

pronoun, determiner, adposition, numeral, conjunction, particle, punctuation mark,

and a catch-all tag X. For dependency labels, the universal annotation developed the

Stanford dependencies [23] into a rich set of 40 labels. This universal annotation

enables labeled dependency parsing in cross-lingual transfer.

Universal Dependency Treebank v1.0 We also test on the prior version (v1.0)

of the UD treebank in order to make a direct comparison against previous neural

network-based multilingual transfer parser [29]. This treebank version consists of

nine languages: Czech (CS), Finnish (FI), French (FR), German (DE), Hungarian

(HU), Irish (GA), Italian (IT), Spanish (ES), Swedish (SV). It is annotated with the

same universal POS tagset and the universal dependency label set as the new version

(v2.0) of the UD treebank described above.

2.6.2 Evaluation Scenarios

We first consider the unsupervised transfer scenario, in which we assume no target

language annotations are available. Following the standard setup, for each target

language evaluated, we train our model on the concatenation of the training data in

all other source languages.
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In addition, we consider the semi-supervised transfer scenario. On the UD tree-

bank v2.0, we assume 50 sentences in the target language are available with annota-

tion. However, we observe that random sentence selection of the supervised sample

results in a big performance variance. Instead, we select sentences that contain pat-

terns that are absent or rare in source language treebanks. To this end, each time we

greedily select the sentence that minimizes the KL divergence between the trigram

distribution of the target language and the trigram distribution of the training data

after adding this sentence. The training data includes both the target and the source

languages. The trigrams are based on universal POS tags. Note that our method

does not require any dependency annotations. To incorporate the new supervision,

we simply add the new sentences into the original training set, weighing their impact

by a factor of ten. On the UD treebank v1.0, we follow the setting in previous work

[28] and use 3,000 token annotations in the target language.

2.6.3 Baselines

We compare against different variants of our model.

∙ Direct: a direct transfer baseline [68] that uses only delexicalized features in

the MSTParser [67]. No typological feature is used in this model.

∙ NT-Select: our model without the tensor component. This baseline corre-

sponds to the prior feature-based transfer method [97] with extensions to labeled

parsing, lexicalization and semi-supervised parsing.5

∙ Multiway: tensor-based model where typological features are added as an

additional component and parameters are factorized in the multiway structure

similarly as in Figure 2-3.

∙ Sup50: our model trained only on the 50 sentences in the target language in

the semi-supervised scenario.

5We use this as a re-implementation of Täckström et al. [97]’s model because their code is not
publicly available.
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In all the experiments we incorporate partial lexicalization for all variants of our

model and we focus on labeled dependency parsing.

2.6.4 Supervised Upper Bound

As a performance upper bound, we train the RBGParser [53], the state-of-the-art

tensor-based parser, on the full target language training set. We train the first-order

model6 with default parameter settings, using the current version of the code.7

2.6.5 Evaluation Measures

Following standard practices, we report unlabeled attachment score (UAS) and la-

beled attachment score (LAS), excluding punctuation. For all experiments, we report

results on the test set.

2.6.6 Experimental Details

For all experiments, we use the arc-factored model and use Eisner’s algorithm [32] to

infer the projective Viterbi parse. We train our model and the baselines for 10 epochs.

We set a strong regularization 𝐶 = 0.001 during learning because cross-lingual trans-

fer contains noise and the models can easily overfit. Other hyper-parameters are set

as 𝛾 = 0.3 and 𝑟 = 200 (rank of the tensor). For partial lexicalization, we set the

embedding dimension to 50.

6All multilingual transfer models in our work and in Täckström et al. [97]’s work are first-order.
Therefore, we train first-order RBGParser for consistency.

7https://github.com/taolei87/RBGParser
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2.7 Results

In this section we present the experimental results on the universal dependency (UD)

treebank v2.0 and v1.0, respectively. In addition, we provide analysis on our model

properties.

2.7.1 Universal Dependency Treebank v2.0

Table 2.7 and 2.9 summarize the results for the unsupervised and the semi-supervised

scenarios on the UD treebank v2.0. Averaged across languages, our model outperforms

all the baselines in both cases. Moreover, it achieves best UAS and LAS on 7 out of

10 languages. The difference is more pronounced in the semi-supervised case. Below,

we summarize our findings when comparing the model with the baselines.

Impact of Hierarchical Tensors We first analyze the impact of using a hierarchi-

cal tensor by comparing against the Multiway baseline that implements traditional

tensor model. As Table 2.8 shows, this model learns non-zero weights even for invalid

feature combinations.

This disregard to known constraints impacts the resulting performance. In the

unsupervised scenario, our hierarchical tensor achieves an average improvement of

0.5% on UAS and 1.3% on LAS. Moreover, our model obtains better UAS on all

languages and better LAS on 9 out of 10 languages. This observation shows that

the multilingual transfer consistently benefits more from a hierarchical tensor struc-

ture. In addition, we observe a similar gain over this baseline in the semi-supervised

scenario.

Impact of Tensor Models To evaluate the effectiveness of tensor modeling in

multilingual transfer, we compare our model against the NT-Select baseline. In the

unsupervised scenario, our tensor model yields a 1.1% gain on UAS and a 1.5% on

LAS. In the semi-supervised scenario, the improvement is more pronounced, reaching

1.7% on UAS and 1.9% on LAS. The relative error reduction almost doubles, e.g.

7.1% vs. 3.8% on UAS.
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Language Direct NT-Select Multiway Ours
UAS LAS UAS LAS UAS LAS UAS LAS

EN 65.7 56.7 67.6 55.3 69.8 56.3 70.5 59.8
FR 77.9 67.4 79.1 68.9 78.4 68.3 78.9 68.8
DE 62.1 53.1 62.1 53.3 62.1 54.0 62.5 54.1
ID 46.8 39.3 57.4 37.1 59.5 38.9 61.0 43.5
IT 77.9 67.9 79.4 69.4 79.0 69.0 79.3 69.4
JA 57.8 16.8 69.2 20.8 69.9 20.4 71.7 21.3
KO 59.9 34.3 70.4 29.1 70.5 28.1 70.7 30.5
PT 77.7 71.0 78.5 72.0 78.3 71.9 78.6 72.5
ES 76.8 65.9 77.2 67.7 77.6 68.0 78.0 68.3
SV 75.9 64.5 74.5 62.2 74.8 62.9 75.0 62.5

AVG 67.8 53.7 71.5 53.6 72.0 53.8 72.6 55.1

Table 2.7: Unsupervised on UD v2.0: Unlabeled attachment scores (UAS) and
Labeled attachment scores (LAS) of different variants of our model with partial lex-
icalization in unsupervised scenario. “Direct” and “Multiway” indicate the direct
transfer and the multiway variants of our model. “NT-Select” indicates our model
without tensor component, corresponding to a re-implementation of previous trans-
fer model [97] with extensions to partial lexicalization and labeled parsing. The last
column shows the results by our hierarchical tensor-based model. Boldface numbers
indicate the best UAS or LAS.

Feature Weight
87A∧ℎ𝑝=NOUN∧𝑚𝑝=ADJ 2.24× 10−3

87A∧ℎ𝑝=VERB∧𝑚𝑝=NOUN 8.88× 10−4

87A∧ℎ𝑝=VERB∧𝑚𝑝=PRON 1.21× 10−4

87A∧ℎ𝑝=NOUN∧𝑚𝑝=NOUN 9.48× 10−4

87A∧ℎ𝑝=ADP∧𝑚𝑝=NOUN 3.87× 10−4

Table 2.8: Examples of weights for feature combinations between the typological
feature 87A=Adj-Noun and different types of arcs. The first row shows the weight
for the valid feature (conjoined with noun→adjective arcs) and the rest show weights
for the invalid features (conjoined with other types of arcs).
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Language Direct NT-Select Multiway Ours
UAS LAS UAS LAS UAS LAS UAS LAS

EN 76.8 70.3 81.0 75.0 81.5 75.9 82.5 77.2
FR 78.8 70.2 79.4 71.0 79.0 71.1 79.6 71.8
DE 68.4 59.8 71.3 62.1 72.1 63.2 74.2 65.6
ID 63.7 56.1 76.9 68.2 77.8 69.3 79.1 70.4
IT 78.9 70.3 80.2 72.2 80.8 72.6 80.9 72.6
JA 68.2 42.1 73.0 58.8 75.6 60.9 76.4 61.3
KO 65.3 45.2 66.5 50.2 67.8 52.8 70.2 54.2
PT 78.6 72.9 78.7 73.1 79.3 73.9 79.3 73.5
ES 77.0 68.5 77.0 69.0 77.6 69.5 78.4 70.5
SV 77.7 67.2 77.6 66.8 77.8 67.5 78.3 67.9

AVG 73.4 62.3 76.2 66.6 76.9 67.7 77.9 68.5

Table 2.9: Semi-supervised on UD v2.0: UAS and LAS of different variants of
our model when 50 annotated sentences in the target language are available. Columns
have the same meaning as in Table 2.7. Boldface indicate the best UAS or LAS.

While both our model and NT-Select outperform Direct baseline by a large margin

on UAS, we observe that NT-Select achieves a slightly worse LAS than Direct. By

adding a tensor component, our model outperforms both baselines on LAS, demon-

strating that tensor scoring function is able to capture better labeled features for

transfer comparing to Direct and NT-Select baselines.

Transfer Performance in the Context of Supervised Results To assess the

contribution of multilingual transfer, we compare against the Sup50 results in which

we train our model only on 50 target language sentences. As Table 2.10 shows, our

model improves UAS by 2.3% and LAS by 2.7%. We also provide a performance upper

bound by training RBGParser on the full training set.8 When trained with partial

lexical information as in our model, RBGParser gives 82.9% on UAS and 74.5% on

LAS with partial lexical information. By utilizing source language annotations, our

model closes the performance gap between training on the 50 sentences and on the

full training set by about 30% on both UAS and LAS. We further compare to the
8On average, each language has more than 10,000 training sentences.
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Language
Semi-supervised with 50 Sentences Supervised (RBGParser)

Sup50 Ours Partial Lex. Full Lex.
UAS LAS UAS LAS UAS LAS UAS LAS

EN 79.6 74.2 82.5 77.2 88.7 84.5 92.3 90.3
FR 76.9 66.8 79.6 71.8 83.3 76.5 83.3 76.5
DE 71.0 62.4 74.2 65.6 82.0 72.8 84.5 78.2
ID 78.2 68.9 79.1 70.4 85.0 77.1 85.8 79.8
IT 77.1 69.3 80.9 72.6 85.5 79.8 87.9 84.7
JA 76.6 61.0 76.4 61.3 79.0 64.0 82.1 70.3
KO 70.1 54.7 70.2 54.2 74.0 59.1 90.9 86.1
PT 76.0 70.0 79.3 73.5 85.2 80.8 88.5 86.5
ES 75.2 66.5 78.4 70.5 82.0 75.0 85.8 81.6
SV 74.9 64.7 78.3 67.9 84.4 75.4 87.3 82.3

AVG 75.6 65.8 77.9 68.5 82.9 74.5 87.3 83.5

Table 2.10: Semi-supervised and Supervised on UD v2.0: The same semi-
supervised setting as in Table 2.9. “Sup50” column shows the results of our model
when only supervised data in the target language is available. We also include in the
last four columns the supervised training results with partial or full lexicalization as
the performance upper bound.

performance upper bound with full lexical information (87.3% UAS and 83.5% LAS).

In this case, our model still closes the performance gap by 21% on UAS and 15% on

LAS.

2.7.2 Universal Dependency Treebank v1.0

In this subsection, we present the experimental results on the UD treebank v1.0. We

focus on the comparison against previous neural network-based multilingual transfer

parser [28]. This neural network approach achieves language transfer via parameter

sharing and it uses no language typological information for selective transfer. Our

model and this baseline are trained on the same amount of annotated data: 3,000

tokens in the target language and all trees in the source languages. Table 2.11 sum-

marizes the labeled attachment scores (LAS) for all the methods. Our model achieves
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Language Semi-supervised with 3,000 Tokens Supervised
(RBGParser)Direct Duong et al. RBGParser Ours

CS 56.2 55.7 59.3 60.9 69.9
DE 59.9 61.8 62.4 65.5 75.0
ES 68.1 70.5 70.4 70.7 79.5
FI 43.3 51.5 48.6 47.8 61.6
FR 65.5 67.2 69.4 68.1 77.8
GA 58.6 61.1 64.5 65.5 71.0
HU 57.9 51.0 59.0 61.0 65.7
IT 70.6 71.3 73.8 73.7 84.8
SV 56.2 62.5 60.0 62.1 73.1

AVG 59.6 61.4 63.0 63.9 73.2

Table 2.11: Semi-supervised and Supervised on UD v1.0: LAS of different
approaches when trained on 3,000 annotated tokens in the target language and all
annotations in other source languages. “Direct” is the direct transfer variant of our
model and “Duong et al.” is the neural network-based transfer model described in
[28]. We also include the results of our RBGParser training on the same 3,000 tokens
(column 4) or the full training set (column 6). Boldface numbers indicate the best
LAS.

the best LAS on six out of nine languages. On average, our model outperforms the

neural network baseline [28] by 2.5% (63.9% vs. 61.4). We also train our supervised

parser RBGParser on the same 3,000 tokens in the target language. This parser out-

performs the neural network baseline by 1.6% even without language transfer. Our

model utilizes annotations in source languages in a better way and and further im-

proves the LAS by 0.9% (63.9% vs. 63.0%). We also train the RBGParser on the full

training set as a performance upper bound. The last column in Table 2.11 shows the

result. Our model closes the performance gap between training on the 3,000 tokens

and on the full training set by 9% on LAS.

