

SHANGHAI JIAO TONG UNIVERSITY

学⼠学位论⽂
BACHELOR’S THESIS

论⽂题⺫：Rank Revealing Algorithms and its Applications

 学⽣姓名: 包昱嘉

 学⽣学号: 5120719015

 专 业: 数学与应⽤数学

 指导教师: ⺩增琦

 学院(系) : 数学科学学院

Rank Revealing Algorithms and its Applications

Rank-reveal 类算法及其应用

摘要

随着大数据时代的来临，rank revealing QR(RRQR)分解在子集选择法(subset

selection)、最小二乘(least squares problem)、完全最小二乘(total least squares

problems)等秩缺失问题上有着越来越多的应用。本文对 RRQR 算法进行了系统性的研究，

主要工作概括如下：

1. 系统地介绍了目前高性能、接受度广的三类 RRQR 算法，并拓展了其中一些理论性

结果，独立补充了一些结果的理论性证明；

2. 基于现有方法，本文提出了新型的用于计算强 RRQR 分解的贪婪型强 RRQR 算法，提

升了原算法的计算效率；

3. 设计了一系列数值算例，体现了各类算法的实际运算特点。

 理论和实验结果表明，原有的强 RRQR 算法及新提出的贪婪型强 RRQR 算法都能给出一

个强 RRQR 分解，而贪婪型强 RRQR 算法在计算高效性方面明显优于原算法。在求解秩缺失

型问题时，RRQR 分解与传统的 SVD 分解相比，可以达到令人满意的计算精度，但时间明显

占优。

关键词：rank-revealing QR 分解，秩缺失问题

Rank Revealing Algorithms and its Applications

RANK REVEALING ALGORITHMS AND ITS

APPLICATIONS

ABSTRACT

As the era of big data is coming, rank revealing QR (RRQR) factorization has more

and more applications on rank deficient problems such as subset selection, least squares

problem, total least squares problem. This thesis systematically studied the RRQR

algorithms. The main contributions are summarized as following:

1. This thesis presents a systematic review of three kinds of widely-used and high-

performance RRQR algorithms. I extend some existing theorems and indepen-

dently complete some parts of the theoretical analysis.

2. Based on the existing methods, I propose a new greedy strong RRQR algorithm

for computing a strong RRQR factorization. The new algorithm greatly improves

the time efficiency of the origin algorithm.

3. I design a series of numerical experiments to show the computation characteristics

of different kinds of algorithms.

Theoretical analysis and numerical results show that both the origin strong RRQR al-

gorithm and the new greedy strong RRQR algorithm can promise a strong RRQR fac-

torization while the new algorithm is significantly faster than the origin algorithm. For

rank deficient problem, RRQR factorization gives satisfactory computation accuracy

while it is much more efficient than the traditional method, which involves computing

the SVD.

Keywords: rank-revealing QR factorization, rank deficient problems

Rank Revealing Algorithms and its Applications

Contents

1 Introduction 1
1.1 Overview of this Thesis . 1
1.2 Main Contributions . 3
1.3 Backgrounds . 5

1.3.1 Matrix Factorization . 5
1.3.2 Rank Revealing Algorithms 6

2 QR Factorization 8
2.1 Householder QR Factorization . 8

2.1.1 Householder Reflections . 8
2.1.2 Algorithm Householder QR 11

2.2 Givens QR Factorization . 14
2.2.1 Givens Rotations . 14
2.2.2 Algorithm Givens QR . 15

2.3 Comparison between Householder Reflections and Gives Rotations . . . 17

3 Greedy Rank Revealing QR Factorization 18
3.1 Background . 18
3.2 Greedy Algorithms for Problem Type-I 21

3.2.1 Algorithm Greedy-I.1 . 21
3.2.2 Algorithm Greedy-I.2 . 22
3.2.3 Algorithm Greedy-I.3 . 24
3.2.4 Algorithm QR with Column Pivoting 25
3.2.5 Algorithm Chan . 26
3.2.6 Algorithm GKS . 28
3.2.7 Algorithm Foster . 30
3.2.8 Bounds at each Iteration . 30
3.2.9 Bounds for the Final Result 33
3.2.10 Pessimistic Example . 38

3.3 Greedy Algorithms for Problem Type-II 39
3.3.1 The Unification Principle . 39
3.3.2 Bounds for the Final Result 41
3.3.3 Pessimistic Example . 43

4 Hybrid Rank Revealing QR Factorization 44
4.1 Hybrid Algorithm for Problem Type-I 45

4.1.1 Algorithm Hybrid-I . 45
4.1.2 Analytical Bound . 48

4.2 Hybrid Algorithm for Problem Type-II 49
4.2.1 Algorithm Hybrid-II . 49

Rank Revealing Algorithms and its Applications

4.2.2 Analytical Bound . 51
4.3 Hybrid Algorithm for Problem Type-III 53

4.3.1 Algorithm Hybrid-III . 53
4.3.2 Analytical Bound . 54

5 Strong Rank Revealing QR Factorization 56
5.1 Background . 56
5.2 Strong RRQR Factorization . 58

5.2.1 Algorithm SRRQR-1 . 58
5.2.2 Algorithm SRRQR-2 . 64
5.2.3 Algorithm GSRRQR . 65
5.2.4 Algorithm SRRQR-3 . 66

5.3 Implementation Techniques . 68
5.3.1 Updating Formula . 69
5.3.2 Reduction from a General Case to a Special Case 70
5.3.3 Modifying Formula for a Special Case 71

6 Applications and Numerical Experiments 74
6.1 Revealing Matrix Rank Deficiency . 74

6.1.1 Matrix-I . 75
6.1.2 Matrix-II . 78
6.1.3 Matrix-III . 80
6.1.4 Matrix-IV . 82

6.2 Rank Deficient Least Squares Problem 83
6.2.1 Theoretical Analysis . 83
6.2.2 Numerical Experiment . 89

6.3 Subset Selection Problem . 90
6.3.1 Theoretical Analysis . 90
6.3.2 Numerical Experiment . 94

6.4 Matrix Approximation and Image Compression 95
6.4.1 Theoretical Analysis . 95
6.4.2 Numerical Experiment . 97

7 Conclusions 100
7.1 Summary of the Thesis . 100
7.2 Future Work . 101

REFERENCES 102

Appendix A MATLAB Code for RRQR Factorization 106
A.1 QR Factorization . 106

A.1.1 Householder Transformation 106
A.1.2 Givens Rotation . 106
A.1.3 Householder QR . 106
A.1.4 Givens QR . 107

Rank Revealing Algorithms and its Applications

A.2 Greedy RRQR Factorization . 108
A.2.1 Power Method . 108
A.2.2 Inverse Power Method . 108
A.2.3 Algorithm Greedy-I.1 . 108
A.2.4 Algorithm Greedy-I.2 . 109
A.2.5 Algorithm Greedy-I.3 . 110
A.2.6 Algorithm QR with Column Pivoting 111
A.2.7 Algorithm Chan . 111
A.2.8 Algorithm GKS . 112
A.2.9 Algorithm Foster . 120

A.3 Hybrid RRQR Factorization . 121
A.3.1 Algorithm Hybrid-I . 121
A.3.2 Algorithm Hybrid-II . 123
A.3.3 Algorithm Hybrid-III . 123

A.4 Strong RRQR Factorization . 124
A.4.1 Algorithm SRRQR-1 . 124
A.4.2 Algorithm SRRQR-2 . 126
A.4.3 Algorithm GSRRQR-1 . 128
A.4.4 Algorithm GSRRQR-2 . 131
A.4.5 Algorithm SRRQR-3 . 133

Appendix B MATLAB Code for Numerical Experiments 137
B.1 Revealing Matrix Rank Deficiency . 137
B.2 Rank Deficient Least Square Problems 140
B.3 Subset Selection Problem . 141
B.4 Matrix Approximation and Image Compression 142

Rank Revealing Algorithms and its Applications

Chapter 1 Introduction

1.1 Overview of this Thesis

This thesis intends to be a self-contained survey for QR and RRQR factorization.

