Transfer Learning for Low-resource Natural Language Analysis

Yuan Zhang January 30, 2017

Low-resource Problem

Top-performing systems need large amounts of annotated data

Dependency Parsing Accuracy on English

Low-resource Scenarios

Low-resource Languages:

Malagasy annotations ~1,000 tokens

Low-resource Scenarios

Low-resource Languages:

Malagasy annotations ~1,000 tokens

Low-resource Domains:

Medical: ~ 500 sentences

Our Work: Transfer Learning

• Use rich resources in related source tasks to improve target performance

Challenges in Transfer: Multilingual

• Part-of-speech (POS) tagging: different vocabulary

Challenges in Transfer: Multilingual

- Part-of-speech (POS) tagging: different vocabulary
- Dependency parsing: different word ordering

Challenges in Transfer: Monolingual

• Domain transfer: different writing-style

Source: Restaurant reviews

Target: Hotel reviews

The fries were undercooked

The room rained water from above

Challenges in Transfer: Monolingual

• Domain transfer: different writing-style

Aspect transfer: different aspects in the same domain

General Setup: Low-resource Transfer

• No annotations for the target task

	Source	Target
Labeled	\checkmark	×
Unlabeled	\checkmark	\checkmark

- No parallel data, or a few word translation pairs
- Low level of human effort
 - Existing external resources
 - No feature engineering

General Setup: Low-resource Transfer

• No annotations for the target task

	Source	Target
Labeled	\checkmark	×
Unlabeled	\checkmark	\checkmark

- No parallel data, or a few word translation pairs
- Low level of human effort
 - Existing external resources
 - No feature engineering

Contribution: Improve low-resource transfer in multilingual and monolingual scenarios

Our Approach

Multilingual Transfer:

- Hierarchical tensors for dependency parsing
 - Prior knowledge incorporation without feature engineering
 - Multilingual embeddings for POS tagging

Monolingual Transfer:

Adversarial networks for aspect transfer

Multilingual Transfer for Dependency Parsing

Train on Source Languages Test on Target Language French English Je mange une pomme rouge (apple) (|)(eat) (a) (red) . . . **Dependency Parser** Spanish Je mange une pomme rouge (|)(eat) (a) (apple) (red) * sentences are non-parallel

Non-lexical Transfer via Universal POS

Challenge: Different Word Ordering

Solution: Linguistic Typology

• Form of typological features

Typological Feature	English	French
87A: Order of Noun and Adjective	ADJ-NOUN	NOUN-ADJ

Idea of selective transfer

English: 87A=ADJ-NOUN ~

French: 87A=NOUN-ADJ

Spanish: 87A=NOUN-ADJ

Traditional Approach: Feature Engineering

• Manually conjoin standard parsing features with typological features (Täckström et al., 2013)

 $f_{100}(\cdot) = I$ {head POS=NOUN, modifier POS=ADJ, direction=Right, 87A=NOUN-ADJ}

* 87A: code of noun-adjective typological feature

Traditional Approach: Feature Engineering

• Manually conjoin standard parsing features with typological features (Täckström et al., 2013)

 $f_{100}(\cdot) = I$ {head POS=NOUN, modifier POS=ADJ, direction=Right, 87A=NOUN-ADJ}

* 87A: code of noun-adjective typological feature

· Features are selectively shared

English: 87A=ADJ-NOUN

 $f_{100}(\bigwedge_{\text{NOUN ADJ}}) = 0$ French: 87A=NOUN-ADJ $f_{100}(\bigwedge_{\text{NOUN ADJ}}) = 1$ $f_{100}(\bigwedge_{\text{NOUN ADJ}}) = 1$

Traditional Approach: Feature Engineering

• Manually conjoin standard parsing features with typological features (Täckström et al., 2013)

 $f_{100}(\cdot) = I$ {head POS=NOUN, modifier POS=ADJ, direction=Right, 87A=NOUN-ADJ}

* 87A: code of noun-adjective typological feature

· Features are selectively shared

English: 87A=ADJ-NOUN $f_{100}(\bigwedge_{\text{NOUN} ADJ}) = 0$ French: 87A=NOUN-ADJ Spanish: 87A=NOUN-ADJ $f_{100}(\bigwedge_{\text{NOUN} ADJ}) = 1$

In practice, need to manually construct hundreds of features

Tensor Scoring Method

- Represent arc features in a tensor view (e.g., 4-way tensor)
- Automatically capture all possible feature combinations

- Avoid parameter explosion via low-rank factorization
- Learn feature mappings to a low-rank representation