2.7.3 Model Analysis

Impact of Lexicalization We first demonstrate that adding the lexicalization com-

ponent consistently improve parsing performance. Table 2-6 shows the averaged LAS
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Figure 2-6: Comparisons of averaged LAS between unlexicalized and lexicalized vari-
ants of our model.

in the unsupervised and the semi-supervised settings on the universal dependency

treebank v2.0 and v1.0. Across all three scenarios, lexicalized models improve over

the unlexicalized counterparts by about 2% on LAS.

Time Efficiency of Hierarchical Tensors We observe that our hierarchical struc-

ture retains the time efficiency of tensor models. On the English test set, the decoding

speed of our hierarchical tensor is close to the multiway counterpart (58.6 vs. 61.2

sentences per second), and is lower than the three-way tensor by a factor of 3.1 (184.4

sentences per second). The time complexity of tensors is linear to the number of

low-rank components, and is independent of the factorization structure.
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2.8 Conclusions

In this chapter, we introduce a hierarchical tensor based-model which enables us to

constrain learned representation based on desired feature interactions. We demon-

strate that our model outperforms state-of-the-art multilingual transfer parsers and

traditional tensors. These observations, taken together with the fact that hierarchical

tensors are efficiently learnable, suggest that the approach can be useful in a broader

range of parsing applications; exploring the options is an appealing line of future

research.

One limitation of this work is that the model heavily relies on non-lexical features

and exclude most lexical information. While we demonstrate that adding partial lexi-

calization components improves over the unlexicalized counterpart, the practical gains

remain limited. In supervised parsing, however, incorporating rich lexical features

commonly improve parsing performance by a large margin. Nevertheless, achieving

accurate lexical-level transfer is non-trivial and typically requires large amount of

parallel resources. In the following chapter of this thesis, we explore algorithms that

can effectively learn lexical-level transfer with only a few translation pairs.
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Chapter 3

Multilingual POS Tagging via Coarse

Mapping between Embeddings

In this chapter, we explore the application of multilingual learning to part-of-speech

(POS) tagging for low-resource languages. We demonstrate that effective POS trans-

fer is possible with just ten word translation pairs. Experimental results show that

our approach yields a significant improvement over the monolingual prototype-driven

method [42] when using a comparable amount of supervision.

3.1 Introduction

After two decades of study, the best performing multilingual methods can in some

cases approach their supervised monolingual analogues. To reach this level of perfor-

mance, however, existing methods crucially depends on the availability of large-scale

parallel resources such as parallel translations or bilingual dictionaries. There is not

much work on exploring low-resource scenarios where such extensive parallel resources

are not available. Indeed, one focus of this chapter is trying to understand how little

parallel data is necessary for effective multilingual transfer.

In this chapter, we show that ten translation word pairs are sufficient for effec-

tive transfer of multilingual part-of-speech (POS) tagging. To achieve this we make

use of and integrate two sources of statistical signal. First, we enable transfer of
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information from the source to target languages by establishing a coarse mapping be-

tween word embeddings in two languages on the basis of the few available translation

pairs. The mapping is useful because of significant structural similarity of embedding

spaces across languages. Second, we leverage the potential of unsupervised mono-

lingual models to capture language-specific syntactic properties. The two sources of

signals are largely complementary. Embeddings provide a coarse alignment between

languages while unsupervised methods fine tune the correspondences in service of the

task at hand. While unsupervised methods are fragile and challenging to estimate in

general, they can be helpful if initialized and regularized properly, which is our focus.

In order to transfer annotations, we align monolingual embeddings between lan-

guages. Clearly, ten translation pairs do not provide sufficient supervision for a full

fine-grained alignment because of varied differences across languages. Therefore, we

constrain the alignment to be linear and isometric (orthonormal) so as to preserve

lengths and angles between word vectors in the embedding space. The main advantage

is that this preserves the cosine similarity between vectors, which represents syntac-

tic/semantic similarity between words [70, 80, 44]. The resulting mapping is coarse

in the sense that we focus on roughly aligning clusters of words between languages,

rather than finding a fine-grained alignment between individual word translations.

However, this coarse mapping is still useful for POS tagging because of significant

structural similarity of embedding spaces on the POS level. Specifically, we use this

coarse alignment to initialize and guide an unsupervised model over the target lan-

guage.

Our unsupervised model is a feature-based hidden Markov model (HMM) ex-

pressed in terms of word embeddings. By establishing a common multilingual em-

bedding space, we can map the source HMM estimated from supervised annotations

directly to the target. The resulting “direct transfer” model should be further ad-

justed as languages differ, and the initial alignment obtained based on embeddings is

imperfect. For this reason we cast the direct transfer model as a regularizer for the

target HMM, and permit the HMM to further adjust the embedding transformations

and relations of embeddings to the tags both globally (overall rotation and scaling)
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and locally (introducing small corrections).

Our two phase approach is simple to implement, performs well, and can be adapted

to other NLP tasks. We evaluate our approach on POS tagging using the multilin-

gual universal dependency treebanks [77]. We use English as the source language

and test on three Indo-European languages (Danish, German and Spanish) and three

non-Indo-European-languages (Finnish, Hungarian and Indonesian). Experimental

results show that our method consistently outperforms various baselines across lan-

guages. On average, our full model achieves 8% absolute improvement over the direct

transfer counterpart. We also compare against a prototype-driven tagger [42] us-

ing 14 prototypes as supervision. Our model significantly outperforms the model of

Haghighi et al. [42] by 37.5% (67.5% vs 30%).

We also introduce a novel task-based evaluation of automatic POS taggers, where

tagger predictions are used to determine linguistic typological properties of the target

language. In particular, we consider typological features that relates to word ordering

preferences as specified in World Atlas of Languages [25]. For example, one task is to

predict whether an adjective comes before a noun (as in English) or after a noun (as

in Spanish) in the target language. This evaluation highlights key linguistic features

of the generated tags. On this task, our model achieves 80% accuracy, yielding 50%

error reduction relative to the prototype model.
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3.2 Related Work

3.2.1 Multilingual POS Tagging

Our work fits into a broad class of methods for multilingual POS tagging. We first

contrast our work to two major categories of approaches for this task, namely tag pro-

jection and multilingual word embeddings, followed by discussions on other existing

methods.

Tag Projection Much prior work on multilingual POS tagging has focused on the

tag projection method [113, 106, 26, 27, 96, 21, 92, 73, 13]. The core of this method is

to project POS tags from one sentence to its translation in the target language based

on word alignment. The projected tag annotations are then used as noisy labeled data

to train a tagger for the target language. To automatically induce word alignments,

all these approaches have to assume access to a large amount of parallel sentences or

bilingual dictionaries. In our work, we focus on a more challenging scenario, in which

we do not assume access to parallel sentences. Instead of projecting tag information

via word alignment, the transfer in our model is driven by mapping multilingual

embedding spaces.

Word Embeddings Our work closely relates to the idea of using multilingual word

embeddings for transfer POS tagging. Given this joint word representation, the tagger

trained on the source language can be directly applied to the target language. Kim et

al. [49] has shown the use of this latent word representation to facilitate multilingual

transfer. However, similarly to prior tag projection methods, this representation is

learned using parallel data.

Other Methods The feasibility of POS tagging transfer without parallel data has

also been shown by Hana et al. [43]. The transfer is performed between languages

with similar linguistic typological properties, which enables the model to directly

transfer the transition probabilities from source to the target. Moreover, emission
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probabilities are hand-engineered to capture language-specific morphological proper-

ties. In contrast, our method does not require any language-specific knowledge on

the target side.

3.2.2 Multilingual Word Embeddings

There is an expansive body of research on learning multilingual word embeddings [39,

33, 61, 52, 62, 101]. Previous work has shown its effectiveness across a wide range of

multilingual transfer tasks including tagging [49], syntactic parsing [108, 41, 30], and

machine translation [122, 71]. However, these approaches commonly require parallel

sentences or bilingual lexicon to learn multilingual embeddings. Vulic et al. [102] have

alleviated the requirements by inducing multilingual word embeddings directly from

a document-aligned corpus such as a set of Wikipedia pages on the same theme but in

different languages. However, they still used about ten thousands aligned documents

as parallel supervision. Our work demonstrates that useful multilingual embeddings

can be learned with a minimal amount of parallel supervision.
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3.3 Multilingual POS Tagger

Our method is designed to operate in the regime where there are no parallel sentences

or target annotations. We assume only a few, in our case ten, word translation pairs.

This small number of translation pairs together with the tags that they carry from

the source to the target do not provide sufficient information to train a reasonable

supervised tagger, even for very close languages where word translations would be

mostly one-to-one and tags fully preserved in translation. Other cues are necessary.

The few translation pairs provide just enough information to obtain a coarse global

alignment between the source and target language embeddings. We limit the initial

linear transformation between embeddings to isometric (orthonormal) mappings so

as to preserve norms and angles (e.g., cosine similarities) between words. Once the

embeddings are aligned, any source language model expressed in terms of embeddings

can be mapped to a target language model. The approach is akin to direct transfer

commonly applied in parsing [68, 118] though often with more information. We

use the term “direct transfer” to mean the process where no further adjustment is

performed beyond the immediate mapping via (coarsely) aligned embeddings.

Direct transfer is insufficient between languages that are syntactically (even mod-

erately) divergent. Instead, we use the directly transferred model to initialize and

regularize an unsupervised tagger. Specifically, we employ a feature-based HMM [6]

tagger for both the source and target languages with two important modifications.

The emission probabilities in the source language HMM are expressed solely in terms

of word embeddings (cf. skip-gram models). Such distributions can be directly trans-

ferred to the target domain. Our target language HMM is, however, equipped with

additional adjustable parameters that can be learned in an unsupervised manner.

These include parameters for modifying the initial global linear transformation be-

tween embeddings. Beyond this linear transformation, we also add “correction terms”

to each tag-word pair that are in principle sufficient to specify any HMM. Both of

these additional sets of parameters are regularized towards keeping the initial direct

transfer model. As a result, our strongly governed unsupervised tagger can succeed
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where an unguided unsupervised tagger would typically fail.

In the remainder of this section, we describe the approach more formally, starting

with the coarse alignment between embeddings, followed by the supervised feature-

based HMM, and the unsupervised target language HMM.

3.3.1 Isometric Alignment of Word Embeddings

Here we find a linear transformation from the target language embeddings to the

source language embeddings using the translation pairs. The resulting transformation

permits us to directly apply any source language model on the target language, i.e.,

it enables direct transfer. To this end, let 𝑉 𝑠 ∈ R𝑛𝑠×𝑑 and 𝑉 𝑡 ∈ R𝑛𝑡×𝑑 be the

word embeddings estimated for the source and target languages, respectively, with

vocabulary sizes 𝑛𝑠 and 𝑛𝑡. All the embeddings are of dimension 𝑑. The submatrices

of embeddings pertaining to 𝑘 anchor words (from translation pairs) are denoted as

Σ𝑠 and Σ𝑡, where Σ𝑠,Σ𝑡 ∈ R𝑘×𝑑.

We find a linear transformation 𝑃 ∈ R𝑑×𝑑 that best aligns the embeddings of the

translation pairs in the sense of minimizing

||Σ𝑡𝑃 −Σ𝑠||2 (3.1)

subject to the isometric (orthonormal) constraint 𝑃 𝑇𝑃 = 𝐼. We use the steepest

descent algorithm [1] to solve this optimization problem.1 Once 𝑃 is available, we can

map all the target language embeddings 𝑉 𝑡 to the source language space with 𝑉 𝑡𝑃 .

Note that since typically in our setting 𝑘 < 𝑑 (e.g. 𝑘 = 10) additional constraints

such as isometry are required.

Motivation behind the Isometric Constraint We impose isometry on the linear

transformation so as to preserve angles and lengths of the word vectors after the

transformation. A number of recent studies have explored the use of cosine similarity

of word vectors as a measure of semantic relations between words. Thus, for example,
1Our implementation is based on the toolkit available at http://legacy.spa.aalto.fi/

sig-legacy/unitary_optimization/.
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Figure 3-1: Cumulative fraction of word translation pairs among top 1,000 most
frequent words where the nearest neighbor of a German word (vector) appears as the
𝑟𝑡ℎ nearest neighbor after translation, measured in terms of their monolingual word
embeddings.

if two words have high cosine similarity in German (target), the corresponding words

in English (source) should also be similar. To validate our isometric constraint further,

we verify whether nearest neighbors are preserved in monolingual embeddings after

translation. To this end, we take the top 1,000 most frequent words in German and

their translations into English and ask whether nearest neighbors are preserved if

measured in terms of their monolingual embeddings. For each word vector 𝑤1 and its

nearest neighbor 𝑤2 in German, let 𝑒1 and 𝑒2 be the corresponding English vectors.

We compute the rank of 𝑒2 in the ordered list of nearest neighbors of 𝑒1. As Figure 3-1

shows, in more than 50% of word pairs, 𝑒2 is among the top-2 neighbors of 𝑒1. In

over 90% of the word pairs 𝑒2 is among 𝑒1’s top-10 closest neighbors.