In Chapter 1, I presents the background of matrix factorization and rank revealing

algorithms. SVD is the most reliable algorithm for dealing with rank deficient problems.

However, it is expensive in computation. Rank revealing algorithms offer a cheaper

alternative for SVD and they often work well in practice.

In Chapter 2, I discuss two important orthogonal transformations, Householder re-

flections and Givens rotations. These two orthogonal transformations form the basis of

QR factorization. Then in Section 2.3, I compare these two orthogonal transformations

and show that Householder reflection is good at zeroing out a large amount of elements

simultaneously from the given vector while Givens rotation is good at zeroing out el-

ements more selectively. This property enables fast implementation of the following

RRQR algorithms.

In Chapter 3, I talk about greedy algorithms for computing an RRQR factorization.

At each step, the greedy strategy tries to find the best column from the right portion and

then adds it into the left portion. Before discussing the algorithms, I first formulate the

problem of finding an RRQR factorization as three optimization problems in Section

3.1. Then, in Section 3.2, I present 7 greedy RRQR algorithms for solving Problem-I

in a hierarchical order. I also prove the theoretical bounds that these algorithms will

guarantee and show that most greedy algorithms fail to find a good permutation for

Kahan matrix. After that, in Section 3.3, I focus on Problem-II. By the unification

principle, all algorithms in Section 3.2 can be converted into a corresponding version for

solving Problem-II. Those theoretical bounds and pessimistic examples for Problem-I

can also be carried out to algorithms for Problem-II by the unification principle.

One major deficiency of these greedy algorithms is that they don’t consider permut-

ing columns which have already been selected at previous time. Based on these greedy

1

Rank Revealing Algorithms and its Applications

algorithms, Chapter 4 discusses hybrid algorithms for computing an RRQR factoriza-

tion. Suppose we are given an m × n matrix M and a parameter k. Hybrid algorithm

alternates between two greedy algorithms, one for Problem-I and one for Problem-II.

The Problem-I algorithm permutes column k with column j, n > j > k, so that the new

column k is the ‘best’ among column k, ..., n of the matrix. The Problem-II algorithm

permutes column k with column i, 1 < i < k, so that the new column k is the ‘worst’

among column 1, ..., k of the matrix. Though there is no analysis on the total number

of iterations that these hybrid algorithms will perform, hybrid algorithms run very fast

in practice and always give a better result than the previous greedy algorithms.

However, RRQR factorization cannot guarantee a stable approximation for the right

null space of the given matrix. Chapter 5 focuses on strong RRQR (SRRQR) factoriza-

tion which aims to resolve this shortcoming. I first show two SRRQR algorithms for

computing a strong RRQR factorization. Then I combine these two algorithms with the

greedy strategy and develop two greedy strong RRQR (GSRRQR) algorithms. These

GSRRQR algorithms run much faster than the origin SRRQR algorithms while still

guarantee a strong RRQR factorization. After that, in subsection 5.2.4, I present a gen-

eral method to reveal the numerical rank k. In the end of this chapter, I show three

important techniques that enable fast implementation of hybrid, SRRQR and GSRRQR

algorithms in Section 5.3 .

Chapter 6 focuses on the application of RRQR factorization and shows their nu-

merical performances. In Section 6.1, I compare the numerical performance of al-

gorithm Greedy-I.1, Greedy-I.2, Greedy-I.3, QR with column pivoting, Chan, GKS,

Foster, Hybrid-I, Hybrid-II, Hybrid-III, SRRQR-1, SRRQR-2, GSRRQR-1, GSRRQR-

2 on 4 different kinds of matrices with different sizes. The results show that SRRQR

algorithms have the best performance among all these algorithms and GSRRQR algo-

rithms are much faster than the origin SRRQR algorithms. Then in Section 6.2, I show

how to apply RRQR factorization in rank deficient least squares problem. Through

theoretical analysis and numerical experiments, I show that the SVD-based solution

and the RRQR-based solution are similar if the gap between σk and σk+1 is very large.

In Section 6.3, I present the application in subset selection problem. The numerical

2

Rank Revealing Algorithms and its Applications

results show that RRQR-based solution is better than the SVD-based solution though

RRQR-based solution is much cheaper to compute. In Section 6.4, I show the appli-

cation in matrix approximation. Theoretical analysis shows that as long as σk is small,

the RRQR-based approximation error is also small. I further apply RRQR factorization

to image compression and see that the difference between RRQR-based approximation

and SVD-based approximation is negligible.

Finally, Appendix A shows all MATLAB codes for these RRQR algorithms. Ap-

pendix B shows all MATLAB codes for the numerical experiments.

1.2 Main Contributions

The major contribution of thesis is the development of these GSRRQR algorithms.

Though there is no analytical bound on how much time we could save by using GSR-

RQR algorithm instead of the origin SRRQR algorithm, numerical results over matrices

of different kinds and different sizes show that the new proposed GSRRQR algorithm

is significantly faster than the origin SRRQR algoirthm.

This is the first survey that discusses greedy RRQR algorithms, hybrid RRQR al-

gorithms and strong RRQR algorithms both analytically and numerically. Detailed nu-

merical results are presented so that one can easily see the performances of different

RRQR algorithms. I also show three applications of RRQR factorization. The theoret-

ical analysis and numerical results reveal that RRQR can give approximately the same

solution as SVD for rank deficient problems while it is much cheaper to compute.

In this thesis, I extended some existing theorems and results. I list them as following.

• For the analytical bound of greedy algorithms, Ipsen showed the following bound

σk(M)

n∥W−1∥2
≤ σmin(R11) ≤ σk(M)

holds for algorithm QR with column pivoting-I, Chan-I and GKS-I. Based on his

proof, I further get

σk(M)√
nk∥W−1∥2

≤ σmin(R11) ≤ σk(M),

3

Rank Revealing Algorithms and its Applications

for algorithm Chan-I and

σk(M)√
n∥W−1∥2

≤ σmin(R11) ≤ σk(M),

for algorithm QR with column pivoting-I and GKS-I.

• Chan ([1], 1992) showed a brief proof of Theorem 6.3.2 for algorithm Chan. I

extend it to any RRQR algorithms and show a detailed proof.

• Based on the updating formula given by ([2], Gu, 1996), in Section 5.3.1, I re-

lax the condition of the diagonal elements and allow them to be negative. This

improves the stability of the algorithm.

• I complete the second part of the proof for Theorem 6.2.1 based on Chan ([1],

1992).

I also independently proved some theorems in this thesis.

• I independently proved Theorem 3.3.1 which enable us to transfer the analytical

bound of greedy algorithm for solving Problem-I to the bound of the correspond-

ing algorithm for solving Problem-II.

• I independently proved Theorem 4.2.1 which gives the analytical bound for algo-

rithm Hybrid-II.

• I independently showed Theorem 6.4.1, which gives an analytical bound on the

approximation error of RRQR-based matrix approximation.

I fixed some errors in the previous literatures.

• In Section 5.3.3, I correct an error of the modifying formula of ω(Āk) given by

Gu ([2], 1996).

• In the proof of Lemma 5.2.1, I correct an error in the formula of Ã−1
k given by

Gu ([2], 1996).

• In the derivation of the lower bound for greedy algorithms at each iteration, I

correct an error in Inequality (3-9) given by Ipsen ([3], 1994).

4

Rank Revealing Algorithms and its Applications

1.3 Backgrounds

1.3.1 Matrix Factorization

Finding the numerical rank of a certain matrix is one of the most important problems.

It arises from many scientific and computational problems, such as subset selection,

linear least squares, rank determination and matrix approximation. It also has potential

applications in image compression and features selection from big data. Matrix fac-

torizations provide efficient methods for finding the numerical rank and have received

common concerns recently.

QR factorization ([4], Francis, 1961) decomposes a matrix as M = QR, where M

is a given m × n general matrix with m ≥ n, Q is an m ×m unitary matrix and R is

an m×n upper triangular rectangular matrix. There are several methods for computing

the QR factorization, such as the Gram-Schmidt process, Householder reflections and

Givens rotations ([5], Golub et al., 2012). Since QR factorization maintains the con-

dition number of the matrix, it provides a reliable way to solve a linear least squares

problem. Another application for QR factorization is the eigenvalue problem. The QR

algorithm, which performs QR factorization at each iteration, is an iterative method for

computing the eigenstructure of a matrix.