• Compute low-rank representation of an arc via element-wise product

- Compute low-rank representation of an arc via element-wise product
- Compute arc score as:

Issue of Tensor Methods

• Capture invalid feature combinations and assign non-zero weights

Issue of Tensor Methods

- Capture invalid feature combinations and assign non-zero weights
- Should avoid directly taking tensor-product between typology and others

Avoid Product Operation

Target Feature Combination

• Union of different feature groups

 Element-wise sum operation over different representations of the same set of atomic features

 Element-wise sum operation over different representations of the same set of atomic features

Solution: Hierarchical Structure

Solution: Hierarchical Structure

Algebraic Interpretation

- Algebraically equal the sum of three multiway tensors with shared parameters
- Capture three groups of feature combinations

Algebraic Interpretation

- Algebraically equal the sum of three multiway tensors with shared parameters
- Capture three groups of feature combinations

Avoid Invalid Features

• Exclude the combination of typology with head, modifier and direction

Assign zero weights to invalid features

* Weight of {head POS=VERB, mod POS=NOUN, typology=ADJ-NOUN} is 0

Parameter Initialization and Learning

Algebraic view:

Compute the gradient for each multiway tensor and take the sum

Tensor initialization:

Use iterative power methods

Parameter learning:

Adopt online learning with passive-aggressive algorithm

Other details:

Follow previous work (Lei et al., 2015)

Experimental Setup

Dataset: Universal Dependency Treebank v2.0

- 10 languages
- Universal POS tags (12 tags)
- Stanford dependency labels (40 labels)

Baselines:

- Direct transfer (McDonald et al., 2005)
- Feature-based transfer (Täckström et al., 2013)
- Traditional multiway tensor

Averaged Unlabeled Attachment Score (UAS)

• Setting: no annotations in the target language

• NT-Select: our model without the tensor component, corresponding to prior feature-based method (Täckström et al., 2013)

• Multiway: traditional multiway tensor without hierarchical structure

Semi-supervised Results

79 77.9 76.9 77 76.2 75.6 75 73.4 73 71 **Direct Transfer** Sup50 NT-Select Multiway Ours

Averaged Unlabeled Attachment Score (UAS)

- Setting: 50 annotated sentences in the target language
- Sup50: trained only on the 50 sentences in the target language

Summary

- *Modeling:* we present a hierarchical tensor that effectively uses linguistic prior knowledge
- Performance: our model outperforms state-of-the-art approach and traditional tensors
- Limitation: our model heavily relies on non-lexical transfer via universal POS tags

Next part: lexical-level multilingual transfer

Our Approach

Multilingual Transfer:

- Hierarchical tensors for dependency parsing
- Multilingual embeddings for POS tagging
 - Effective multilingual transfer with ten translation pairs

Monolingual Transfer:

Adversarial networks for aspect transfer

Tagging Accuracy on German

Supervised 700k tokens (Brants, 2000)

Tagging Accuracy on German

How little parallel data is necessary to enable multilingual transfer?

Our Work

- Task: multilingual transfer of part-of-speech (POS) tagging
- Data:

	Source	Target	
Labeled	\checkmark	×	
Unlabeled	\checkmark	✓ (nor	n-parallel data)

Our Work

- Task: multilingual transfer of part-of-speech (POS) tagging
- Data:

	Source	Target	
Labeled	\checkmark	×	
Unlabeled	\checkmark	✓ (nor	n-parallel data)

Ten Translation Pairs				
. .	und and			
, ,	dem the			
der the	von from			
die the	- -			
in in	zu to			

Our Work

- Task: multilingual transfer of part-of-speech (POS) tagging
- Data:

Our Two-step Method

1. Learn coarse mapping between embeddings via ten translation pairs

2. Refine embedding transformations and model parameters via unsupervised learning on the target language

- Goal: find a linear transformation from target to source embedding space
- Objective: minimize the distance between translation pairs

Monolingual Embedding

- Goal: find a linear transformation from target to source embedding space
- Objective: minimize the distance between translation pairs

Monolingual Embedding

- Goal: find a linear transformation from target to source embedding space
- Objective: minimize the distance between translation pairs

Too many degrees of freedom

dimension:	20
# pairs:	10
degree of freedom:	10

- Goal: find a linear transformation from target to source embedding space
- Objective: minimize the distance between translation pairs

Too many degrees of freedom

dimension:	20
# pairs:	10
degree of freedom:	10

- Transformation ${m P}$ is an isometric (orthonormal) matrix
- Transformation preserves angles and lengths (cosine similarity) of word vectors, thus preserving semantic relations