For the purposes of comparison (see Section 3.5), we introduce also a linear trans-

formation without isometry. In other words, we find 𝑃 that minimizes ||Σ𝑡𝑃 −Σ𝑠||2

via the Moore–Penrose pseudoinverse [72, 81]. Specifically, let Σ+
𝑡 be the pseu-

doinverse of Σ𝑡. Then the solution takes the form 𝑃 = Σ+
𝑡 Σ𝑠, and has the minimum

Frobenius norm among all possible solutions.
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3.3.2 Supervised Source Language HMM

Here we briefly describe how we train a supervised tagger on the source language.

The resulting model, together with aligned embeddings, specifies the direct transfer

model. It will also be used to initialize and guide the unsupervised tagger on the

target language.

Our model has the same structure as the standard HMM but we replace the

transition and emission probabilities with log-linear models (cf. feature-based HMM

by Berg-Kirkpatrick et al.[6]). The transition probabilities include all indicator fea-

tures and therefore impose no additional constraints. The emission probabilities, in

contrast, are expressed entirely in terms of word embeddings 𝑣𝑥 as features. More

formally, the emission probability of word 𝑥 given tag 𝑦 is given by

𝑝𝜃(𝑥|𝑦) ∝ exp{𝑣𝑇
𝑥𝜇𝑦 } (3.2)

Note that the parameters 𝜇𝑦 (one vector per tag) can be viewed as tag embeddings.

This supervised tagging model is trained to maximize the joint log-likelihood with

𝑙2-regularization over parameters. We use the L-BFGS [59] algorithm to optimize the

parameters.

Once the HMM has been trained, we can specify the direct transfer model. It has

the same transition probabilities but the emission probabilities are modified according

to 𝑝𝑑𝑡𝜃 (𝑥|𝑦) ∝ exp{𝑣𝑇
𝑥𝑃𝜇𝑦 } where 𝑣𝑥 is now the monolingual target embedding,

transformed into the source space via 𝑣𝑇
𝑥𝑃 . We apply the Viterbi algorithm to predict

the most likely POS tag sequence.

3.3.3 Unsupervised Target Language HMM

Our unsupervised HMM for the target language is strictly more expressive than the

direct transfer model so as to better tailor it to the target language. Let 𝑣𝑥 again

be the monolingual target embeddings estimated separately, prior to the HMMs. We

map these vectors to the source language embedding space via 𝑣𝑇
𝑥𝑃 as discussed

earlier, where 𝑃 is already set and no longer considered a parameter. The form of
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the emission probabilities

𝑝𝑡𝜃(𝑥|𝑦) ∝ exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑥,𝑦} (3.3)

includes two modifications to the direct transfer model. First, we have introduced

an additional global linear transformation 𝑀 to correct the initial alignment repre-

sented by 𝑃 . Second, we include per-symbol parameters 𝜃𝑥,𝑦 which, in principle, are

capable of specifying any emission distribution on their own. The adjustable param-

eters in this model (denoted collectively 𝜃) are 𝑀 , {𝜇𝑦}, {𝜃𝑥,𝑦}, and the parameters

pertaining to the transition probabilities. If we set 𝑀 = 𝐼, 𝜃𝑥,𝑦 = 0 for all 𝑥 and

𝑦, and borrow 𝜇𝑦 and the transition parameters from the supervised HMM, then we

recover the direct transfer model. Let 𝜃0 denote this setting of the parameters. In

other words, the unsupervised HMM with initial parameters 𝜃0 is the direct transfer

model.

Our approach include initializing 𝜃 = 𝜃0 and later regularizing 𝜃 to remain close

to 𝜃0. The motivation behind this approach is two-fold. First, the initial alignment

between embeddings was obtained only on the basis of the few available anchor words

and may therefore need to be adjusted. Note that the linear transformation of em-

beddings now involves scaling and is no longer necessarily isometric. Second, the

source and target languages differ and the embeddings are not strictly related to each

other via any global linear transformation. We can interpret parameters 𝜃𝑥,𝑦 as local

(per word) non-linear deformations of the embedding vectors that specify the emis-

sion probabilities. We allow only small non-linear corrections by regularizing 𝜃𝑥,𝑦 to

remain close to zero, i.e., the values they have in 𝜃0.

Our unsupervised HMM is estimated by maximizing the regularized log-likelihood

𝐿(𝜃) =
𝑛∑︁

𝑖=1

log𝑃𝜃(x𝑖)−
𝛽

2
||𝜃 − 𝜃0||22 (3.4)

where x𝑖 is the 𝑖𝑡ℎ target language sentence, 𝑃𝜃(x𝑖) is the HMM with parameters 𝜃,

and 𝑛 is the number of sentences in the target text to be annotated. Since all the
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parameters in the model are in a log-linear form, we simply use the regularization

parameter 𝛽. Once estimated, we use the Viterbi algorithm to predict the most likely

POS tag sequence.

Estimation Details We maximize 𝐿(𝜃) using the Expectation-maximization (EM)

algorithm. In the E-step, we evaluate expected counts 𝑒𝑦′,𝑦 for tag-tag and 𝑒𝑥,𝑦 for

word-tag pairs, using the forward-backward algorithm. The M-step searches for 𝜃

that maximizes

𝑙(𝜃) =
∑︁
𝑦′,𝑦

𝑒𝑦′,𝑦 log 𝑝𝑡𝜃(𝑦
′|𝑦) +

∑︁
𝑥,𝑦

𝑒𝑥,𝑦 log 𝑝𝑡𝜃(𝑥|𝑦)− 𝛽

2
||𝜃 − 𝜃0||22 (3.5)

The maximization can be be done via L-BFGS which involves computing the gra-

dients of log 𝑝𝑡𝜃(𝑦
′|𝑦) and log 𝑝𝑡𝜃(𝑥|𝑦) with respect to 𝜃 at every iteration. Because

the conditional probabilities are expressed in a log-linear form, the gradients take on

typical forms such as

𝑑𝑙(𝜃)

𝑑𝜇𝑦

=
∑︁
𝑥

𝑒𝑥,𝑦(𝑣
𝑇
𝑥𝑃𝑀 −

∑︁
𝑥′

𝑝𝑡𝜃(𝑥
′|𝑦)𝑣𝑇

𝑥′𝑃𝑀)− 𝛽(𝜇𝑦 − 𝜇0𝑦)

𝑑𝑙(𝜃)

𝑑𝑀
=

∑︁
𝑥,𝑦

𝑒𝑥,𝑦(𝑃
𝑇𝑣𝑥𝜇

𝑇
𝑦 −

∑︁
𝑥′

𝑝𝑡𝜃(𝑥
′|𝑦)𝑃 𝑇𝑣𝑥′𝜇𝑇

𝑦 )− 𝛽(𝑀 − 𝐼) (3.6)

where 𝜇0𝑦 are initial values for 𝜇𝑦. See Appendix B.1 for details of parameter updates.
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3.4 Experimental Setup

Dataset We evaluate our method on the latest Version 1.2 of the Universal De-

pendencies Treebanks [77, 69]. We use English as the source language and six other

languages as targets. Specifically, we choose three Indo-European languages: Danish

(da), German (de), Spanish (es), and three non-Indo-European languages: Finnish

(fi), Hungarian (hu), Indonesian (id). All treebanks are annotated with the same

universal POS tagset. In our work, we map proper nouns to nouns and map symbol

marks2 and interjections to a catch-all tag X because it is hard and unnecessary to

disambiguate them in a low-resource learning scenario. After mapping, our tagset in-

cludes the following 14 tags: noun, verb, auxiliary verb, adjective, adverb, pronoun,

determiner, adposition, numeral, conjunction, sentence conjunction, particle, punctu-

ation mark, and a catch-all tag X. Note that this universal tagset contains two more

tags than the traditional universal tagset proposed by Petrov et al. [82]: auxiliary

verb and sentence conjunction. We follow the standard split of the treebanks for

every language. For each target language, we use the sentences in the training set as

unlabeled data, and evaluate on the testing set.

Word Embeddings To induce monolingual word embeddings, we use the processed

Wikipedia text dumps [2] for each language. While Wikipedia texts may contain

parallel articles, we show in Table 3.1 that the amount of text varies significantly

across languages. Prior work [91] also demonstrated that parallel information in

Wikipedia is very noisy. Therefore, direct translations are difficult to get from these

texts. We use the word2vec tool with the skip-gram learning scheme [70]. In our

experiments we use 𝑑 = 20 for the dimension of word embeddings and 𝑤 = 1 for the

context window size of the skip-gram, which yields the best overall performance for

our model. In our analysis, we also explore the impact of embedding dimension and

window size.

2Examples of symbol mark include “-”, “/” etc.
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Language Tokens (106)

English 1,888
Danish 44
German 687
Spanish 399
Finnish 66
Hungarian 89
Indonesian 41

Table 3.1: Number of tokens of the Wikipedia dumps used for inducing word embed-
dings.

Word Translation Pairs For each target language, we collect English translations

for the top ten most frequent words in the training corpus. Our preliminary exper-

iments show that this selection method performs the best. The selected words are

typically from closed classes, such as punctuation marks, determiners and preposi-

tions. We find translations using Wiktionary.3

Model Variants Our model varies along two dimensions. On one dimension, we use

two different methods for inducing multilingual word embeddings: Pseudoinverse

and Isometric alignment as described in Section 3.3.1. On the other dimension, we

experiment with two different multilingual transfer models. We use Direct Transfer

to denote our direct transfer model, and Transfer+EM for our unsupervised model

trained in the target language.

Baselines We also compare against the prototype-driven method of [42]. Specifi-

cally, we use the publicly available implementation provided by the authors.4 Note

that their model requires at least one prototype for each POS category. Therefore,

we select 14 prototypes (the most frequent word from each category) for the baseline,

while our method only uses ten translation pairs.

3https://www.wiktionary.org/
4http://code.google.com/p/prototype-sequence-toolkit/
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Evaluation Unlike other unsupervised methods, all models in our experiments can

identify the label for each POS tag because of knowledge from either the source

languages or prototypes. Therefore, we directly report the token-level POS accuracy

for all experiments.

Other Details For all experiments, we use the following regularization weights:

𝛾 = 0.001 for supervised models learned on the source language and 𝛽 = 0.01 for

unsupervised models learned on the target language. During training, we also nor-

malize the log-likelihood of labeled or unlabeled data by the total number of tokens.

As a result, the magnitude of the objective value is independent of the corpus size,

hence we do not need to tune the regularization weight for each target language. We

run ten iterations of the EM algorithm.
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3.5 Results

In this section, we first show the main comparison between the tagging performance

of our model and the baselines. In addition, we include an experiment on typology

prediction. In Section 3.5.2, we provide a more detailed analysis of model properties.

3.5.1 Main Results

Table 3.2 summarizes the results of the prototype baseline and different variations

of our transfer model. Averaged across languages, our model significantly outper-

forms the prototype baseline by about 37.5% (67.5% vs 30%), demonstrating the

effectiveness of multilingual transfer. Moreover, Table 3.2 shows that our full model

(Transfer+EM with the isometric alignment mapping) consistently achieves the best

performance compared to other model variations. Our model performs better on

Indo-European languages than on other languages (72.9% vs. 62.1% on average), be-

cause Indo-European languages are linguistically more similar to the source language

(English).

Impact of Training in the Target Language We observe that training on un-

labeled data in the target language (Transfer+EM model) consistently improves over

the direct transfer counterpart. As the bottom part of Table 3.2 shows, running EM

on unlabeled data yields an average of 12% absolute gain on Indo-European languages,

while on non-Indo-European languages the gain is only 4.4%.

Impact of the Isometric Alignment Constraint As Table 3.2 shows, when we

use Transfer+EM models, the isometric alignment method yields a 4.5% improve-

ment over the pseudoinverse method (72.9% vs. 68.4%) on Indo-European languages.

However, the improvement margin drops to 0.3% on non-Indo-European languages

(62.1% vs. 61.8%). We hypothesis that this discrepancy is due to the difference in the

degree of ambiguities of the anchor words across languages. For example, the anchor

words of Spanish have an average of 1.5 possible translations to English, while for

Indonesian the average ambiguity is 2.7. Therefore, the isometric assumption holds
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Method Indo-European

da de es Avg.

Prototype Model 41.3 25.5 28.7 31.8

Pseudoinverse
Direct Transfer 56.7 49.4 68.4 58.2
Transfer+EM 64.4 65.8 74.9 68.4

Isometric Alignment
Direct Transfer 59.8 55.4 67.4 60.9
Transfer+EM 72.5 68.7 77.5 72.9

Method Non-Indo-European

fi hu id Avg.

Prototype Model 8.2 44.5 30.1 27.6

Pseudoinverse
Direct Transfer 54.3 60.1 57.7 57.4
Transfer+EM 57.5 65.3 62.7 61.8

Isometric Alignment
Direct Transfer 54.4 61.4 57.2 57.7
Transfer+EM 58.2 63.4 64.8 62.1

Table 3.2: Token-level POS tagging accuracy (%) for different variants of our trans-
fer model. We always use English as the source language. Target languages include
Danish (da), German (de), Spanish (es), Finnish (fi), Hungarian (hu) and Indonesian
(id). We average the results separately for Indo-European and non-Indo-European
languages. The first row shows performance of the prototype-driven baseline [42]. The
rest shows results of our model when multilingual embeddings are induced with the
pseudoinverse or isometric alignment method. “Direct Transfer” and “Transfer+EM”
indicates our direct transfer model and our transfer model trained in the target lan-
guage respectively.
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Feature Description Possible Values

Order of Subject and Verb SV, VS, No dominant order
Order of Object and Verb VO, OV, No dominant order
Order of Adjective and Noun Adjective-Noun, Noun-adjective
Order of Adposition and Noun Prepositions, Postpositions
Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative

Table 3.3: Linguistic typological features used to evaluate the syntactic quality of
automatically generated tags. The goal is to predict word ordering preferences of
each language based on POS tag sequences generated by different models.