LU factorization ([6], Turing, 1948) decomposes a matrix as M = LU , where M

is a given square n× n general matrix, L is a lower triangular matrix of order n and U

is an upper triangular matrix of order n. For computing the LU factorization, we sim-

ply apply Gaussian elimination. The algorithm requires n3/3 floating point operations,

while QR factorization requires 2n3/3 floating point operations matrix. LU decompo-

sition is also useful in solving linear systems, but it enlarges the condition number of

the origin linear system which may lead to stability issue.

Singular value decomposition (SVD) factors a matrix as M = UΣV T , where M

is a given m × n general matrix, U is an m × m unitary matrix, Σ is an m × n rect-

angular diagonal matrix with non-negative real numbers on the diagonal and V is an

n×n unitary matrix. SVD is powerful in many problems, such as null space determina-

tion, rank determination, computation of the pseudo-inverse and matrix approximation.

5

Rank Revealing Algorithms and its Applications

Usually, SVD is computed by a two-step procedure. In the first step, we transform the

symmetric matrix MTM to a bidiagonal form by Householder reflections and this will

cost 4mn2 − 4n3/3 floating point operations ([7], Trefethen et al., 1997). In the second

step, we compute the SVD of the bidiagonal matrix by a variant of the QR algorithm

([8], Golub et al., 1965). Computing the SVD is much more expensive than computing

QR factorization and LU factorization.

1.3.2 Rank Revealing Algorithms

The SVD provides the most reliable way to find the numerical rank of a matrix. How-

ever, it is too expensive for huge scale problems in many practical applications. A

promising alternative to SVD is a modified QR factorization, named as the rank re-

vealing QR (RRQR) factorization. The problem of finding an RRQR factorization of a

given matrix M consists of permuting the columns of M by a permutation matrix Π

so that the rank deficiency of M is revealed in the QR factorization of MΠ.

To compute the RRQR factorization, one naive way is just traversing all possible

permutations until we find a promising one. The complexity of the algorithm is of

course combinatorial. The first practical algorithm for computing RRQR factorization

is QR with column pivoting ([9], Golub, 1965; [10], Businger et al., 1965). Later on,

Gragg and Stewart ([11], 1976) suggested to apply the algorithm on the inverse of the

matrix. These ideas form the basis for the almost all existing RRQR algorithms.

Ten years later, Chan ([12], 1987) shows that there exist matrices, such as Kahan

matrices ([13], Kahan, 1966), for which QR with column pivoting won’t perform any

permutations. Then he proposed an improved algorithm which involves finding the

most dominant right singular vector using the power method. Chan’s origin algorithm

only guarantees to work for matrices with low numerical deficiency, though in practice

it also works for matrices with high nullity.

In 1992, Hong and Pan [14] restricted the definition of the RRQR factorization.

They proved that there exist an RRQR factorization which guarantees a specific lower

bound on the smallest singular value of the upper right k×k portion of R and a specific

upper bound on the largest singular value of the lower right m−k×n−k portion of R,

6

Rank Revealing Algorithms and its Applications

for any m× n matrix M with numerical rank r. They also discussed the application of

RRQR factorization in subset selection. Later on, Chandrasekaran and Ipsen ([3], 1994)

gave a conclusion of all existing RRQR algorithms and proposed a hybrid algorithm

which reach both bounds.

One shortcoming of the RRQR algorithms is that it does not guarantee a stable

approximation for the right null space of M . To overcome this deficiency, Gu and

Eisenstat [2] further restricted the definition of RRQR factorization and defined the

notion of strong RRQR factorization. They then showed an algorithm for computing

such strong RRQR factorization.

Similarly as RRQR factorization, there also exists rank revealing LU (RRLU) fac-

torization. Given a square n × n matrix M , the problem of computing an RRLU

factorization consists of finding two permutation matrix Γ and Π so that the LU de-

composition ΓMΠ = LU reveals the nearly rank deficiency of M .

Chan ([15], 1984) presented an algorithm for the case that the nearly rank deficiency

of M is one. Hwang et al. ([16], 1992) extended it to the case of more than one small

singular value. Later, Miranian and Gu ([17], 2003) introduced the definition of strong

RRLU factorization, which is similar to the notion of strong RRQR factorization, and

they showed a pivoting strategy for computing such strong RRLU factorization.

These rank revealing algorithms can be used as a reliable and efficient computational

alternative to SVD for problems such as rank determination ([1], Chan and Hansen,

1992), linear dependence analysis ([18], Kane et al., 1985), ([19], Huffel and Vande-

walle, 1987) and subspace tracking ([20], Bischof et al., 1990), ([21], Common and

Golub, 1990).

7

Rank Revealing Algorithms and its Applications

Chapter 2 QR Factorization

Definition 2.0.1. A rectangular matrix M ∈ Rm×n can be decomposed into a product

of an orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n:

M = QR

This factorization is named as the QR factorization.

Since the condition number (measured in 2-norm) of the orthogonal matrix Q is 1,

QR factorization maintains the condition number of the origin matrix and thus it plays

a central role in the linear least squares problem.

The rest of this chapter is organized as follows: Section 2.1 first introduce House-

holder reflections, which is a kind of orthogonal transformation. Then I show the exis-

tence of the QR factorization and an practical algorithm for computing a QR factoriza-

tion based on Householder reflections.

Section 2.2 describes Givens rotations, another kind of orthogonal transformation.

Then an QR factorization algorithm based on Givens rotations is presented.

Section 2.3 compares these two orthogonal transformations and gives some advise

on which method we should use for different matrices with certain properties.

2.1 Householder QR Factorization

2.1.1 Householder Reflections

Definition 2.1.1. Let v ∈ Rm be a nonzero vector. An m×m matrix H of the form

H = I − βvvT , β =
2

vTv

is called a Householder reflection.

The name ‘reflection’ comes from the fact that if we left multiply a vector x by H ,

8

Rank Revealing Algorithms and its Applications

then x is reflected in the hyperplane span{v}⊥. The vector v is called the Householder

vector.

Lemma 2.1.1. Householder matrices are symmetric and orthogonal.

Proof. Since H = I − βvvT , we have

HT = (I − βvvT)T = I − βvvT = H .

This shows the symmetry property. By the definition of β, we have

HHT = HH = (I − βvvT)(I − βvvT)

= I − 2βvvT + β2vvTvvT

= I − 2βvvT + (βvTv)βvvT

= I,

which shows the orthogonality of a Householder matrix.

Householder reflections can be used to zero out selected entries of a given vector.

Suppose we are given a nonzero vector x ∈ Rm and we want vector

Hx =

(
I − 2vvT

vTv

)
x = x− 2vTx

vTv
v (2-1)

to be a multiple of e1 = [1, 0, ..., 0]T . Since equation (2-1) implies v ∈ span{x, e1},

we assume v = x+ αe1. It gives

vTx = xTx+ αx1 and vTv = xTx+ 2αx1 + α2

9

Rank Revealing Algorithms and its Applications

Plug this back into Equation (2-1), we obtain

Hx = x− 2vTx

vTv
(x+ αe1)

=

(
1− 2

xTx+ αx1

xTx+ 2αx1 + α2

)
x− 2α

vTx

vTv
e1

=

(
α2 − ∥x∥22

xTx+ 2αx1 + α2

)
x− 2α

vTx

vTv
e1

Since we want Hx to be a multiple of e1, the coefficient of x should be set to zero,

which means α = ±∥x∥2. Then we have v = x± ∥x∥2e1 and

Hx = −2α
vTx

vTv
e1 = ∓∥x∥2e1.

Though we have the freedom to choose the sign of α, underflow issues would arise if it

is not chosen correctly. Let x1 denote the first element of vector x. To avoid underflow

issue, in practical computation, we set

v = x+ ∥x∥2e1 if x1 ≥ 0,

v = x− ∥x∥2e1 if x1 < 0.