Isometric Solution

- Transformation ${m P}$ is an isometric (orthonormal) matrix
- Transformation preserves angles and lengths (cosine similarity) of word vectors, thus preserving semantic relations
 cos(cat, dog) ≈ cos(Katze, Hund), cos(dog, red) ≈ cos(Hund, rot)

Monolingual Embedding

Isometric Solution

- Transformation ${m P}$ is an isometric (orthonormal) matrix
- Transformation preserves angles and lengths (cosine similarity) of word vectors, thus preserving semantic relations

Isometric Solution

- Transformation $I\!\!P$ is an isometric (orthonormal) matrix
- Transformation preserves angles and lengths (cosine similarity) of word vectors, thus preserving semantic relations

- Transformation ${m P}$ is an isometric (orthonormal) matrix
- Transformation preserves angles and lengths (cosine similarity) of word vectors, thus preserving semantic relations
- Use the steepest descent algorithm (Abrudan et al., 2008)

Monolingual Embedding

Isometric Solution

Validation of Isometric Constraints

- Validation for $\cos(\cot, dog) \approx \cos(Katze, Hund)$
- Verify whether nearest neighbors are preserved after translations

Validation of Isometric Constraints

- Validation for $\cos(\cot, dog) \approx \cos(Katze, Hund)$
- Verify whether nearest neighbors are preserved after translations

Direct Transfer Model

- Supervised source language HMM
 - Feature-based HMM (Berg-Kirkpatrick et al., 2010)
 - Word embeddings as emission features

Direct Transfer Model

- Supervised source language HMM
 - Feature-based HMM (Berg-Kirkpatrick et al., 2010)
 - Word embeddings as emission features

Coarse mapping is not accurate
Our Two-step Method

1. Learn coarse mapping between embeddings via ten translation pairs

2. Refine embedding transformations and model parameters via unsupervised learning on the target language

- Use the direct transfer model (based on the coarse mapping) to initialize and regularize the unsupervised tagger on the target language
- Refine mapping via global linear transformation M and local non-linear adjustment $\theta_{x,y}$

$$p(x|y) \propto \exp\{\boldsymbol{v}_x^T \boldsymbol{P} \boldsymbol{M} \boldsymbol{\mu}_y + \theta_{x,y}\}$$

- Use the direct transfer model (based on the coarse mapping) to initialize and regularize the unsupervised tagger on the target language
- Refine mapping via global linear transformation M and local non-linear adjustment $\theta_{x,y}$

- Use the direct transfer model (based on the coarse mapping) to initialize and regularize the unsupervised tagger on the target language
- Refine mapping via global linear transformation M and local non-linear adjustment $\theta_{x,y}$

- Use the direct transfer model (based on the coarse mapping) to initialize and regularize the unsupervised tagger on the target language
- Refine mapping via global linear transformation M and local non-linear adjustment $\theta_{x,y}$

- Use the direct transfer model (based on the coarse mapping) to initialize and regularize the unsupervised tagger on the target language
- Refine mapping via global linear transformation M and local non-linear adjustment $\theta_{x,y}$

Experimental Setup

- Datasets: Universal Dependency Treebank v1.2
 - Source: English
 - Target (Indo-European): Danish, German, Spanish
 - Target (non-Indo-European): Finnish, Hungarian, Indonesian
- Universal tagset: 14 tags (noun, verb, adjective etc.)
- Word embeddings: 20-dimension vectors trained on Wiki dumps using word2vec

Indo-European Results

Averaged Accuracy on Indo-European Languages

Non-Indo-European Results

Averaged Accuracy on non-Indo-European Languages

Prediction of Linguistic Typology

- Task: predict whether a language is verb-object or object-verb (five typological properties)
- Features: bigrams and trigrams of POS tags

Impact of Amount of Supervision

• Ours Full with 10 pairs = 150 prototypes

Impact of Amount of Supervision

- Ours Full with 10 pairs = 150 prototypes
- Prototype improves with large amount of annotations

Summary

- Modeling: ten translation pairs are sufficient to enable multilingual transfer for POS tagging
- *Performance:* our model significantly outperforms the direct transfer and the prototype-driven method

Our Approach

Multilingual Transfer:

- Hierarchical tensors for dependency parsing
- Multilingual embeddings for POS tagging

Monolingual Transfer:

- Adversarial networks for aspect transfer
 - Joint aspect-driven encoding and domain adversarial training

Aspect Transfer in Pathology Report

Pathology report:

FINAL DIAGNOSIS: BREAST (LEFT) ... INVASIVE DUCTAL
CARCINOMA (IDC) Tumor size: num x num x num cm Grade:
3. Lymphatic vessel invasion (LVI): Not identified. Blood vessel
invasion: Suspicious. Margin of invasive carcinoma ...