Tagging Method Typology Accuracy
Prototype 60.0
Direct Transfer 66.7
Transfer + EM 80.0
Gold 93.3

Table 3.4: The accuracy (%) of typological properties prediction using the outputs
from different taggers. “Gold” indicates the result using gold POS annotations.

better and the EM algorithm finds a better local optimum for Indo-European lan-

guages than for non-Indo-European languages. We also observe a similar pattern in

the direct transfer scenario.

Prediction of Linguistic Typology To assess the quality of automatically gen-

erated tags, we use them to determine linguistic typological properties of the target

language. As shown in Table 3.3, we predict values of the following five linguistic

typological properties for each language: subject-verb, verb-object, adjective-noun,

adposition-noun and demonstrative-noun. More specifically, the goal is to predict

word ordering preferences such as whether an adjective comes before a noun (as in

English) or after a noun (as in Spanish). We collect the true ordering preferences
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Figure 3-2: Accuracy of our models and the prototype baseline as a function of
the amount of supervision, in German. 𝑥-axis is the number of translation pairs or
prototypes used as supervision. Our models use multilingual embeddings induced
with the isometric alignment method. The minimum number of prototypes used by
the prototype baseline is 14.

from “The World Atlas of Language Structure (WALS)” [25]. To make predictions,

we train a multiclass support vector machine (SVM) classifier [99] on a multilingual

corpus using bigrams and trigrams of POS tags as features. The training data for

SVM comes from a combination of the Universal Dependencies Treebanks, CoNLL-X,

and CoNLL-07 datasets [10, 76], excluding all sentences in the target language. We

train one classifier for each typological property, and make predictions for each of the

six target languages. For evaluation, we directly report the overall accuracy on all 30

test cases (six languages combined with five typological properties).

Table 3.4 shows the accuracy of predicting typological properties with different

tagging models. See Appendix B.2 for detail prediction results for each typological

feature and each language. “Gold” corresponds to the result with gold POS annota-

tions and is an upper bound of the prediction accuracy. We observe that the typology
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Figure 3-3: The average tagging accuracy (%) with different embedding dimensions
and context window sizes. The model is Transfer+EM with the isometric alignment
projection method.

prediction accuracy correlates with the tagging quality. With the output of our best

model, we predict the correct values for 80% of the typological properties. This

corresponds to a 50% error reduction relative to the prototype model.

3.5.2 Analyses

Impact of the Amount of Supervision Figure 3-2 shows the accuracy of the

Direct Transfer, Transfer+EM models, and prototype baseline with different amounts

of supervision in German. Specifically, the 𝑥-axis is the number of translation pairs

or prototypes used as supervision. The numbers with ten pairs or prototypes are the

same as that in Table 3.2. We automatically extract more translation pairs using

the Europarl parallel corpus [51] and select pairs based on the word frequency in

the target language. For the prototype model, we select the most frequent words as

prototypes based on annotations in the training data, and guarantee that each POS
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Model da de es fi hu id Average
All features 72.5 68.7 77.5 58.2 63.4 64.8 67.5
- Indicator features 70.8 64.8 73.9 53.7 62.9 56.8 63.8
- Transformation matrix 𝑀 60.2 65.6 73.2 58.6 59.6 70.8 64.7

Table 3.5: The accuracy (%) of our best Transfer+EM model with different feature
sets, removing either indicator features or transformation matrix 𝑀 at a time.

category has at least one prototype. Note that the minimum number of prototypes

used by the prototype model is 14.

One particularly interesting observation is that our model with ten pairs achieves

an equivalent performance as that of the prototype-driven method with 150 proto-

types. Multilingual transfer compensates for 15 times the amount of supervision.

We also observe that the prototype-driven model outperforms our model when large

amount of annotations are available. This can be explained by noise in the trans-

lation and the limitation from the linear embedding mapping process, which makes

POS tags not preserve well across languages.

When comparing between our models, Figure 3-2 shows that Transfer+EM con-

sistently improves over the Direct Transfer, while the gains are more profound in the

low-supervision scenario. This is not surprising because with more translation pairs,

we are able to induce higher quality multilingual embeddings, which is more beneficial

to the direct transfer model.

Impact of Embedding Dimensions and Window Size Figure 3-3 shows the

average accuracy across six target languages with different embedding dimensions and

context window sizes. First, we observe that a small window size 𝑤 = 1 consistently

outperforms window size 𝑤 = 5, demonstrating that smaller window sizes appear to

produce word embeddings better for POS tagging. This observation is in line with the

finding by Lin et al. [58]. Moreover, we obtain the best performance with dimension

𝑑 = 20 when 𝑤 = 1. On one hand, embeddings with smaller dimension (e.g. 𝑑 = 10)
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have too little syntactic information for good POS tagging. On the other hand, if the

embedding space has larger dimension, the space will be more complex and mapping

embedding spaces will be more difficult given only ten translation pairs. Therefore,

we observe a performance drop with either smaller or larger dimensions.

Ablation Analysis on Features In our Transfer+EM model, we add indicator

features and transformation matrix 𝑀 to enhance the emission distribution (see Sec-

tion 3.3.3). To analyze their contribution, we remove these features in turn and

report the results in Table 3.5. Averaged over all languages, adding indicator features

improves the accuracy by 3.7%, and adding a transformation matrix increases the

accuracy by 2.8%.
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3.6 Conclusions

In this chapter, we demonstrate that ten translation pairs suffice for an effective

multilingual transfer of POS tagging. Experimental results show that our model

significantly outperforms the direct transfer method and the prototype baseline. The

effectiveness of our approach suggests its potential application to a broader range of

NLP tasks that require word-level multilingual transfer, such as multilingual parsing

and machine translation.

In this work, the resulting mapping between monolingual embeddings is coarse

in the sense that we only focus on roughly aligning word clusters. While this coarse

mapping suffice for multilingual transfer on the POS level, it is still far away from a

fine-grained alignment between individual word translations. Some natural directions

of future research include (1) studying how little parallel resources are necessary for

learning a fine-grained multilingual word embeddings (2) exploring new algorithms

that reduce the amount of required parallel resources. We believe in the future our

work will have contributions on learning high-quality multilingual word embeddings

with low parallel resources.
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Chapter 4

Aspect-augmented Adversarial

Networks for Domain Adaptation

In this chapter, we introduce a neural method for transfer learning between two

(source and target) classification tasks or aspects over the same domain. Instead of

target labels, we assume a few keywords pertaining to source and target aspects indi-

cating sentence relevance rather than document class labels. Documents are encoded

by learning to embed and softly select relevant sentences in an aspect-dependent man-

ner. A shared classifier is trained on the source encoded documents and labels, and

applied to target encoded documents. We ensure transfer through aspect-adversarial

training so that encoded documents are, as sets, aspect-invariant. Experimental re-

sults demonstrate that our approach outperforms different baselines and model vari-

ants on two datasets, yielding an improvement of 24% on a pathology dataset and

5% on a review dataset.

4.1 Introduction

Deep learning methods are highly effective when they can be trained with large

amounts of labeled training data in the domain of interest. While such data are

not always available in real applications, it is nevertheless often possible to find la-

beled data in another related domain or for another related task. Considerable ef-
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Pathology report:
FINAL DIAGNOSIS: BREAST (LEFT) … INVASIVE CARCINOMA 
Tumor size: num x num x num cm  Grade: 3. Lymphatic vessel 
invasion: Not identified. Blood vessel invasion: Suspicious. 
Margin of invasive carcinoma …

Diagnosis results:
IDC: Positive                LVI: Negative

Figure 4-1: A snippet of a breast pathology report with diagnosis results for two types
of disease. Evidence for both results is in red and blue, respectively.

fort has gone into designing domain transfer algorithms that leverage such related

data [37, 15, 121]. In a typical case, the related domain involves the same classifica-

tion task (e.g., sentiment analysis) but over different types of examples (e.g., hotel vs

restaurant reviews). Labeled training data are available only in the source domain

(e.g., hotel reviews) while the task is to provide an effective method for the target

domain (e.g., restaurant reviews) without any additional labeled examples.

In this chapter we are primarily interested in transfer between two classification

tasks over the same domain, i.e., over the same set of examples. We call this “aspect

transfer” as the two classification tasks can be thought to pertain to different aspects

of the same examples. For example, the target goal may be to classify pathology

reports (shown in Figure 4-1) for the presence of lymph invasion but the available

training data involve only annotations for carcinoma in the same reports. Existing

domain adaptation methods do not directly solve this aspect transfer problem because

input examples are the same across the two tasks. Since there are no labels available

for the target aspect, we must learn to properly relate the two tasks. In particular,

we bring in auxiliary data to help connect the tasks.

Our approach builds on relevance annotations of sentences which are considerably

easier to obtain than actual class labels. Relevance merely indicates a possibility that

the answer could be found in a sentence, not what the answer is. One can often

write simple keyword rules that identify sentence relevance to a particular aspect
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(task) through representative terms, e.g., specific hormonal markers in the context of

pathology reports. We can also use keywords of other irrelevant aspects to indicate

absence of relevance. Annotations of this kind can be readily provided by domain

experts, or extracted from medical literature such as codex rules in pathology [79].

We therefore assume a small number of relevance annotations pertaining to both

source and target aspects as a form of weak supervision. These annotations permit

us to learn how to encode the examples (e.g., pathology reports) from the point of

view of the desired task. Specifically, differential encodings of the same report in our

approach arise from softly selecting aspect-relevant sentences from the report.

Our relevance driven encoding returns the aspect-transfer problem closer to the

realm of standard domain adaption. We employ a shared end classifier between the

tasks but it is exercised differently due to aspect-driven encoding of examples. The

two domains as in standard domain adaption are therefore induced by different ways

of interpreting the same example in our case. These interpretations are themselves

learned based on relevance feedback, thus naturally pulled apart. To ensure that the

classifier can be adjusted only based on the source class labels and still reasonably

applied to the target encodings, we must align the two sets of encoded examples. As

in prior domain adaptation work [22, 7], we assume that the two sets are already

partially aligned via common features. For example, the word “presence” commonly

exists and indicates positive labels in both cases. The primary goal of transfer is to

align the rest features that appear in only one domain or aspect. Also, note that this

alignment or invariance is enforced on the level of sets, not individual examples or

reports; encoding of any specific report should remain substantially different for label

prediction. To learn the invariance, we introduce an adversarial domain classifier

analogously to recent successful use of adversarial training in computer vision [35].

The role of the adversarial domain classifier is to learn to distinguish between the

two types of encodings, establishing invariance (as sets) when it fails. All the three

components in our approach, 1) aspect-driven encoding, 2) classification of source

labels, and 3) domain adversary, are trained jointly (concurrently) to complement

and balance each other.
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Adversarial training of domain and end classifiers can be challenging to stabilize.

In our setting, sentences are encoded with a shared convolutional model, weighted

by predicted aspect relevance, and then combined into aspect-driven document rep-

resentations. Feedback from adversarial training can be an unstable guide for how

the sentences should be encoded in the first place. To this end, we incorporate an

additional word-level autoencoder reconstruction loss to ground the convolutional

processing of sentences. We empirically demonstrate that this additional objective

yields richer and more diversified feature representations, improving transfer.

We evaluate our approach on pathology reports (aspect transfer) as well as on a

more standard review dataset (domain adaptation). On the pathology dataset, we

explore cross-aspect transfer across different types of breast disease. Specifically, we

test on six adaptation tasks, consistently outperforming all other baselines. Overall,

our full model achieves 24% and 12.8% absolute improvement arising from aspect-

driven encoding and adversarial training, respectively. Moreover, our unsupervised

adaptation method is only 2.8% behind the accuracy of a supervised target model. On

the review dataset, we test adaptation from hotel to restaurant reviews. Our model

outperforms the marginalized denoising autoencoder [15] by 5%. Finally, we examine

and illustrate the impact of individual components on the resulting performance.
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4.2 Related Work

Domain Adaptation for Deep Learning Existing approaches commonly induce

abstract representations without pulling apart different aspects in the same example,

and therefore are likely to fail on the aspect transfer problem. The majority of these

prior methods propose to first learn a task-independent representation, and then train

a label predictor (e.g. SVM) on this representation in a separate step. For example,

earlier researches employ a shared autoencoder [37, 17] or a deep convolutional neural

network [24] to learn cross-domain representation. Chen et al. [15] further improve

and stabilize the representation learning by utilizing marginalized denoising autoen-

coders. Later, Zhou et al. [121] propose to minimize domain-shift of the autoencoder

in a linear data combination manner. Some other work has focused on learning

transferable representations in an end-to-end fashion. Examples include using trans-

duction learning for object recognition [88] and using residual transfer networks for

image classification [60]. In contrast, we use adversarial training to encourage learn-

ing domain-invariant features in a more explicit way. Our approach offers another

two advantages over prior work. First, we jointly optimize features with the final

classification task while much previous work only learns task-independent features

using autoencoders. Second, our model can handle traditional domain transfer as

well as aspect transfer, while previous methods can only handle the former scenario.

Adversarial Learning in Vision and NLP Our approach closely relates to the

idea of domain-adversarial training. Adversarial networks and similar approaches

have originally been developed for image generation [38, 63, 94, 85, 98, 57], and

later applied to domain adaption in computer vision [35, 36, 8, 100] and speech

recognition [89]. The core idea of these approaches is to promote the emergence of

invariant image features by optimizing the feature extractor as an adversary against

the domain classifier. While Ganin et al. [36] also apply this idea to sentiment

analysis, their practical gains have remained limited.