Algorithm 2.1 shows the pseudocode of finding the Householder vector that zeroes out

all but one entries of the given vector.

Algorithm 2.1 Householder Reflection
Input: x ∈ Rm

Output: v ∈ Rm with v1 = 1 such that (I − βvvT)x = ±∥x∥2e1.
procedure HOUSE(x)

if x1 ≥ 0 then
v = x+ ∥x∥2e1

else
v = x− ∥x∥2e1

end if
end procedure

10

Rank Revealing Algorithms and its Applications

2.1.2 Algorithm Householder QR

Theorem 2.1.1. If M ∈ Rm×n, then there exists an orthogonal matrix Q ∈ Rm×m and

an upper triangular matrix R ∈ Rm×n so that M = QR.

Proof. We prove this by induction.

At the base case n = 1, M degenerates to a column vector. Let Q be a Householder

matrix so that R = QM has value zero at all but the first entries. Since Householder

matrices are orthogonal and symmetric, M = QR is a QR factorization of M .

For n > 1, partition M as M =
[
M1 v

]
, where v denotes the last column M .

By inductive hypothesis, there exists a QR factorization M1 = Q1R1. Let w = Q1v

and we have

Q1M =
[
R1 w

]
.

Denote wa as a subvector of w formed by its first n−1 entries and wb as a subvector of

w formed by its last m− n+ 1 entries. By the base case, we can QR factor wb, which

gives wb = Q2R2. Define

Q = Q1

In−1 0

0 Q2

 .

Then we have

M = Q

 R1

∣∣∣∣∣wa

R2


being a QR factorization of M .

The proof of Theorem 2.1.1 also gives a Householder-based algorithm for comput-

ing the QR factorization. I illustrate the procedure in detail for a 5 × 4 matrix M . At

11

Rank Revealing Algorithms and its Applications

the first step, we find a Householder matrix H1 such that

H1M =



∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗


,

H1 zeroes out all but the first entries from the first column. Now we focus on these bold

entries. Let H̃2 be a Householder matrix such that

H̃2


∗

∗

∗

∗

 =


∗

0

0

0

 .

and define H2 by

H2 =

I1 0

0 H̃2

 .

Matrix H2 is still a Householder matrix and it gives

H2H1M =



∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗


.

Repeat this procedure. For an m × n matrix M , after n steps we will get an upper

triangular matrix R = HnHn−1 · · ·H1M . Since Householder matrices are symmetry

and orthogonal, we obtain M = QR by setting Q = H1 · · ·Hn. The pseudocode of

Householder QR factorization is presented in Algorithm 2.2.

12

Rank Revealing Algorithms and its Applications

Algorithm 2.2 Householder QR Factorization, (Explanation Use)

Input: M ∈ Rm×n with m ≥ n.
Output: Orthogonal Q ∈ Rm×m and upper triangular R ∈ Rm×n such that M = QR.

procedure HOUSEHOLDERQR(M)
Q = I,R = M
for i = 1, 2, ..., n− 1, n do

Use Algorithm 2.1 to find H̃i;
Concatenate Ii−1 with H̃i to get Hi;
R = HiR;
Q = QHi;

end for
end procedure

There are some important implementation techniques that remain to be mentioned

here. In practice, the pseudocode presented in Algorithm 2.2 is rarely used since it does

not exploit the property of a Householder matrix.

Algorithm 2.3 Householder QR Factorization (Practical Use)

Input: M ∈ Rm×n with m ≥ n.
Output: Orthogonal Q ∈ Rm×m and upper triangular R ∈ Rm×n such that M = QR.

procedure HOUSEHOLDERQR(M)
Q = I,R = M
for i = 1, 2, ..., n− 1, n do

Use Algorithm 2.1 to find v;
β = 2/(v′v);
R̄ = R̄−βv(vT R̄), where R̄ is submatrix of R with its last m− i+1 rows;
Q̃ = Q̃ − β(Q̃v)vT , where Q̃ is submatrix of Q with its last m − i + 1

columns;
end for

end procedure

Typically, we store the Householder vector instead of the whole Householder matrix

not only due to space efficiency but also because of time complexity. Note that matrix

multiplication between 2 matrices of size m will cost O(m3) operations. However, if

we multiply an order m matrix by I − βvvT , the time complexity will be reduced to

O(m2). Also notice that we don’t need to update the whole matrix R and Q at each

step. At the ith step, the first i − 1 rows of R and the first i − 1 columns of Q won’t

change.

13

Rank Revealing Algorithms and its Applications

Algorithm 2.3 shows the pseudocode using these techniques. For a m × n matrix

M , the leading order of the operations is 2n2(m− n/3).

2.2 Givens QR Factorization

2.2.1 Givens Rotations

Definition 2.2.1. Givens rotations of rank-2 are matrix of the form

G(i, k, θ) =



i k

1 · · · 0 · · · 0 · · · 0
...

...
...

i 0 · · · c · · · s · · · 0
...

...
...

k 0 · · · −s · · · c · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1


where c = cos(θ) and s = sin(θ) for some θ.

Theorem 2.2.1. Givens rotations are orthogonal.

Proof. Multiply G(i, k, θ) by its transpose. Then all the off-diagonal entries are zero.

All the diagonal elements, except the ith and jth, are 1. The ith and kth diagonal entries

have value s2 + c2 = sin2(θ) + cos2(θ) = 1. So Givens rotations are orthogonal.

The name ‘rotation’ comes from the fact that multiplication by G(i, k, θ)T amounts

to a counterclockwise rotation of angle θ in the (i, k) coordinate plane. To show this,

suppose we are given a nonzero vector x ∈ Rm. Then we have y = G(i, k, θ)Tx with

yj =


cxi − sxk, j = i,

sxi + cxk, j = k,

xj, j ̸= i, k.

14

Rank Revealing Algorithms and its Applications

If we want to zero out yk, we just need to set

c =
xi√

x2
i + x2

k

, s =
−xk√
x2
i + x2

k

.

In practice, we do not compute c, s by the above formula directly. Instead we use

Algorithm 2.4 for computation stability.

Algorithm 2.4 Givens Rotation
Input: scalars a and b
Output: c = cos(θ) and s = sin(θ) such that[

c s
−s c

]T [
a
b

]
=

[
r
0

]
procedure GIVENS(a, b)

if b = 0 then
c = 1; s = 0

else if |b| > |a| then
τ = −a/b; s = 1/

√
1 + τ 2; c = sτ ;

else
τ = −b/a; c = 1/

√
1 + τ 2; s = cτ ;

end if
end procedure

2.2.2 Algorithm Givens QR

We can also apply Givens rotations to get the desired QR factorization. It is illustrated

in the following diagram for a 4× 3 matrix:

M =


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 −→


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗

 −→


∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗

 −→


∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗

0 ∗ ∗



−→


∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗

0 0 ∗

 −→


∗ ∗ ∗

0 ∗ ∗

0 0 ∗

0 0 ∗

 −→


∗ ∗ ∗

0 ∗ ∗

0 0 ∗

0 0 0

 = R

15

Rank Revealing Algorithms and its Applications

In the diagram, at each step, the Givens rotation denoted as Gi is defined by those 2

bold entries. We again zeroes out elements column by column. But at each column,

we need to perform several times of Givens rotations such that all elements below the

diagonal are eliminated. At the end, we define Q = G1 · · ·GT , where T is the total

number of rotations. Then we get R = QTM .

Similarly as in Section 2.1.2, due to time efficiency, we do not formed the m ×

m Givens rotation matrix explicitly. Note, when we apply a Givens rotation. Only

two rows of R and two columns of Q will change. This leads to a more efficient

implementation and the pseudocode is presented in Algorithm 2.5. For an m×n matrix

M , the leading order of operations of Algorithm 2.2 is 3n2(m− n/3).