Diagnosis results:

IDC: Positive

LVI: Negative

Transfer:

Source: IDC

Target: LVI

Challenge

Same report; Different key sentences

Source Aspect: IDC

Target Aspect: LVI

FINAL DIAGNOSIS: BREAST (LEFT) ... INVASIVE DUCTAL
CARCINOMA (IDC) Tumor size: num x num x num cm Grade:
3. Lymphatic vessel invasion (LVI): Not identified. Blood vessel
invasion: Suspicious. Margin of invasive carcinoma ...

 Traditional methods will fail because they always induce the same representation for the same input

Available Supervision

	Source	Target
Labeled Data		×
Unlabeled Data		
Relevance Rules		

- Relevance rules: common names of aspects
 - ALH: Atypical Lobular Hyperplasia, ALH
 - IDC: Invasive Ductal Carcinoma, IDC

Transfer Assumption: Aspects Are Related

• Different aspects share the same label set: positive/negative

IDC: Positive LVI: Negative

Transfer Assumption: Aspects Are Related

Different aspects share the same label set: positive/negative

IDC: Positive LVI: Negative

Common words are directly transferrable

Invasive Carcinoma is present

Label: Positive

Lymphatic vessel invasion: present Label: Positive

Transfer Assumption: Aspects Are Related

Different aspects share the same label set: positive/negative

IDC: Positive LVI: Negative

Common words are directly transferrable

Invasive Carcinoma is present Label: Positive

Lymphatic vessel invasion: present Label: Positive

- Aspect-specific words are not directly transferrable
 - Goal: map them to invariant representations

Key Idea: Aspect-driven Encoding

- Leverage relevance rules to learn to identify key sentences
- Learn differential representations for different aspects from the same input

Key Idea: Aspect-driven Encoding

- Leverage relevance rules to learn to identify key sentences
- Learn differential representations for different aspects from the same input

Reduce aspect transfer to standard domain adaptation

Key Idea: Domain-Adversarial

- Jointly train a domain classifier
- Use domain-adversarial training for learning invariant representations
 - Objective: Not separable by the domain classifier

Overall Framework: Three Components

Overall Framework: Three Components

Sentence Embedding

Apply a CNN to each sentence

Sentence Embedding

- Apply a CNN to each sentence
- Improve adversarial training by reconstruction

Aspect-relevance Prediction

- Predict relevance score based on sentence embeddings
- Train on relevance rules (e.g., names of IDC, LVI)

Aspect-relevance Prediction

- Predict relevance score based on sentence embeddings
- Train on relevance rules (e.g., names of IDC, LVI)

Aspect-driven Document Encoding

Combine sentence vectors based on relevance weights

Aspect-driven Document Encoding

- Combine sentence vectors based on relevance weights
- Add a transformation layer at the end

Document Label Predictor

- Share for both source and target aspects
- Train on labeled data in the source aspect

Domain Classifier and Adversary

- Learn domain-invariant representations
- Train on both labeled and unlabeled data

Pathology Dataset

 Aspect-transfer on breast cancer pathology reports from hospitals such as MGH

Pathology Dataset

Aspect-transfer on breast cancer pathology reports from hospitals such ulletas MGH

Source: IDC

Target: LCIS

FINAL DIAGNOSIS: BREAST (LEFT) ... INVASIVE DUCTAL **CARCINOMA Grade: 3. Lobular Carcinoma In-situ: Not identified.** Blood vessel invasion: Suspicious. ...

Statistics and relevance rules: ullet

Aspects	#Labeled	#Unlabeled	Relevance Rules
DCIS	23.8k	96.6k	DCIS, Ductal Carcinoma In-Situ
LCIS	10.7k		LCIS, Lobular Carcinoma In-Situ
IDC	22.9k		IDC, Invasive Ductal Carcinoma
ALH	9.2k		ALH, Atypical Lobular Hyperplasia

✤ 500 reports for testing

Review Dataset

- Domain transfer for sentiment analysis: positive or negative
- Common words (e.g. excellent) are directly transferrable, but domain-specific words are not

Review Dataset

- Domain transfer for sentiment analysis: positive or negative
- Common words (e.g. excellent) are directly transferrable, but domain-specific words are not

• Statistics and relevance rules:

Domains	#Labeled	#Unlabeled	Relevance Rules
Hotel	100k	100k	Five aspects, 290 keywords (Wang et al., 2011)
Restaurant	-	200k	(only one <i>overall</i> aspect)

2k reviews for testing

Averaged accuracy over 6 transfer scenarios

• mSDA: marginalized stacked denoising autoencoder (Chen et al., 2012)

Averaged accuracy over 6 transfer scenarios

• Ours-NA: our model without adversarial training

Averaged accuracy over 6 transfer scenarios

• Ours-NR: our model without aspect-relevance scoring

Averaged accuracy over 6 transfer scenarios

• In-domain: supervised training with in-domain annotations

Results on Review Dataset

Averaged accuracy over 5 transfer scenarios

- Ours-NR and Ours-Full are the two best performing systems
- Relevance scoring has little impact because aspects are highly correlated

Impact of Reconstruction

Average accuracy on the pathology dataset

• The same observation on the review dataset

Reason behind Improvement

- Heat-map: each row corresponds to a document vector
 - Top: source domain; Bottom: target domain
- Adversarial training removes lots of information

Reason behind Improvement

- Heat-map: each row corresponds to a document vector
 - Top: source domain; Bottom: target domain
- Adversarial training removes lots of information
- The reconstruction loss improves both the richness and diversity of the learned representations

Case Study of Learned Representations

Restaurant Reviews

 the fries were undercooked and thrown haphazardly into the sauce holder. the shrimp was over cooked and just deep fried even the water tasted weird.

Case Study of Learned Representations

Restaurant Reviews

 the fries were undercooked and thrown haphazardly into the sauce holder. the shrimp was over cooked and just deep fried even the water tasted weird.

Nearest Hotel Reviews by Ours-Full: learns to map domain-specific words

- the room was **old** we did n't like the night shows at all
- however, the decor was just fair in the second bedroom it literally rained water from above.

distance measured by cosine similarity between representations

Case Study of Learned Representations

Restaurant Reviews

 the fries were undercooked and thrown haphazardly into the sauce holder. the shrimp was over cooked and just deep fried even the water tasted weird.

Nearest Hotel Reviews by Ours-Full: learns to map domain-specific words

- the room was **old** we did n't like the night shows at all
- however, the decor was just fair in the second bedroom it literally rained water from above.

Nearest Hotel Reviews by Ours-NA: only captures common sentiment phrases

- rest room in this restaurant is very dirty
- the only problem i had was that ... i was very ill with what was suspected to be food poison
- distance measured by cosine similarity between representations

Summary

• *Modeling:* an aspect-augmented adversarial network for cross-aspect and cross-domain transfer tasks.

• *Performance:* our model significantly improves over the mSDA baseline and our model variants on a pathology and a review dataset

Contributions

Multilingual Transfer:

- Hierarchical tensors for dependency parsing
 - Prior knowledge incorporation without feature engineering
- Multilingual embeddings for POS tagging
 - Effective multilingual transfer with ten translation pairs

Monolingual Transfer:

- Adversarial networks for aspect transfer
 - Joint aspect-driven encoding and domain adversarial training

Thank you!

Contributions

Multilingual Transfer:

- Hierarchical tensors for dependency parsing
 - Prior knowledge incorporation without feature engineering
- Multilingual embeddings for POS tagging
 - Effective multilingual transfer with ten translation pairs

Monolingual Transfer:

- Adversarial networks for aspect transfer
 - Joint aspect-driven encoding and domain adversarial training

Backup Slides

Typological Features

Word ordering: five features, e.g.

Order of Subject and Verb (82A)

Order of Adjective and Noun (87A)

Typological feature templates: eight templates, e.g.

direction, 87A, head POS=NOUN, modifier POS=ADJ

direction, 82A, head POS=VERB, modifier POS=NOUN, label=SUBJ

Feature Weights of Multiway Model

Weights of valid features:

```
head POS=NOUN, mod POS=ADJ, 87A=ADJ-NOUN 2.24 \times 10^{-3}
```

Weights of invalid features:

head POS=VERB, mod POS=NOUN, 87A=ADJ-NOUN 8.88×10^{-4}

head POS=NOUN, mod POS=NOUN, 87A=ADJ-NOUN 9.48×10^{-4}

Multiway model assigns non-zero weights to invalid features

Impact of Embedding Dimensions and Window Size

- Train embeddings with different dimensions and context window size
- Small window size favors POS tagging

Impact of Embedding Dimensions and Window Size

- Train embeddings with different dimensions and context window size
- Small window size favors POS tagging
- · Performance drops with either smaller or larger dimensions