Our approach presents two main departures. In computer vision, adversarial learn-

ing has been used for transferring across domains, while our method can also handle
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aspect transfer. In addition, we introduce reconstruction loss which results in more

robust adversarial training. We believe that this formulation will benefit other appli-

cations of adversarial training, beyond the ones described in this chapter.

Semi-supervised Learning with Keywords In our work, we use a small set of

keywords as a source of weak supervision for aspect-relevance scoring. This relates to

prior work on utilizing prototypes and seed words in semi-supervised learning [42, 40,

12, 64, 48, 56, 31]. All these prior approaches utilize prototype annotations primarily

targeting for model bootstrapping but not for learning representations. In contrast,

our model uses provided keywords to learn aspect-driven encoding of input examples.

Attention Mechanism in NLP One may view our aspect-relevance scorer as a

sentence-level “semi-supervised attention”, where relevant sentences receive more at-

tention during feature extraction. While traditional attention-based models typically

induce attention in an unsupervised manner, they have to rely on a large amount of

labeled data for the target task [4, 87, 14, 16, 110, 109, 112, 66, 55]. Unlike them,

we assume no label annotations in the target domain. Some other researches have

focused on utilizing human-provided rationales as “supervised attention” to improve

prediction [117, 65, 119, 9]. In contrast, our model only assumes access to a small

set of keywords as a source of weak supervision. Moreover, all these prior approaches

focus on in-domain classification. In this chapter, however, we study the task in the

context of domain adaptation.
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4.3 Methods

We formalize here the aspect transfer problem between the source and target classifi-

cation tasks over the same set of examples (here documents, e.g., pathology reports).

Class labels are available only for the source task, and the goal is to solve the target

classification task. While we develop our method under the assumption that the ex-

amples in the two tasks are the same (as an extreme case), this is not a requirement

for our method and it will work fine in more traditional domain adaptation settings

as well, which we demonstrate.

Let d = {s𝑖}|d|𝑖=1 be a document that consists of a sequence of |d| sentences. Each

sentence is a sequence of words, namely s𝑖 = {x𝑖,𝑗}|s𝑖|𝑗=1, where x𝑖,𝑗 ∈ R𝑑 denotes the

vector representation of the j-th word in the i-th sentence. Given a document d we

wish to predict the corresponding class label 𝑦 (e.g., 𝑦 ∈ {−1, 1}) which varies for

the same document depending on which aspect (source, target) we are interested in.

We assume that the set of possible labels are the same across tasks. Moreover, as in

standard domain adaptation, we assume that for particular keywords x that exist in

both tasks (e.g. the word “presence”), their underlying label distributions 𝑝(𝑦|x) are

the same (e.g. “presence” always indicates positive labels). We use 𝑦𝑠𝑙;𝑘 to denote the

k-th coordinate of a one-hot vector indicating the correct source label for document

d𝑙.

Beyond labeled documents for the source task {d𝑙, 𝑦
𝑠
𝑙 }𝑙∈𝐿, and shared unlabeled

documents for source and target tasks {d𝑙}𝑙∈𝑈 , we assume further that we have rele-

vance scores pertaining to each aspect. The relevance is given per sentence, for some

subset of sentences across the documents, and indicates the possibility that the an-

swer for that document would be found in the sentence but without indicating which

way the answer goes. Relevance is always task (aspect) dependent yet often easy to

provide with simple keyword rules. We use 𝑟𝑎𝑖 ∈ {0, 1} to denote the given relevance

label pertaining to aspect 𝑎 for sentence s𝑖. Specifically, if sentence s𝑖 has a relevance

label, then 𝑟𝑎𝑖 = 1 when the sentence contains any keywords pertaining to aspect 𝑎

and 𝑟𝑎𝑖 = 0 if it has any keywords of other aspects. Separate subsets of relevance
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labels are available for each task as the keywords differ. Let 𝑅 = {(𝑎, 𝑙, 𝑖)} denote

the index set of relevance labels such that if (𝑎, 𝑙, 𝑖) ∈ 𝑅 then relevance label 𝑟𝑎𝑙,𝑖 is

available for aspect 𝑎 and the 𝑖𝑡ℎ sentence in document d𝑙.

4.3.1 Our Approach

We commence with a summary of our approach and describe each part in more tech-

nical detail in following subsections. Figure 4-2 outlines the overall model. Figure

4-3 depicts details of the aspect-driven document encoding process. Each sentence

is first encoded into a vector using a shared convolutional model. We ground this

convolutional model by including a reconstruction step for each word based on the

internal state centered at the same position. The sentence vectors are then passed on

to a single hidden layer network, a separate network for each aspect with a shared

hidden layer, to determine whether the sentences are relevant for the chosen aspect.

Our relevance predictors are non-negative regression methods as relevance varies more

on a linear rather than binary scale. The predicted relevance scores are used to con-

struct document vectors by taking relevance-weighted combinations of the associated

sentence vectors. Thus the document vector is always aspect-dependent due to the

chosen relevance weights. The constrained manner in which these document vectors

arise from sentence vectors means that they will retain explicit information about the

aspect they were based on. Such explicit cues are not helpful in our setting: the end

classifier, trained only on source labels, would unnecessarily rely on cues present only

in source-aspect encodings. To remove those cues, we introduce an additional linear

transformation layer after the initial document encoding.

During training, the resulting adjusted document vectors are used by two clas-

sifiers, each involving one hidden layer. The primary end classifier aims to predict

the source labels (when available), while the domain classifier determines whether

the document vector pertains to the source or target aspect (i.e., label that we know

by construction). The two classifiers involve separate training losses that interact

only in terms of the document representation. Specifically, the training signal from

the primary classifier is used to co-operatively adjust the document representation
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whereas the gradient from the domain classifier (the adversary) is reversed therefore

encouraging representations that make it fail.

The four training losses pertaining to word reconstruction, relevance labels, source

class labels, and domain labels are used concurrently in our adversarial training

scheme to adjust the model parameters. At the conclusion of training, we expect

that the primary classifier is able to predict the source labels while appearing to be

exercised in a domain invariant manner, enabling transfer to the target task.

4.3.2 Components in detail

We provide here additional details of each of the components in the model, including

how they are trained as part of the overall approach.

Sentence embedding We apply a convolutional model illustrated in Figure 4-4 to

each sentence s𝑖 to obtain sentence-level vector embeddings x𝑠𝑒𝑛
𝑖 . The use of RNNs or

bi-LSTMs would result in more flexible sentence embeddings but based on our initial

experiments, we did not observe any significant gains over the simpler CNNs.

With adversarial training, we observe that the document representation x𝑑𝑜𝑐 al-

ways has non-zero values only on a small fixed set of dimensions, while all other

dimensions have zero values. This feature distribution is trivially domain-invariant,

but it eliminates too much information for label predictions. To address this issue,

we introduce an additional word-level reconstruction step in the convolutional model

to further ground the resulting sentence embeddings. The purpose of this reconstruc-

tion step is to balance adversarial training signals propagating back from the domain

classifier. Specifically, it forces the sentence encoder to keep rich word-level informa-

tion in contrast to adversarial training that seeks to eliminate task/aspect specific

features. We provide an empirical analysis of the impact of this reconstruction in the

experiment section (Section 4.6).

More concretely, we reconstruct word embedding from the corresponding convo-

lutional layer, as shown in Figure 4-4. Let h𝑖,𝑗 be the convolutional output when x𝑖,𝑗

95



…

Class label yl

Objective: predict labels

Adversary objective: confuse 
the domain classifier

… Domain label ya

Objective: predict domains

backprop

backprop

(b) Label predictor

(c) Domain classifier

(a) Document encoder D
ocum

ent representation

…Pathology 
report

Figure 4-2: Aspect-augmented adversarial network for domain adaptation. The model
is composed of (a) an aspect-driven document encoder, (b) a label predictor and (c)
a domain classifier. Parameters of all the components are learned jointly during
training.
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Figure 4-3: Document encoder of our aspect-augmented adversarial network. Each
document is encoded in a relevance weighted, aspect-dependent manner and passed
on to both the primary label classifier and the domain classifier as the adversary to
ensure invariance.
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Figure 4-4: Illustration of the convolutional model and the reconstruction of word
embeddings from the associated convolutional layer.

is at the center of the window. We reconstruct x𝑖,𝑗 by

x̂𝑖,𝑗 = tanh(W𝑐h𝑖,𝑗 + b𝑐) (4.1)

where W𝑐 and b𝑐 are parameters of the reconstruction layer. The loss associated

with the reconstruction for document d is

ℒ𝑟𝑒𝑐(d) =
1

𝑛

∑︁
𝑖,𝑗

||x̂𝑖,𝑗 − tanh(x𝑖,𝑗)||22 (4.2)

where 𝑛 is the number of tokens in the document and indexes 𝑖, 𝑗 identify the sen-

tence and word, respectively. The overall loss ℒ𝑟𝑒𝑐 is obtained by summing over all

labeled/unlabeled documents.

Relevance prediction We use a small set of keyword rules to generate binary

relevance labels, both positive (𝑟 = 1) and negative relevance (𝑟 = 0). These labels

represent the only supervision available to predict relevance. The prediction is made

on the basis of the sentence vector x𝑠𝑒𝑛
𝑖 passed through a feed-forward network with

a ReLU output unit. The network has a single shared hidden layer and a separate

output layer for each aspect. Note that our relevance prediction network is trained

as a regression model even though the available labels are binary.
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Given relevance labels indexed by 𝑅 = {(𝑎, 𝑙, 𝑖)}, we minimize

ℒ𝑟𝑒𝑙 =
∑︁

(𝑎,𝑙,𝑖)∈𝑅

(︀
𝑟𝑎𝑙,𝑖 − 𝑟𝑎𝑙,𝑖

)︀2 (4.3)

where 𝑟𝑎𝑙,𝑖 is the predicted (non-negative) relevance score pertaining to aspect 𝑎 for

the 𝑖𝑡ℎ sentence in document d𝑙, as shown in Figure 4-3. 𝑟𝑎𝑙,𝑖, defined earlier, is the

given binary (0/1) relevance label.

Document encoding The initial vector representation for each document such as

d𝑙 is obtained as a relevance weighted combination of the associated sentence vectors,

i.e.,

x𝑑𝑜𝑐,𝑎
𝑙 =

∑︀
𝑖 𝑟

𝑎
𝑙,𝑖 · x𝑠𝑒𝑛

𝑙,𝑖∑︀
𝑖 𝑟

𝑎
𝑙,𝑖

(4.4)

The resulting vector selectively encodes information from the sentences based on

relevance to the focal aspect.

Transformation layer We add a transformation layer to help map the initial doc-

ument vectors x𝑑𝑜𝑐,𝑎
𝑙 to their domain invariant (as a set) versions. Specifically, the

transformed representation is given by x𝑡𝑟,𝑎
𝑙 = W𝑡𝑟x𝑑𝑜𝑐,𝑎

𝑙 . The transformation has to

be strongly regularized lest the gradient from the adversary would wipe out all the

document signal. We add the following regularization term

Ω𝑡𝑟 = 𝜆𝑡𝑟||W𝑡𝑟 − I||2𝐹 (4.5)

to discourage significant deviation away from identity I. 𝜆𝑡𝑟 is a regularization pa-

rameter that has to be set separately based on validation performance. We show an

empirical analysis of the impact of this transformation layer in Section 4.6.

Primary label classifier As shown in the top-right part of Figure 4-2, the classifier

takes in the adjusted document representation as an input and predicts a probability

distribution over the possible class labels. The classifier is a feed-forward network

with a single hidden layer using ReLU activations and a softmax output layer over
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the possible class labels. Note that the classifier operates the same regardless of

the aspect relative to which the document was encoded. It must therefore be co-

operatively learned together with the encodings.

Let 𝑝𝑙;𝑘 denote the predicted probability of class 𝑘 for document d𝑙 when the docu-

ment is encoded from the point of view of the source aspect. Recall that [𝑦𝑠𝑙;1, . . . , 𝑦
𝑠
𝑙;𝑚]

is a one-hot vector for the correct (given) source class label for document d𝑙, hence

also a distribution. We use the cross-entropy loss for the label classifier

ℒ𝑙𝑎𝑏 =
∑︁
𝑙∈𝐿

[︃
−

𝑚∑︁
𝑘=1

𝑦𝑠𝑙;𝑘 log 𝑝𝑙;𝑘

]︃
(4.6)

Domain classifier As shown in the bottom-right part of Figure 4-2, the domain

classifier functions as an adversary to ensure that the documents encoded with respect

to the source and target aspects look the same as sets of examples. The invariance

is achieved when the domain classifier (as the adversary) fails to distinguish between

the two. Structurally, the domain classifier is a feed-forward network with a single

ReLU hidden layer and a softmax output layer over the two aspect labels.