Algorithm 2.5 Givens QR Factorization

Input: M ∈ Rm×n with m ≥ n.
Output: Orthogonal Q ∈ Rm×m and upper triangular R ∈ Rm×n such that M = QR.

procedure GIVENSQR(a, b)
Q = I,R = M
for i = 1, 2, ..., n− 1, n do

for j = m,m− 1, ..., i+ 1 do
if Mj,i ̸= 0 then

Let a = Mj−1,i, b = Mj,i;
Use Algorithm 2.4 to get c, s;

Let G =

[
c −s
s c

]
;

R(j − 1 : j, i : n) = GTR(j − 1 : j, i : n),
where R(j − 1 : j, i : n) is the submatrix formed by the j − 1, jth

rows and i, ..., nth columns of R;
Q(1 : m, j − 1 : j) = Q(1 : m, j − 1 : j)G,
where Q(1 : m, j − 1 : j) is the submatrix formed by the 1, ...,mth

rows and j − 1, jth columns of Q;
end if

end for
end for

end procedure

16

Rank Revealing Algorithms and its Applications

2.3 Comparison between Householder Reflections and Gives Rota-
tions

Householder QR requires 2n2(m−n/3) operations while Givens QR requires 3n2(m−

n/3). It seems that Householder QR is always our best choice since it is efficient in

zeroing out a large amount of entries of a given vector. However, in some cases that we

know some certain property of the given matrix, Givens QR may be much more efficient

than Householder QR because it can zero out entries selectively. Here I illustrate it on

a 5× 5 Hessenberg matrix.

M =



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗


−→



∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗


−→



∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗



−→



∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗

0 0 0 ∗ ∗


−→



∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗

0 0 0 0 ∗


= R

We can see actually Givens QR only needs to perform 4 times of Givens rotation for

this matrix. It can be shown that Givens QR only requires 3n2 operations for an n× n

Hessenberg matrix.

Suppose now we run Householder QR. At the first column, we only need to compute

the two norm of the first two elements. However, after dealing with the first column,

the Hessenberg property is ruined.

17

Rank Revealing Algorithms and its Applications

Chapter 3 Greedy Rank Revealing QR Factorization

This chapter is organized as follows: Section 3.1 introduces some related background

and formulates the problem of finding a rank revealing QR factorization. Section 3.2

presents 7 RRQR algorithms for solving Problem-I and then shows the theoretical

bounds they guarantee. A pessimistic matrix for which some algorithms won’t work

is also shown at the end. Section 3.3 presents the unification principle, by which all

algorithms in Section 3.2 can be converted into a corresponding version for solving

Problem-II. Those theoretical bounds for Problem-I can also be carried out by the uni-

fication principle.

3.1 Background

Given a matrix M ∈ Rm×n with m ≥ n. Organize the singular values σi(M) as

following,

σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M).

Definition 3.1.1 (Numerical rank). Given two tolerance δ, ϵ > 0, the numerical rank k

of matrix M is defined as the largest integer 1 ≤ k ≤ n that satisfies

σk+1(M) > δσk(M) and σk+1(M) > ϵσ1(M),

simultaneously.

The definition of rank revealing QR (RRQR) factorization and does not make use of

the exact definition of the numerical rank, but it is useful to keep in mind that σk(M)

and σk+1(M) are well-separated and σk+1(M) is sufficiently small.

Definition 3.1.2 (RRQR factorization). Given a matrix M ∈ Rm×n with m ≥ n and an

integer k. Let MΠ = QR be the QR factorization of M with its columns permuted

18

Rank Revealing Algorithms and its Applications

according to the permutation matrix Π. Partition R as

R =

R11 R12

0 R22

 ,

where R11 ∈ Rk×k is an upper triangular matrix. RRQR factorization aims to choose

Π such that

σmin(R11) ≈ σk(M) or σmax(R22) ≈ σk+1(M)

or both holds simultaneously.

In this chapter, we assume k is pre-given. In Section 5.2.4, we discuss the strategy

for determining k. Typically, k is chosen such that σk(M) and σk+1(M) are well

separated and σk+1(M) is sufficiently small. Though the origin definition of RRQR

factorization also requires R22 to be an upper triangular matrix, this is not necessary if

we succeed in achieving σmax(R22) ≈ σk+1(M) because the matrix R22 is negligible

compared with R11.

An interesting question is, is there any connection between σmin(R11) ≈ σk(M)

and σmax(R22) ≈ σk+1(M)? In practical, there is. Chan ([12], 1987) presented an al-

gorithm for solving σmax(R22) ≈ σk+1(M). He reported that in practice, this algorithm

also gives σmin(R11) ≈ σk(M). But there is no theoretical proof for that connection

till now. In this thesis, these three targets as three independent problems.

Lemma 3.1.1 (Interlacing properties of the singular values). For any permutation Π,

we have

σmin(R11) ≤ σk(M) and σmax(R22) ≥ σk+1(M).

Proof. Apply Corollary 8.6.3 in ([5], Golub, 2012) to RT .

By the interlacing properties, I can formulate the RRQR problem as three optimiza-

19

Rank Revealing Algorithms and its Applications

tion problems:

Problem-I: max
Π

σmin(R11)

Problem-II: min
Π

σmax(R22)

Problem-III: max
Π

σmin(R11) and min
Π

σmax(R22)

To find the optimal permutation, we can always traverse all possible permutations Π.

However, the time complexity is always combinatorial and such method does not exploit

any properties of the given matrix. Actually, we just want to find Π that guarantees

σmin(R11) ≥
σk(M)

p1(k, n)
or σmax(R22) ≤ σk+1(M)p2(k, n),

where p1(k, n), p2(k, n) are functions bounded by low-degree polynomials in k and n.

Lemma 3.1.2. Suppose MΠ = QR is a QR factorization of M with columns per-

muted according to Π. If RΠ̃ = Q̃R̃ is an RRQR factorization of R, then

M (ΠΠ̃) = (QQ̃)R̃

is an RRQR factorization of M .

Proof. The proof is carried out by the fact that the singular values of R and M are the

same.

By Lemma 3.1.2, we can iteratively update the triangular matrix R instead of work-

ing on the origin matrix M .

Now, for the ease of notation, during the algorithm’s procedure, I partition R as

R =

A B

0 C

 ,

where A is a k × k upper triangular matrix. R11, R12, R22 defined in Definition 3.1.2

is used to denote the submatrix of the final result.

20

Rank Revealing Algorithms and its Applications

3.2 Greedy Algorithms for Problem Type-I

3.2.1 Algorithm Greedy-I.1

Let R(l) be the m× n matrix R at step l. Partition it as

R(l) =


l n− l

l A B

m− l 0 C

,
where A is an upper triangular matrices. Denote the columns of B and C by bi, ci for

1 ≤ i ≤ n− l. First, I present the pseudocode of Greedy-I.1 in Algorithm 3.1.

Algorithm 3.1 RRQR Greedy-I.1

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure GREEDYI.1(M ,k)

R(0) = M ;
Q = I,Π = I;
for l = 0, 1, ..., k − 1 do

Find j such that max1≤i≤n−l σmin

[
A bi
0 ci

]
= σmin

[
A bj
0 cj

]
;

Exchange columns l + 1 and l + j of R(l) and update Π;
Retriangularize the first l + 1 columns of R(l) by Householder reflection to

get R(l+1);
Update Q;

end for
end procedure

The idea of the algorithm Greedy-I.1 is very simple. Recall that the objective of

Problem-I is to find the k most well-conditioned columns of M . Suppose now we

have already find l < k such ‘good’ columns. At the l + 1th step, we select a column

from the remaining n− l candidate columns such that the smallest singular value of the

matrix formed by the given l columns and the new column is maximized. At l = 0,

the Algorithm 3.1 will select the column of R that has the largest 2-norm. We repeat k

times and expect to get k well-conditioned columns of M .

21

Rank Revealing Algorithms and its Applications

Note, Algorithm Greedy-I.1 examines the smallest singular value n−l times at each

step. The smallest singular value of a matrix S can be computed by applying inverse

iteration on STS. Finding such j is expensive, so Algorithm Greedy-I.1 rarely appears

in practical use.

3.2.2 Algorithm Greedy-I.2

Algorithm Greedy-I.2 tries to approximate the smallest singular value in order to speed

up computations. Though Greedy-I.2 is an approximation for Greedy-I.1, since the

greedy strategy is not guaranteed to be optimal, algorithm Greedy-I.1 is not necessary

to work better than Greedy-I.2.