Let 𝑦𝑎 = [𝑦𝑎1 , 𝑦
𝑎
2 ] denote the one-hot domain label vector for aspect 𝑎 ∈ {𝑠, 𝑡}. In

other words, 𝑦𝑠 = [1, 0] and 𝑦𝑡 = [0, 1]. We use 𝑞𝑘(x𝑡𝑟,𝑎
𝑙 ) as the predicted probability

that the domain label is 𝑘 when the domain classifier receives x𝑡𝑟,𝑎
𝑙 as the input. The

domain classifier is trained to minimize

ℒ𝑑𝑜𝑚 =
∑︁

𝑙∈𝐿∪𝑈

∑︁
𝑎∈{𝑠,𝑡}

[︃
−

2∑︁
𝑘=1

𝑦𝑎𝑘 log 𝑞𝑘(x𝑡𝑟,𝑎
𝑙 )

]︃
(4.7)

4.3.3 Joint learning

We combine the individual component losses into an overall objective function

ℒ𝑎𝑙𝑙 = ℒ𝑟𝑒𝑐 + ℒ𝑟𝑒𝑙 + Ω𝑡𝑟 + ℒ𝑙𝑎𝑏 − 𝜌ℒ𝑑𝑜𝑚 (4.8)

which is minimized with respect to the model parameters except for the adversary

(domain classifier). The adversary is maximizing the same objective with respect to
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its own parameters. The last term −𝜌ℒ𝑑𝑜𝑚 corresponds to the objective of failing the

domain classifier. The proportionality constant 𝜌 controls the impact of gradients

from the adversary on the document representation; the adversary itself is always

directly minimizing ℒ𝑑𝑜𝑚.

All the parameters are optimized jointly using standard backpropagation (concur-

rent for the adversary). Each mini-batch is balanced by aspect, half coming from the

source, the other half from the target. All the loss functions except ℒ𝑙𝑎𝑏 make use

of both labeled and unlabeled documents. It would be straightforward to add a loss

term also for target labels if they are available.
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4.4 Experimental Setup

Pathology dataset This dataset contains 96.6k breast pathology reports collected

from three hospitals [111]. A portion of this dataset is manually annotated with 20

categorical values, representing various aspects of breast disease. In our experiments,

we focus on four aspects related to carcinomas and atypias: Ductal Carcinoma In-Situ

(DCIS), Lobular Carcinoma In-Situ (LCIS), Invasive Ductal Carcinoma (IDC) and

Atypical Lobular Hyperplasia (ALH). Each aspect is annotated using binary labels.

We use 500 held out reports as our test set and use the rest labeled data as our

training set: 23.8k reports for DCIS, 10.7k for LCIS, 22.9k for IDC, and 9.2k for

ALH. Table 4.1 summarizes statistics of the dataset.

We explore the adaptation problem from one aspect to the other. For example,

we want to train a model on annotations of DCIS and apply it on LCIS. For each

aspect, we use up to three common names as a source of supervision for learning the

relevance scorer, as illustrated in Table 4.2. Note that the provided list is by no means

exhaustive. In fact Buckley et al. [11] provide example of 60 different verbalizations

of LCIS, not counting negations.

Review dataset Our second experiment is based on a domain transfer of sentiment

classification. As the source domain, we use the hotel review dataset introduced in

previous work [103, 104]. For the target domain, we use the restaurant review dataset

from Yelp.1 Both datasets have ratings on a scale of 1 to 5 stars. Following previous

work [7], we label reviews with ratings > 3 as positive and those with ratings < 3 as

negative, and we discard the rest. The hotel dataset includes a total of around 200k

reviews collected from TripAdvisor,2 so we split 100k as labeled and the other 100k

as unlabeled data. We randomly select 200k restaurant reviews as the unlabeled data

in the target domain. Our testing set consists of 2k reviews. Table 4.1 summarizes

the statistics of the review dataset.

The hotel reviews naturally have ratings for six aspects, including value, room

1https://www.yelp.com/dataset_challenge
2https://www.tripadvisor.com/
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Dataset #Labeled #Unlabeled

Pathology

DCIS 23.8k

96.6kLCIS 10.7k
IDC 22.9k
ALH 9.2k

Review
Hotel 100k 100k
Restaurant - 200k

Table 4.1: Statistics of the pathology reports dataset and the reviews dataset that we
use for training. Our model utilizes both labeled and unlabeled data. The same set
of unlabeled reports is used for all different aspects in the pathology reports dataset.

Aspect Keywords

DCIS DCIS, Ductal Carcinoma In-Situ, Ductal Carcinoma In Situ
LCIS LCIS, Lobular Carcinoma In-Situ, Lobular Carcinoma In Situ
IDC IDC, Invasive Ductal Carcinoma
ALH ALH, Atypical Lobular Hyperplasia

Table 4.2: Aspects and their corresponding keywords (case insensitive) in the pathol-
ogy dataset.

quality, checkin service, room service, cleanliness and location. We use the first five

aspects because the sixth aspect location has positive labels for over 95% of the

reviews and thus the trained model will suffer from the lack of negative examples.

The restaurant reviews, however, only have single ratings for an overall impression.

Therefore, we explore the task of adaptation from each of the five hotel aspects to the

restaurant domain. The hotel reviews dataset also provides a total of 290 keywords

for different aspects that are generated by the bootstrapping method used in [103].

We use those keywords as supervision for learning the relevance scorer.

Baselines We compare against different baselines and variants of our model.

∙ SVM: a linear SVM trained on the raw bag-of-words representation of labeled

data on source and test it on target.
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Method
Source Target

Label Unlabel Label Unlabel

SVM X × × ×
SourceOnly X X × ×
mSDA X X × X
Ours-NA X X × X
Ours-NR X X × X
In-Domain × × X ×
Ours-Full X X × X

Table 4.3: Usage of labeled and unlabeled data in each domain by our model and
other baseline methods.

∙ SourceOnly: our model trained with only labeled and unlabeled data in the

source domain. No target domain data is used. It therefore has no adversarial

training or target aspect-relevance scoring.

∙ mSDA: marginalized Stacked Denoising Autoencoders [15], a domain adapta-

tion algorithm that outperforms both prior deep learning and shallow learning

approaches.3

∙ Ours-NA: our model without the adversarial component. To implement this

model we simply set the strength of adversarial training to zero.

∙ Ours-NR: our model without the aspect-relevance scorer. We set the relevance

score 𝑟 to a constant 1.0 for every sentence in this model.

∙ In-Domain: supervised model trained on the full set of in-domain annotations

as the performance upper bound.

Table 4.3 summarizes the usage of labeled and unlabeled data in each domain by our

model and different baselines. Note that our model assumes the same set of data as

Ours-NA, Ours-NR and mSDA methods.

3We use the publicly available implementation provided by the authors at http://www.cse.
wustl.edu/~mchen/code/mSDA.tar. We use the hyper-parameters from the authors and their mod-
els have more parameters than ours.
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Implementation details Following prior work [35], we gradually increase the ad-

versarial strength 𝜌 and decay the learning rate during training. We use Adam [50]

as the optimization method with the default setting suggested by the authors. We

also apply batch normalization [47] on the sentence encoder and apply dropout with

ratio 0.2 on word embeddings and each hidden layer activation. We set the hidden

layer size to 150 and pick the transformation regularization weight 𝜆𝑡 = 0.1 for the

pathology dataset and 𝜆𝑡 = 10.0 for the review dataset.
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4.5 Main Results

Table 4.4 summarizes the classification accuracy of different methods on the pathology

dataset, including the results of six adaptation tasks. Our full model (Ours-Full)

consistently achieves the best performance on each task compared with other baselines

and model variants. It is not surprising that SVM and mSDA perform poorly on this

dataset because they only predict labels based on an overall feature representation of

the input, and do not utilize weak supervision provided by aspect-specific keywords.

As a reference, we also provide a performance upper bound by training our model on

the full labeled set in the target domain, denoted as In-Domain in the last column

of Table 4.4. On average, the accuracy of our model is only 2.8% behind this upper

bound.

Table 4.5 shows the adaptation results from each aspect in the hotel reviews to

the overall ratings of restaurant reviews. Ours-Full and Ours-NR are the two best

performing systems on this review dataset, attaining around 5% improvement over

the mSDA baseline. Below, we summarize our findings when comparing the full model

with the two model variants Ours-NA and Ours-NR.

Impact of adversarial training We first focus on comparisons between Ours-Full

and Ours-NA. The only difference between the two models is that Ours-NA has no

adversarial training. On the pathology dataset, our model significantly outperforms

Ours-NA, yielding a 12.8% absolute average gain (see Table 4.4). On the review

dataset, our model obtains 2.5% average improvement over Our-NA. As shown in

Table 4.5, the gains are more significant when training on room quality and check-in

service aspects, reaching 6.9% and 4.5%, respectively.

Impact of relevance scoring As shown in Table 4.4, the relevance scoring compo-

nent plays a crucial role in classification on the pathology dataset. Our model achieves

more than 24% improvement over Ours-NR. This is because in general aspects have

zero correlations to each other in pathology reports. Therefore, it is essential for

the model to have the capacity of distinguishing across different aspects in order to
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Domain SVM Source mSDA OursNA OursNR OursFull
In-

Source Target Only domain

LCIS DCIS 45.8 25.2 45.0 81.2 50.0 93.0 96.2
DCIS LCIS 73.8 75.4 76.2 89.0 81.2 95.2 97.8

DCIS IDC 94.0 77.4 94.0 92.4 93.8 95.4 96.8
IDC DCIS 71.8 62.4 73.0 87.6 81.4 94.8 96.2

ALH LCIS 54.4 46.4 54.2 84.8 52.4 93.2 97.8
LCIS ALH 59.0 51.6 60.4 52.6 60.0 92.8 96.8

Average 66.5 56.4 67.1 81.3 69.8 94.1 96.9

Table 4.4: Pathology: Classification accuracy (%) of different approaches on the
pathology reports dataset, including the results of six adaptation scenarios from four
different aspects (IDC, ALH, DCIS and LCIS) in breast cancer pathology reports.
“mSDA” indicates the marginalized denoising autoencoder in [15]. “Ours-NA” and
“Ours-NR” corresponds to our model without the adversarial training and the aspect-
relevance scoring component, respectively. We also include in the last column the
in-domain supervised training results of our model as the performance upper bound.
Boldface numbers indicate the best accuracy for each testing scenario.

Domain
SVM

Source
mSDA OursNA OursNR OursFull

In-
Source Target Only domain

Value

Restaurant
Overall

82.2 87.4 84.7 87.1 91.1 89.6

93.4
Room 75.6 79.3 80.3 79.7 86.1 86.6
Checkin 77.8 83.0 81.0 80.9 87.2 85.4
Service 82.2 88.0 83.8 88.8 87.9 89.1
Cleanliness 77.9 83.2 78.4 83.1 84.5 81.4

Average 79.1 84.2 81.6 83.9 87.3 86.4 93.4

Table 4.5: Review: Classification accuracy (%) of different approaches on the reviews
dataset. The hotel reviews from TripAdvisor (source domain) consist of five different
aspects while the restaurant reviews from Yelp (target domain) has labels only for
a single overall aspect. Columns have the same meaning as in Table 4.4. Boldface
numbers indicate the best accuracy for each testing scenario.
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succeed in this task.

On the review dataset, however, we observe that relevance scoring has no signif-

icant impact on performance. On average, Ours-NR actually outperforms Ours-Full

by 0.9%. This observation can be explained by the fact that different aspects in

hotel reviews are highly correlated to each other. For example, the correlation be-

tween room quality and cleanliness is 0.81, much higher than aspect correlations in

the pathology dataset. In other words, the sentiment is typically consistent across all

sentences in a review, so that selecting aspect-specific sentences becomes unnecessary.

Moreover, our supervision for the relevance scorer is weak and noisy because the as-

pect keywords are obtained in a semi-automatic way. Therefore, it is not surprising

that Ours-NR sometimes delivers a better classification accuracy than Ours-Full.
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4.6 Analysis

When is adversarial training useful? As shown in Table 4.4 and 4.5, the gains

from using adversarial training vary significantly over different adaptation scenarios.

To better understand when adversarial training is useful, we further test on four syn-

thetic datasets that represent different challenges in domain adaptation. We generate

the synthetic datasets as follows. Each synthetic document consists of around ten

randomly generated sentences. Each sentence is always associated with a random

aspect and contains a special token as the aspect name (e.g. ASP0_NAME0). Except

for the first dataset, each sentence also contains another special token as the aspect

polarity (e.g. ASP0_POS_NAME0 or POS_NAME0). Aspect names and polarity tokens

each have about ten different options (i.e. NAME0 to NAME9). Document labels are

either positive or negative, indicated by the polarity tokens of the focal aspect, except

for the first dataset (see below). The adaptation task is to transfer the model from

one aspect to another. The characteristics of each dataset are as follows.

∙ Syn1: Sentences do not contain polarity tokens. Instead, class labels are indi-

cated by the occurrence of aspect names. The label is positive if a name of the

particular aspect (e.g. ASP0_NAME0) occurs, otherwise negative.

∙ Syn2: Class labels are indicated by polarity tokens. To make the transfer

a possible task, positive polarity tokens have 20% overlap across aspects. In

other words, for 20% of the sentences with positive polarity tokens, the tokens

have the format POS_NAME0 while the rest have the format ASP0_POS_NAME0. In

contrast, negative polarity tokens have no overlap.

∙ Syn3: Both positive and negative polarity tokens have 20% overlap across

aspects.

∙ Syn4: The last dataset is similar to the third one. However, both positive and

negative polarity tokens have only 5% overlap across aspects.

To distinguish aspect names and polarity words from others, we surround each of them

with a different distribution of context words. We fill in the rest place of sentences
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Method Syn1 Syn2 Syn3 Syn4

Ours-NA 75.4 52.8 100.0 49.2
Ours-Full 99.8 100.0 100.0 100.0

Table 4.6: Classification accuracy on four synthetic datasets that represent different
challenges in domain adaptation.

with other random words. Here are two examples synthetic sentence, both associated

with aspect 0 (ASP0). The label of the first sentence is negative while the second one

is positive.