For R(l) defined in the algorithm Greedy-I.1, we define γi = ∥ci∥2 for 1 ≤ i ≤ n−l.

Lemma 3.2.1. For 1 ≤ i ≤ n− l, we have

σmin

A bi

0 ci

 = σmin

A bi

0 γi


Proof. Block matrix multiplications givesAT 0

bTi cTi

A bi

0 ci

 =

ATA ATbi

AbTi bTi bi + cTi ci

 ,

and AT 0

bTi γi

A bi

0 γi

 =

ATA ATbi

AbTi bTi bi + γ2
i

 .

Since the singular values of a matrix S are the square root of the eigenvalues of STS

and since γ2
i = cTi ci, the singular values of the two matrices are the same.

Lemma 3.2.1 reduce the problem to determining the smallest singular value of a

square upper triangular matrix of order l + 1. Notice that the smallest singular value

of a matrix is the reciprocal of the largest singular value of its inverse. Now, we can

approximate that largest singular value by the largest 2-norm of each row vector.

22

Rank Revealing Algorithms and its Applications

Lemma 3.2.2. Given a nonsingular matrix S ∈ Rn×n. Suppose S−1 has the form,

S−1 =


sT1

sT2
...

sTn

 .

Then

σmin(S) ≤ min
1≤i≤n

1

∥si∥2
≤ σmin(S)

√
n.

Proof. From Section 2.3.2 ([5], Golub, 2012), we have

σmax(S
−1)√

n
≤ max

1≤i≤n
∥si∥2 ≤ σmax(S

−1)

Since σmin(S) = 1/σmax(S
−1), inverse the above inequaltiy gives the desired result.

Lemma 3.2.2 gives an estimation of the smallest singular value and this leads to

algorithm Greedy-I.2. The pseudocode is shown in Algorithm 3.2.

One may notice that the Greedy-I.2 involves inverting an order l + 1 matrix n − l

times for each l. Since A bi

0 γi

−1

=

A−1 −A−1biγ
−1
i

0 γ−1
i


and A−1 is available from the previous step, we only need to compute the last column,

which involves only n − l times of matrix vector multiplications. So Greedy-I.2 runs

much faster than Greedy-I.1 in practice.

23

Rank Revealing Algorithms and its Applications

Algorithm 3.2 RRQR Greedy-I.2

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure GREEDYI.2(M ,k)

R(0) = M ;
Q = I,Π = I;
for l = 0, 1, ..., k − 1 do

Find j such that

max
1≤i≤n−l

min
h

∥∥∥∥∥eT
h

[
A bi
0 γi

]−1
∥∥∥∥∥
−1

2

= min
h

∥∥∥∥∥eT
h

[
A bj
0 γj

]−1
∥∥∥∥∥
−1

2

where eh is a row vector of size l+1 with all zero entries except the hth entry
being one;

Exchange columns l + 1 and l + j of R(l) and update Π;
Retriangularize the first l + 1 columns of R(l) by Householder reflection to

get R(l+1);
Update Q;

end for
end procedure

3.2.3 Algorithm Greedy-I.3

Algorithm Greedy-I.3 aims to further approximate Greedy-I.2. If our greedy algorithm

works well till the lth step, then A, the upper left l × l portion of R(l), should be well-

conditioned. This means σmax(A
−1) = 1/σmin(A) is small. By Lemma 3.2.2, no row

of A−1 can have a large 2-norm. Instead of comparing the 2-norm of each row of the

inverse matrix, we can compare the magnitude of each entry of the last column of the

inverse matrix,

∥∥∥∥∥∥eT
h

A bi

0 γi

−1∥∥∥∥∥∥
−1

2

≈

∣∣∣∣∣∣eT
h

−A−1biγ
−1
i

γ−1
i

∣∣∣∣∣∣
−1

,

where eh is a row vector of size l + 1 with all elements being zero except that the hth

entry being one. If adding the new column cause the new A to be deficient, then the

2-norm of some row of that new A−1
new must be large. Since we assumed that no row of

24

Rank Revealing Algorithms and its Applications

the old A−1
old has a large 2-norm, there must be some large element in the last column of

the new A−1
new. So this approximation actually avoids selecting a bad column.

Algorithm Greedy-I.3 requires less computations than GreedyI.2. The pseudocode

is shown in Algorithm 3.3.

Algorithm 3.3 RRQR Greedy-I.3

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure GREEDYI.3(M ,k)

R(0) = R;
Q = I,Π = I;
for l = 0, 1, ..., k − 1 do

Find j such that

max
1≤i≤n−l

min
h

∣∣∣∣eT
h

[
−A−1biγ

−1
i

γ−1
i

]∣∣∣∣−1

= min
h

∣∣∣∣eT
h

[
−A−1bjγ

−1
j

γ−1
j

]∣∣∣∣−1

Exchange columns l + 1 and l + j of R(l) and update Π;
Retriangularize the first l + 1 columns of R(l) by Householder reflection to

get R(l+1);
Update Q;

end for
end procedure

3.2.4 Algorithm QR with Column Pivoting

Now, we look for further approximation of algorithm Greedy-I.3. Since A is probably

well-conditioned, if we assume bi is not very large, then ∥A−1bi∥2 is not very large.

If adding some column would let the new Anew to be ill-conditioned, then the large

component of A−1
new may probably comes from γ−1

i . This gives the following approxi-

mation,

min
h

∣∣∣∣∣∣eT
h

−A−1biγ
−1
i

γ−1
i

∣∣∣∣∣∣
−1

≈ γi.

The corresponding algorithm is known as QR with column pivoting ([9], Golub, 1965;

[10], Businger et al., 1965). This algorithm still avoids the selection of a bad column.

It is worth noting that QR with column pivoting is very efficient to implement be-

25

Rank Revealing Algorithms and its Applications

cause we can update the value of γi instead of recompute it. In practice, its running time

is similar to the tradition Householder QR and Givens QR. Techniques for updating γi

are shown in Section 5.3. The pseudocode of QR with column pivoting is presented in

Algorithm 3.4.

Algorithm 3.4 QR with column pivoting

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure COLUMNPIVOTINGQR(M ,k)

R = M ;
Q = I,Π = I;
for l = 0, 1, ..., k − 1 do

Find j such that max1≤i≤n−l γi = γj;
Exchange columns l + 1 and l + j of R(l) and update Π;
Retriangularize the first l + 1 columns of R(l) by Householder reflection to

get R(l+1);
Update Q;

end for
end procedure

3.2.5 Algorithm Chan

Chan’s algorithm ([12], 1987) is another kind of greedy algorithm but has similar be-

haviors as QR with column pivoting.

Recall C is the lower right upper triangular submatrix of R(l). It computes the right

singular vector v of C,

Cv = ∥C∥2u,

where ∥v∥ = ∥u∥ = 1. Then it choose column j of C such that |vj| = max1≤i≤n−l |vi|.

The idea of this algorithm is also very simple. Since v is the right singular vector

according to ∥C∥2, then presumably its largest element would correspond to the most

dominant column in C. This gives

γj = ∥Cej∥2 = ∥u∥2∥Cej∥2 ≥ |uTCej| = ∥C∥2|vj|, (3-1)

26

Rank Revealing Algorithms and its Applications

where the inequality comes from Cauchy-Schwartz inequality. Since vector v is of size

n− l and it is has unitary two norm, the largest entry of v must satisfy vj ≥ 1/
√
n− l.

Now let’s compare the behaviors of algorithm Chan and QR with column pivoting.

Denote maxi≤i≤n−l γi by rl+1, which is the lth diagonal element of the final upper

triangular matrix R computed by QR with column pivoting. Plug this back to Inequality

(3-1), we have

rl+1 ≥ γj ≥
∥C∥2√
n− l

≥ rl+1

n− l
. (3-2)

We see for l close to n, both Algorithm Chan and QR with column pivoting will give

almost the same column if they are given the same leading l columns. The pseudocode

is presented in Algorithm 3.5.