WORD1146 ASP0_CTXT1 ASP0_CTXT3 ASP0_CTXT8 ASP0_NAME4

ASP0_CTXT9 ASP0_CTXT7 ASP0_CTXT1 ASP0_NEU_CTXT7

ASP0_NEU_CTXT7 ASP0_NEU_CTXT4 ASP0_NEG_NAME3

ASP0_NEU_CTXT5 ASP0_NEG_CTXT1 ASP0_NEU_CTXT4 WORD9

WORD402 WORD48 WORD1242 WORD94 ASP0_CTXT0 ASP0_CTXT2

ASP0_NAME9 ASP0_CTXT7 ASP0_CTXT5 NEU_CTXT2 NEU_CTXT2

POS_NAME0 POS_CTXT6 POS_CTXT5 NEU_CTXT6 WORD3815

WORD3595 WORD3326 WORD4942 WORD4909

Table 4.6 summarizes the prediction accuracy of Ours-Full and Ours-NA. We can see

that our full model with adversarial training successfully solve all transfer tasks. The

model without adversarial training (Ours-NA) only solve the third task. This task

has the largest amount of common polarity words across aspects, and therefore is the

easiest task.

Impact of the reconstruction loss Table 4.7 summarizes the impact of the re-

construction loss on the model performance. For our full model (Ours-Full), adding

the reconstruction loss yields an average of 4.6% gain on the pathology dataset and

5.2% on the review dataset.

To analyze the reasons behind this difference, consider Figure 4-5 that shows the

heat maps of the learned document representations on the review dataset. The top

half of the matrices corresponds to input documents from the source domain and the
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Figure 4-5: Heat map of 150× 150 matrices. Each row of the matrix corresponds to
the vector representation of a document that comes from either the source domain
(top half of each matrix) or the target domain (bottom half of each matrix). Models
are trained on the review dataset when room quality is the source aspect.

bottom half corresponds to the target domain. Unlike the top two matrices, the two

matrices in the bottom part have no significant difference between the two halves, in-

dicating that adversarial training helps learning of domain-invariant representations.

However, adversarial training also removes a lot of information from representations,

as the bottom-left matrix is much more sparse than the top-left one. The bottom-

right matrix shows that adding reconstruction loss effectively addresses this sparsity

issue. Almost 85% entries of the bottom-left matrix have small values (< 10−6) while

the sparsity is only about 30% for bottom-right one. Moreover, the standard devi-

ation of the bottom-right matrix is also ten times higher than the bottom-left one.

These comparisons demonstrate that the reconstruction loss function improves both

the richness and diversity of the learned representations. Note that in the case of no

adversarial training (Ours-NA), adding the reconstruction component has no clear
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Dataset
Ours-Full Ours-NA

-REC. +REC. -REC. +REC.

Pathology 89.5 94.1 78.6 81.3
Review 80.8 86.4 85.0 83.9

Table 4.7: Impact of adding the reconstruction component in the model, measured
by the average accuracy on each dataset. +REC. and -REC. denote the presence and
absence of the reconstruction loss, respectively.

Dataset 𝜆𝑡 = 0 0 < 𝜆𝑡 <∞ 𝜆𝑡 =∞
Pathology 84.1 94.1 77.0
Review 80.9 86.4 84.3

Table 4.8: The effect of regularization of the transformation layer 𝜆𝑡 on the perfor-
mance.

effect. This is expected because the main motivation of adding this component is to

achieve a more robust adversarial training.

Regularization on the transformation layer Table 4.8 shows the averaged ac-

curacy with different regularization weights 𝜆𝑡 in Equation 4.5. We change 𝜆𝑡 to

reflect different model variants. First, 𝜆𝑡 = ∞ corresponds to the removal of the

transformation layer because the transformation is always identity in this case. Our

model performs better than this variant on both datasets, yielding an average im-

provement of 17.1% on the pathology dataset and 2.1% on the review dataset. This

result indicates the importance of adding the transformation layer. Second, using

zero regularization (𝜆𝑡 = 0) also consistently results in inferior performance, such as

10% loss on the pathology dataset. We hypothesize that zero regularization will di-

lute the effect from reconstruction because of too much flexibility in transformation.

As a result, the transformed representation will become sparse due to the adversarial

training, leading to the performance loss.

Examples of neighboring reviews Finally, we illustrate in Figure 4-6 a case

study on the characteristics of learned abstract representations by different models.
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(a) Restaurant Reviews:
• the fries were undercooked and thrown haphazardly into the sauce holder . the 

shrimp was over cooked and just deep fried . … even the water tasted weird .

(b) Nearest Hotel Reviews by Ours-Full:
• the room was old . … we did n’t like the night shows at all . …
• however , the decor was just fair . … in the second bedroom it literally rained 

water from above . 

• rest room in this restaurant is very dirty . …
• the only problem i had was that … i was very ill with what was suspected to be 

food poison

(c) Nearest Hotel Reviews by Ours-NA:

• the room decor was not entirely modern . … we just had the run of the mill hotel 
room without a view .

• probably the noisiest room he could have given us in the whole hotel .

Figure 4-6: Examples of restaurant reviews and their nearest neighboring hotel re-
views induced by different models (part (b) and (c)). The distance between reviews
is measure by the cosine similarity between their vector representations induced by
the model. We use room quality as the source aspect and we show the sentences that
have high relevance score. The sentiment phrases of each review are in blue, and
some reviews are also shortened for space.

Part (a) of Table 4-6 shows an example restaurant review. Sentiment phrases in this

example are mostly food-specific, such as “undercooked” and “tasted weird”. In the

other two parts, we show example hotel reviews that are nearest neighbors to the

restaurant reviews, measured by cosine similarity between their representations. In

part (b), many sentiment phrases are specific for room quality, such as “old” and

“rained water from above”. In part (c), however, most sentiment phrases are either

common sentiment expressions (e.g. dirty) or food-related (e.g. food poison), even

though the focus of the reviews is room quality of hotels. This observation indicates

that adversarial training (Ours-Full) successfully learns to eliminate domain-specific

information and to map those domain-specific words into similar domain-invariant

representations. In contrast, Ours-NA only captures domain-invariant features from

phrases that commonly present in both domains.
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4.7 Conclusions

In this chapter, we propose a novel aspect-augmented adversarial network for cross-

aspect and cross-domain adaptation tasks. Experimental results demonstrate that our

approach successfully learns invariant representation from aspect-relevant fragments,

yielding significant improvement over the mSDA baseline and our model variants.

The effectiveness of our approach suggests the potential application of adversarial

networks to a broader range of NLP tasks for improved representation learning, such

as machine translation and language generation.
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Chapter 5

Conclusions and Future Work

In this thesis, we have shown how to leverage annotations in other tasks to boost un-

supervised learning performance of our target task. In particular, we demonstrate the

effectiveness of our methods in two scenarios: transfer across languages and transfer

across domains.

In the multilingual scenario, we study the transfer learning problem in the context

of dependency parsing and POS tagging tasks. For dependency parsing, we present

a hierarchical tensor-based approach that allows the model to incorporate linguistic

typology knowledge in the form of capturing desired feature combination. As shown in

our results, our model outperforms traditional tensor methods and the prior state-of-

the-art multilingual parser on a wide range of datasets. In the case of POS tagging,

our focus is to understand how little parallel data is necessary to enable effective

multilingual transfer on the word level. We demonstrate that only ten translation

pairs suffice for this task, indicating a promising direction on using fewer parallel

resources for better multilingual transfer.

In the domain transfer scenario, we design an aspect-augmented adversarial net-

work that handles both traditional domain transfer as well as aspect transfer. We

present an adversarial training framework combined with aspect-driven encoding to

solve this aspect transfer problem. Experimental results show that both aspect-driven

encoding and adversarial training play a crucial role in the overall performance, yield-

ing significant improvements on a pathology report dataset and a review dataset.
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5.1 Future Work

The work presented in this thesis is not an end. It is only a beginning. Our work can

be extended in a number of ways, as discussed below:

Multi-source Transfer The models we have described in Chapter 3 and Chap-

ter 4 transfer knowledge only from one source (e.g. language, domain or aspect).

However, as discussed in Chapter 2 and in previous work [68, 75, 97], it is usually

beneficial to transfer from more than one source language at the same time. Intu-

itively, transferring from multiple sources allows the model to selectively learn from

a closer language or from a more related domain, resulting a better transfer perfor-

mance. Thus, one essential research direction is to develop methods that are able to

utilize multiple training sources and automatically discover a better transfer regime,

or use some external knowledge as a guidance to this selective transfer process.

Model-agnostic Multilingual Transfer Both our multilingual parser and the

state-of-the-art parsers [97, 75] utilize linguistic typological features by encoding them

in the model structure or in the feature construction process. As a result, all these

methods can only be applied on the basis of simple parsing models such as a gen-

erative parser or a first-order parser. This is clearly not ideal because in supervised

settings these simple models have much lower performance than current state-of-the-

art parsers that use neural networks [3] or high-order features [120]. The transfer

performance is therefore capped by the supervised training upper bound. While an-

notation projection [86, 96] is a common approach for model-agnostic transfer, it

typically requires large amount of parallel data to establish the projection. One in-

teresting question is whether we can achieve model-agnostic transfer without any

parallel resources. Such transfer methods will be attractive because they can capi-

talize on the use of most advanced supervised models (e.g. deep neural networks) to

boost performance.
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Model-level Transfer In Chapter 4, we demonstrate how to achieve transfer using

a shared classifier for both source and target tasks. The key assumption is that

the model is able to learn invariant feature representations of inputs, so the source

classifier can be directly transferred to the target domain upon these representations.

However, this assumption may not hold well in every practical scenario. For example,

we show in Chapter 3 that fine-tuning the model results in a better performance over

direct transfer models. The model shifts from the one trained on the source language

and better fits the target language. Previous work also demonstrates that adding a

small perturbation function between source and target classifiers yields a performance

gain [60]. These observations indicate that learning a model-level transformation

from source to target, even in an unsupervised manner, may be helpful for the overall

transfer performance.
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Appendix A

Learning Hierarchical Tensors

A.1 Derivations of Parameter Updates

This section presents the derivation of parameter updates of hierarchical tensors.

We start by formalizing our learning problem. Let 𝐷 = {(x̂, ŷ)} be a collection of

training example pairs, where each pair consists of a sentence x̂ (with universal POS

annotations) and the corresponding gold dependency tree ŷ. The goal of learning is

to search values for the parameters 𝜃 = (w, 𝐻,𝑀,𝐷,𝐿, 𝑇𝑢, 𝑇𝑙, 𝐻𝑐,𝑀𝑐) that optimize

the combined scoring function below for parsing performance.

𝑆𝜃(x̂, ŷ) = 𝛾
∑︁

ℎ
𝑙−→𝑚∈ŷ

w · 𝜑(ℎ
𝑙−→ 𝑚) + (1− 𝛾)

∑︁
ℎ

𝑙−→𝑚∈ŷ

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) (A.1)

See Table 2.3 for notation of parameters. 𝛾 is the hyper-parameter that balances

the two scores in our model. We suppress the dependence of the scoring function

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(·) on 𝜃 whenever it is clear from context. We optimize the parameter values

in a maximum soft-margin framework. Specifically, for each training pair (x̂, ŷ), we

adjust parameter values to separate the gold tree and other incorrect alternatives.

𝑆𝜃(x̂, ŷ) ≥ 𝑆𝜃(x̂,y) + ||ŷ − y||1, ∀y ∈ 𝒴(x̂) (A.2)

where ||ŷ − y||1 is the number of mismatched arcs between the two trees.
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To solve this learning objective, we adopt the passive-aggressive (PA) online learn-

ing algorithm [20]. In this algorithm, the parameters are updated successively after

each training sentence. Consider the 𝑡-th update where parameters have value 𝜃(𝑡)

and are updated with the training pair (x̂, ŷ). The algorithm first checks whether

the constraint in Equation A.2 is violated under 𝜃(𝑡). This requires “cost-augmented

decoding” to find the maximum violation with respect to the gold tree:

ỹ = arg max
y∈𝒴(x̂)

𝑆𝜃(𝑡)(x̂,y) + ||y − ŷ||1

When the constraint A.2 is violated (i.e. ỹ ̸= ŷ), we seek new parameters 𝜃(𝑡+1) to

fix this violation by solving

min
𝜃,𝜉≥0

1

2
||𝜃 − 𝜃(𝑡)||2 + 𝐶𝜉

s.t. 𝑆𝜃(x̂, ŷ) ≥ 𝑆𝜃(x̂, ỹ) + ||ŷ − ỹ||1 − 𝜉

where 𝜉 ≥ 0 is a slack variable and and 𝐶 is a regularization hyper-parameter. This

problem has a closed form solution.