Algorithm 3.5 RRQR Chan

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure CHAN(M ,k)

R = M ;
Q = I,Π = I;
for l = 0, 1, ..., k − 1 do

Compute the right singular vector v of C corresponding to ∥C∥2.
Find j such that |vj| = max1≤i≤n−l |vi|.
Exchange columns l + 1 and l + j of R(l) and update Π;
Retriangularize the first l + 1 columns of R(l) by Householder reflection to

get R(l+1);
Update Q;

end for
end procedure

It would be expensive to find v exactly. Performing a few steps of power method on

CTC will give an approximation of v which works well in practice.

27

Rank Revealing Algorithms and its Applications

3.2.6 Algorithm GKS

Let’s look back to Inequality (3-2). Combining the interlacing property, ∥C∥2 ≥

σl+1(M), we have

rl+1 ≥
σl+1(M)√

n− l
, for 0 ≤ l ≤ k − 1. (3-3)

However, our objective of Problem-I is just to guarantee

σmin(R11) ≥
σk(M)

p(n, k)
.

In other word, the previous 5 greedy algorithms try to achieve that the lth diagonal

element of the resulting R11 is approximately the lth largest singular value

|(R11)ll| ≈ σl(M), for 1 ≤ l ≤ k.

But sometimes we may only want

|(R11)ll| ≈ σk(M), for 1 ≤ l ≤ k.

Instead of restricting all diagonal elements of R11, we hope only the smallest diagonal

element is important. This kind of relaxation will give us more freedom in selecting

columns.

The algorithm GKS, named after its authors, Golub, Klema, and Stewart ([22],

1976), is an extension of QR with column pivoting based on this relaxation.

Suppose M = UΣV T is the SVD of M . Now partition V as

V =
[k n-k

V1 V2

]
.

The idea of the algorithm is to first apply QR with column pivoting on V T
1 which will

give a permutation matrix Π. Then use this Π to get an RRQR factorization of the

28

Rank Revealing Algorithms and its Applications

origin M . The pseudocode is presented in Algorithm 3.6.

Algorithm 3.6 RRQR GKS

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q̄ ∈ Rm×m, upper triangular R̄ ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = Q̄R̄ reveals the rank deficiency of M .
procedure GKS(M ,k)

Find V1 by computing the k most dominant right singular vectors of M ;
Get V T

1 Π = Q̃Ṽ T
1 by applying QR with column pivoting on V T

1 .
Compute QR factorization MΠ = Q̄R̄.

end procedure

To illustrate why Algorithm 3.6 work, suppose M is a square matrix. If not, then

we can QR factor M and work on its upper square portion. Partition the SVD of M as,

M = U

Σ1 0

0 Σ2

[
V1 V2

]T
.

By the QR factorization MΠ = Q̄R̄, we have R̄ = Q̄TMΠ. Combine V T
1 Π =

Q̃Ṽ T
1 , we obtain

Ṽ T
1 R̄−1 = (Q̃TV T

1 Π)(ΠTM−1Q̄) = Q̃TV T
1 M−1Q̄. (3-4)

Since

M−1 =
[
V1 V2

]Σ−1
1 0

0 Σ−1
2

UT ,

we have V T
1 M−1 = Σ−1

1 UT . Plug this back into Equation (3-4), we get

Ṽ T
1 R̄−1 = Q̃TΣ−1

1 UT Q̄.

Because both R̄−1 and Ṽ T
1 are upper triangular, we have

|(Ṽ1)ii|
|(R̄)ii|

=
|(Ṽ1)

T
ii|

|(R̄)ii|
≤ ∥Ṽ T

1 R̄−1∥2 = ∥Σ−1
1 ∥2 =

1

σk(M)
, (3-5)

for 1 ≤ i ≤ k. Because V T
1 is of size k × n and QR with column pivoting ensures

29

Rank Revealing Algorithms and its Applications

the diagonal entries has the largest magnitude, we have |(Ṽ1)ii| ≥ 1/
√
n. Plug this into

Inequality (3-5), we obtain

|(R̄)ii| ≥
σk(M)√

n
for 1 ≤ i ≤ k.

The most computational expensive step in Algorithm GKS is finding V1. Of course

we don’t want to compute the full SVD of the matrix. Finding the k most dominant

right singular vectors through truncated SVD or other variants of power method is still

expensive.

3.2.7 Algorithm Foster

Differs from the previous 6 greedy algorithms, Algorithm Foster ([23], Foster, 1986)

requires an additional parameter δ, which is a tolerance presumably about as big as

σk(M). The algorithm tries to achieve σmin(R11) ≈ δ by selecting diagonal entries

greater than or equal to δ. Specifically, it searches from bottom to top and focus on the

rows of the lower right portion of R. When it finds an element such that its magnitude

is greater than δ, it adds that column into R11 and retriangularize the matrix. After

going through n rows, the algorithm terminates. The first k diagonal elements of the

resulting R will be at least δ if the algorithm succeeded in finding k such elements. The

pseudocode is shown in Algorithm 3.7.

We see that algorithm Foster is very efficient. If the parameter δ is chosen correctly,

then it also gives a good result in practice.

3.2.8 Bounds at each Iteration

In this section, I first show a lower bound on the smallest singular value at each step

for algorithm Greedy-I.1, Greedy-I.2, Greedy-I.3 and QR with column pivoting. Then

I show an exact lower bound on σmin(R11) for Algorithm QR with column pivoting,

Chan and GKS.

30

Rank Revealing Algorithms and its Applications

Algorithm 3.7 RRQR Foster

Input: M ∈ Rm×n with m ≥ n, k and δ.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure FOSTER(M ,k,δ)

QR = M (by Algorithm 2.2);
i = n, l = 0;
for count = 1, 2, ..., n do

Find the element Rij with maximum magnitude in row i;
if |Rij| ≥ δ then

Insert column j between the lth and l + 1st column of R and update Π;
Retriangularize the first l+1 columns of R by Householder reflection and

update Q;
l = l + 1;

else
i = i− 1;

end if
end for

end procedure

Suppose we are at the lth step and partition R(l) as

R(l) =

A B

0 C

 ,

where A is an l × l upper triangular matrix. Let σ̄l denote the smallest singular value

of A for R(l). At the next step, Greedy-I.1 choose column j such that

σ̄l+1 = max
1≤i≤n−l

σmin

A bi

0 ci

 = σmin

A bj

0 cj


Now, instead of computing a lower bound for σ̄l+1, we compute a lower bound for the

column selected by QR with column pivoting, given the same A. This lower bound will

also be a lower bound for the column that Greedy-I.1 would select. Assume QR with

column pivoting will pick column j∗. The selection criteria implies that column j∗ has

the largest two norm among all columns of C.

By Lemma 3.2.2, σmin can be estimated by the reciprocal of the largest 2-norm of

31

Rank Revealing Algorithms and its Applications

the rows of the inverse matrixA bj∗

0 γj∗

−1

=

A−1 −A−1bj∗γ
−1
j∗

0 γ−1
j∗

 . (3-6)

Lemma 3.2.2 gives a bound for the approximation error,

σ̄l ≤ min
1≤i≤l

1

∥eT
i A

−1∥2
≤ σ̄l

√
l. (3-7)

This is equivalent to
1

σ̄l

≥ max
1≤i≤l

∥eT
i A

−1∥2 ≥
1

σ̄l

√
l
. (3-8)

Back to Equation (3-6), the largest row 2-norm among the leading l rows can be

bounded by

max
1≤i≤l

{
∥eT

i A
−1∥2 + ∥eT

i A
−1bj∗∥2

}
≤ 1

σ̄l

+
∥bi∥2
σ̄l

γ−1
j∗

≤
2
√

γi · ∥bi∥2
σ̄l

γ−1
j∗

≤
√
2 ·

√
γ2
i + ∥bi∥22
σ̄l

γ−1
j∗

≤
√
2 · ∥M∥2

σ̄l

γ−1
j∗

(3-9)

The first inequality comes from Inequality (3-8) and the property of matrix norms. The

second inequality comes from the inequality of arithmetic and geometric means. The

third inequality comes from Cauch-Schwartz inequality. The forth inequality comes

from Lemma (3.2.2) and the interlacing properties of singular values. Apply Inequality

(3-7) on l + 1 gives

σ̄l ≥
1√

l + 1 ·max1≤i≤l ∥eT
1A

−1∥2
.