𝜃(𝑡+1) ← 𝜃(𝑡) + min

{︂
𝐶,

𝑙𝑜𝑠𝑠(𝜃)

||∇𝜃||2
}︂
∇𝜃

where

𝑙𝑜𝑠𝑠(𝜃) = max{0, 𝑆𝜃(𝑡)(x̂, ỹ) + ||ŷ − ỹ||1 − 𝑆𝜃(𝑡)(x̂, ŷ)}

∇𝜃 =
𝜕𝑆𝜃(x̂, ŷ)

𝜕𝜃
− 𝜕𝑆𝜃(x̂, ỹ)

𝜕𝜃
(A.3)

Note that 𝜃 is the set of all parameters, and the update jointly adjusts all low-rank

matrices and the traditional weight vector w. We skip the detail proof of the solution

because it has been shown in prior work [20] and is beyond this thesis. By plugging

the combined scoring (Equation A.1) into ∇𝜃 (Equation A.3), we have the gradient
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for the tradition weight vector

∇w = 𝛾

⎡⎢⎣ ∑︁
ℎ

𝑙−→𝑚∈ŷ

𝜑(ℎ
𝑙−→ 𝑚)−

∑︁
ℎ

𝑙−→𝑚∈ỹ

𝜑(ℎ
𝑙−→ 𝑚)

⎤⎥⎦

The gradient w.r.t to parameter matrices of the tensor takes a similar form. For

example, the gradient of 𝐻 is

∇𝐻 = (1− 𝛾)

⎡⎢⎣ ∑︁
ℎ

𝑙−→𝑚∈ŷ

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐻
−

∑︁
ℎ

𝑙−→𝑚∈ỹ

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐻

⎤⎥⎦

Next, we focus on the derivation of 𝜕𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)/𝜕𝐻. First, recall that we

can view our hierarchical tensor as the combination of three multiway tensors with

parameter sharing.

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚) =

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝑇𝑙𝜑𝑡𝑙 ]𝑖

+
𝑟∑︁

𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝑇𝑢𝜑𝑡𝑢 ]𝑖

+
𝑟∑︁

𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝐻𝜑ℎ]𝑖[𝑀𝜑𝑚]𝑖[𝐷𝜑𝑑]𝑖 (A.4)

The definition of features vectors 𝜑· are summarized in Table 2.3, and we suppress

their dependence on ℎ
𝑙−→ 𝑚. We denote the score of each multiway tensor as

𝑆𝑡1(ℎ
𝑙−→ 𝑚) ≡

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝑇𝑙𝜑𝑡𝑙 ]𝑖

𝑆𝑡2(ℎ
𝑙−→ 𝑚) ≡

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝑇𝑢𝜑𝑡𝑢 ]𝑖

𝑆𝑡3(ℎ
𝑙−→ 𝑚) ≡

𝑟∑︁
𝑖=1

[𝐻𝑐𝜑ℎ𝑐 ]𝑖[𝑀𝑐𝜑𝑚𝑐 ]𝑖[𝐿𝜑𝑙]𝑖[𝐻𝜑ℎ]𝑖[𝑀𝜑𝑚]𝑖[𝐷𝜑𝑑]𝑖
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The gradient w.r.t 𝐻 can be rewritten as

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐻
=

𝑆𝑡1(ℎ
𝑙−→ 𝑚)

𝜕𝐻
+

𝑆𝑡2(ℎ
𝑙−→ 𝑚)

𝜕𝐻
+

𝑆𝑡3(ℎ
𝑙−→ 𝑚)

𝜕𝐻

Because only 𝑆𝑡3 relates to 𝐻

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐻
=

𝑆𝑡3(ℎ
𝑙−→ 𝑚)

𝜕𝐻

= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝜑𝑙)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]⊗ 𝜑ℎ

where (𝑢⊙ 𝑣)𝑖 = 𝑢𝑖𝑣𝑖 is the element-wise product and ⊗ is the tensor product. Other

parameter matrices can be computed similarly.

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝑀
= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝜑𝑙)⊙ (𝐻𝜑𝐻)⊙ (𝐷𝜑𝑑)]⊗ 𝜑ℎ

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐷
= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝜑𝑙)⊙ (𝐻𝜑𝐻)⊙ (𝑀𝜑𝑚)]⊗ 𝜑ℎ

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝑇𝑢

= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝜑𝑙)]⊗ 𝜑𝑡𝑢

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐿
= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝐻𝜑𝐻)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]⊗ 𝜑𝑙

+ [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)⊙ (𝑇𝑢𝜑𝑡𝑢)]⊗ 𝜑𝑙

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝑇𝑙

= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑀𝑐𝜑𝑚𝑐)]⊗ 𝜑𝑡𝑙
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𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝐻𝑐

= [(𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝜑𝑙)⊙ (𝐻𝜑𝐻)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]⊗ 𝜑ℎ𝑐

+ [(𝑀𝑐𝜑𝑚𝑐)⊙ (𝐿𝑐𝜑𝑙𝑐)⊙ (𝑇𝑢𝜑𝑡𝑢)]⊗ 𝜑ℎ𝑐

+ [(𝑀𝑐𝜑𝑚𝑐)⊙ (𝑇𝑙𝜑𝑡𝑙)]⊗ 𝜑ℎ𝑐

𝑆𝑡𝑒𝑛𝑠𝑜𝑟(ℎ
𝑙−→ 𝑚)

𝜕𝑀𝑐

= [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝐿𝜑𝑙)⊙ (𝐻𝜑𝐻)⊙ (𝑀𝜑𝑚)⊙ (𝐷𝜑𝑑)]⊗ 𝜑𝑚𝑐

+ [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝐿𝑐𝜑𝑙𝑐)⊙ (𝑇𝑢𝜑𝑡𝑢)]⊗ 𝜑𝑚𝑐

+ [(𝐻𝑐𝜑ℎ𝑐)⊙ (𝑇𝑙𝜑𝑡𝑙)]⊗ 𝜑𝑚𝑐
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Appendix B

Multilingual Transfer for POS

Tagging

B.1 Parameter Updates of Unsupervised HMM

This section presents the derivation of parameter updates of our unsupervised HMM.

We start by showing the log-likelihood objective that we want to maximize during

the M-step.

𝑙(𝜃) =
∑︁

𝑦′,𝑦∈𝒴×𝒴

𝑒𝑦′,𝑦 log 𝑝𝜃(𝑦
′|𝑦) +

∑︁
𝑥,𝑦∈𝒳×𝒴

𝑒𝑥,𝑦 log 𝑝𝜃(𝑥|𝑦)− 𝛽

2
||𝜃 − 𝜃0||22 (B.1)

where

𝑝𝜃(𝑦
′|𝑦) ∝ exp{𝜃𝑦′,𝑦}

𝑝𝜃(𝑥|𝑦) ∝ exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑥,𝑦}

Note that we use 𝑝𝜃 instead of 𝑝𝑡𝜃 (shown in Equation 3.5) for simplicity when in the

context of no ambiguity. 𝒴 denotes all possible tags and 𝒳 denotes all possible words.

Next, we show the derivation of gradients w.r.t 𝜃𝑦′,𝑦,𝑀 ,𝜇𝑦 and 𝜃𝑥,𝑦. The gradients

of the regularization term in Equation B.1 are straightforward, so we will first skip
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them. We start by showing that the gradient of log 𝑝𝜃(𝑦
′|𝑦) takes the form

𝜕 log 𝑝𝜃(𝑦
′|𝑦)

𝜕𝜃𝑦′,𝑦
=

1

𝑝𝜃(𝑦′|𝑦)

𝜕

𝜕𝜃𝑦′,𝑦

exp{𝜃𝑦′,𝑦}∑︀
𝑢∈𝒴 exp{𝜃𝑢,𝑦}

= 1− 𝑝𝜃(𝑦
′|𝑦)

and for other 𝑦′′ ̸= 𝑦′

𝜕 log 𝑝𝜃(𝑦
′′|𝑦)

𝜕𝜃𝑦′,𝑦
=

1

𝑝𝜃(𝑦′′|𝑦)

𝜕

𝜕𝜃𝑦′′,𝑦

exp{𝜃𝑦′,𝑦}∑︀
𝑢∈𝒴 exp{𝜃𝑢,𝑦}

= −𝑝𝜃(𝑦′|𝑦)

By plugging them into Equation B.1

𝜕𝑙(𝜃)

𝜕𝜃𝑦′,𝑦
= 𝑒𝑦′,𝑦 − 𝑝𝜃(𝑦

′|𝑦)
∑︁
𝑢∈𝒴

𝑒𝑢,𝑦 (B.2)

Similarly, the gradient with regard to 𝜃𝑥,𝑦 is

𝜕𝑙(𝜃)

𝜕𝜃𝑥,𝑦
= 𝑒𝑥,𝑦 − 𝑝𝜃(𝑥|𝑦)

∑︁
𝑤∈𝒳

𝑒𝑢,𝑦 (B.3)

For parameters 𝜇𝑦 ∈ R𝑑 (𝑑 is the dimension of word embeddings)

𝜕 log 𝑝𝜃(𝑥|𝑦)

𝜕𝜇𝑦

=
1

𝑝𝜃(𝑥|𝑦)

𝜕

𝜕𝜇𝑦

exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑥,𝑦}∑︀

𝑤∈𝒳 exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑤,𝑦}

= 𝑣𝑇
𝑥𝑃𝑀 −

∑︁
𝑤∈𝒳

𝑝𝜃(𝑤|𝑦)𝑣𝑇
𝑤𝑃𝑀

Therefore
𝜕𝑙(𝜃)

𝜕𝜇𝑦

=
∑︁
𝑥∈𝒳

𝑒𝑥,𝑦𝑣
𝑇
𝑥𝑃𝑀 −

∑︁
𝑥∈𝒳

𝑒𝑥,𝑦
∑︁
𝑥∈𝒳

𝑝𝜃(𝑥|𝑦)𝑣𝑇
𝑥𝑃𝑀 (B.4)
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Finally, the gradient with regard to 𝑀 is

𝜕 log 𝑝𝜃(𝑥|𝑦)

𝜕𝑀
=

1

𝑝𝜃(𝑥|𝑦)

𝜕

𝜕𝑀

exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑥,𝑦}∑︀

𝑤∈𝒳 exp{𝑣𝑇
𝑥𝑃𝑀𝜇𝑦 + 𝜃𝑤,𝑦}

= 𝑃 𝑇𝑣𝑥𝜇
𝑇
𝑦 −

∑︁
𝑤∈𝒳

𝑝𝜃(𝑤|𝑦)𝑃 𝑇𝑣𝑤𝜇
𝑇
𝑦

and
𝜕𝑙(𝜃)

𝜕𝑀
=

∑︁
𝑦∈𝒴

{︃∑︁
𝑥∈𝒳

𝑒𝑥,𝑦𝑃
𝑇𝑣𝑥𝜇

𝑇
𝑦 −

∑︁
𝑥∈𝒳

𝑒𝑥,𝑦
∑︁
𝑥∈𝒳

𝑝𝜃(𝑥|𝑦)𝑃 𝑇𝑣𝑥𝜇
𝑇
𝑦

}︃
(B.5)
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B.2 Detail Results of typological Prediction

In this section, we show the detail results of five linguistic typological properties

for each language: subject-verb, verb-object, adjective-noun, adposition-noun and

demonstrative noun. We predict values for six languages: Danish, German, Spanish,

Finnish, Hungarian and Indonesian. The evaluation therefore consists of 30 test cases.

We demonstrate the performance of using POS tag sequences from four systems:

prototype-driven method [42] (Prototype), direct transfer model (Direct Transfer),

our full model (Transfer+EM) and gold POS annotations (Gold).

Subject-Verb Table B.1 shows the prediction results of the subject-verb typo-

logical feature. X indicates correct predictions and × indicates wrong predictions.

The feature has three possible values: Subject-Verb (SV), Verb-Subject (VS) and

No-dominant-order (NDO).

Prototype Direct Transfer Transfer+EM Gold Ground Truth

Danish X X X X SV
German × X X X SV
Spanish × X X X NDO
Finnish X X X X SV
Hungarian X X X X SV
Indonesian X X X X SV

Score 4 6 6 6 -

Table B.1: Predictions of the subject-verb typological feature using POS tags from
different methods.
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Verb-Object Table B.2 shows the prediction results of the verb-object typological

feature. The feature has three possible values: Verb-Object (VO), Object-Verb (OV)

and No-dominant-order (NDO).

Prototype Direct Transfer Transfer+EM Gold Ground Truth

Danish X X X X VO
German X × × X NDO
Spanish × X X X VO
Finnish × X X X VO
Hungarian × × × X VO
Indonesian × X X X VO

Score 2 4 4 6 -

Table B.2: Predictions of the verb-object typological feature using POS tags from
different methods.

Adjective-Noun Table B.3 shows the prediction results of the adjective-noun ty-

pological feature. The feature has two possible values: Adjective-Noun (AN), Noun-

Adjective (NA).

Prototype Direct Transfer Transfer+EM Gold Ground Truth

Danish X X X X AN
German × × X X AN
Spanish × X X X NA
Finnish X X X X AN
Hungarian X X X X AN
Indonesian × × × × NA

Score 3 4 5 5 -

Table B.3: Predictions of the adjective-noun typological feature using POS tags from
different methods.
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Adposition-Noun Table B.4 shows the prediction results of the adposition-noun

typological feature. The feature has two possible values: Preposition (Prep), Postpo-

sition (Post).

Prototype Direct Transfer Transfer+EM Gold Ground Truth

Danish X X X X Prep
German X X X X Prep
Spanish X X X X Prep
Finnish X × X X Post
Hungarian × × × × Post
Indonesian X X X X Prep

Score 5 4 5 5 -

Table B.4: Predictions of the adposition-noun typological feature using POS tags
from different methods.

Demonstrative-Noun Table B.5 shows the prediction results of the demonstrative-

noun typological feature. The feature has two possible values: Demonstrative-Noun

(DN), Noun-Demonstrative (ND).

Prototype Direct Transfer Transfer+EM Gold Ground Truth

Danish × × X X DN
German X X X X DN
Spanish X X X X DN
Finnish × × × X DN
Hungarian X × × X DN
Indonesian X × X X ND

Score 4 2 4 6 -

Table B.5: Predictions of the demonstrative-noun typological feature using POS tags
from different methods.
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