Plug this into Inequality (3-9) and we obtain

σ̄l+1 ≥
1√
l + 1

σ̄l

σ1(M)
γj∗ . (3-10)

32

Rank Revealing Algorithms and its Applications

By Lemma (3.2.2) and the interlacing property, we have

γj∗ = max
1≤i≤n−l

γi ≥
σl+1(M)√

n− l
.

Plug this back into Inequality (3-10). We get

σ̄l+1 ≥ σl+1(M) · σ̄l

σ1(M)
· 1√

2(l + 1)(n− l)
(3-11)

Inequality (3-11) shows one shortcoming of these greedy algorithms. Even if the former

l columns had beed well-selected such that σ̄l is almost accurate, it is still possible for

the greedy algorithm to fail in choosing the l + 1st column.

This is due to the fact that the greedy strategy is not necessary to be the optimal.

A ‘good’ column that ensures an accurate estimation for σ̄l may not be included in an

accurate estimation for σ̄l+1. So the main problem of greedy algorithms is that they

never get rid of a selected column. Section 3.2.10 shows a pessimistic ill-conditioned

matrix on which Algorithm Greedy-I.1, Greedy-I.2, Greedy-I.3 and QR with column

pivoting won’t perform any permutations and thus fail to reveal the rank deficiency of

the matrix.

Since these greedy algorithms do not guarantee to work for all matrices, one may ask

why are we interested in these algorithms? The answer is, compared with the hybrid

algorithms in the following sections, greedy algorithms, especially QR with column

pivoting, Chan and Foster, are typically much more efficient. And if we ignore those

pessimistic matrices, in practice, some greedy algorithms work pretty well.

3.2.9 Bounds for the Final Result

Now, I show lower bounds on σmin(R11) for Algorithm QR with column pivoting, Chan

and GKS.

33

Rank Revealing Algorithms and its Applications

The idea of the proof is to look for a k × k triangular W with

|Wii| = 1, for 1 ≤ i ≤ k,

|Wij| ≤ 1, for 1 ≤ i, j ≤ k,
(3-12)

such that
σk(M)√
nk∥W−1∥2

≤ σmin(R11) ≤ σk(M),

for algorithm Chan and

σk(M)√
n∥W−1∥2

≤ σmin(R11) ≤ σk(M),

for algorithm QR with column pivoting and GKS. The matrix W is chosen in different

ways for different algorithms.

Kahan ([13], 1966) gave a tight upper bound on ∥W−1∥2,

∥W−1∥2 ≤
1

3

√
4k + 6k − 1 ≤

√
k2k, k > 1

and the bound can be reached by the pessimistic example shown in Section 3.2.10.

Lower Bound for QR with Column Pivoting

Define W by

R11 = DW ,

where D is a diagonal matrix which shares its diagonal elements with R11. The algo-

rithm ensures |(R)ii| ≥ |(R11)ij| for 1 ≤ i, j ≤ k. So this W satisfies Equation (3-12).

Recall Inequality (3-3),

|(R11)ii| ≜ ri ≥
σi(M)√
n− i+ 1

, for 1 ≤ i ≤ k. (3-13)

From this, we obtain
1

σmin(D)
= ∥D−1∥2 ≤

√
n

σk(M)
,

34

Rank Revealing Algorithms and its Applications

where the inequality comes from Inequality (3-13) and the fact that D is a diagonal

matrix. Since σmin(R11) ≥ σmin(D)σmin(W), we have the following bound

σmin(R11) ≥
σk(M)√
n∥W−1∥2

.

Lower Bound for Chan

Let R(l)
22 be the lower right n − l + 1 portion of the final R. Define an n × k auxiliary

matrix Z whose columns are composed by concatenating a zero column vector of size

l − 1 with the right singular vector v(l) corresponding to the largest singular value of

R
(l)
22 . So the matrix Z is a lower trapezoidal matrix illustrated as following:


1

l − 1 0

n− l + 1 v(l)

 = Zl, Z =



∗ 0 · · · · · · 0

∗ ∗ 0 · · · 0
...

... 0

∗ ∗ · · · ∗ 0

∗ ∗ · · · ∗ ∗
...

...
...

...

∗ ∗ · · · ∗ ∗


n×k

By definition, we have R
(l)
22v

(l) = ∥R(l)
22∥2u(l) with ∥v(l)∥2 = ∥u(l)∥2 = 1. Define the

order k lower triangular matrix W as

Z =

W
∗

D,

where D is a diagonal matrix that shares its diagonal elements with the upper k rows

of Z. Algorithm Chan ensures the first entry of v(l) is always the largest in magnitude.

So this W satisfies Equation (3-12). Since ∥v(l)∥2 = 1, we have

|Zll| = |v(l)
1 | ≥ 1√

n
,

35

Rank Revealing Algorithms and its Applications

for 1 ≤ l ≤ k. By definition of D, we obtain

1

∥D−1∥2
= σmin(D) ≥ 1√

n
(3-14)

By our selection of v(l) and u(l), we have

(v(l))T (R
(l)
22)

−1 =
1

∥R(l)
22∥2

(u(l))T . (3-15)

Since R is upper triangular and Zl has value 0 in its frist l − 1 entries, we have

∥ZT
l R

−1∥2 = ∥(v(l))T (R
(l)
22)

−1∥2 ≤
1

σl(M)
, (3-16)

where the last inequality comes from the interlacing property, ∥R(l)
22∥2 ≥ σl(M). Since

ZT and R are upper triangular and R11 is a submatrix of R, we have

∥DW TR−1
11 ∥2 ≤ ∥ZTR−1∥2 (3-17)

Use ZT to denote the lth row of ZT . Lemma 3.2.2 relates ∥ZTR−1∥2 with ∥ZT
l R

−1∥2
by

∥ZTR−1∥2 ≤
√
k max

1≤l≤k
∥ZT

l R
−1∥2 (3-18)

Combine Inequality (3-16), (3-17) and (3-18), we obtain

∥R−1
11 ∥2

∥D−1∥2∥W−1∥2
≤

√
k

σk(M)
. (3-19)

Plug Inequality (3-14) into (3-19), we get the desired bound

σmin(R11) ≥
σk(M)√
kn∥W−1∥2

.

36

Rank Revealing Algorithms and its Applications

Lower Bound for GKS

Let M = UΣV T be the SVD of M . Partition V as

V =
[k n− k

V1 V2

]
.

Algorithm GKS applies QR with column pivoting to V T
1 which results in

V T
1 Π = Q̃Ṽ T

1 .

Identify that Ṽ1 is a trapezoidal matrix. The triangular matrix W is again defined by

Ṽ1 =

W
∗

D,

where D is a diagonal matrix that shares its diagonal elements with the upper k rows

of Ṽ1. Since Ṽ1 is the output of QR with column pivoting, the diagonal elements of Ṽ1

is guaranteed to have the largest magnitude in each row. So such W satisfies Equation

(3-12).

Since each column of Ṽ1 has 2-norm 1, we have |Ṽii| ≥ 1/
√
n. So Inequality (3-14)

also holds here. Notice that W T and the final matrix R̄ are upper triangular and R̄11 is

a submatrix of R̄. Combine Inequality (3-14) and we obtain

∥R̄−1
11 ∥2√

n∥W−1∥2
≤ ∥R̄−1

11 ∥2
∥(W−1)T∥2∥D−1∥2

≤ ∥DW T R̄−1
11 ∥2

≤ ∥Ṽ T
1 R̄−1∥2.

(3-20)

Recall Equation (3-5),

∥Ṽ T
1 R̄−1∥2 = ∥Σ−1

1 ∥2 =
1

σk(M)
.

37

Rank Revealing Algorithms and its Applications

Plug this back into Inequality (3-20) gives the bound

σmin(R11) ≥
σk(M)√
n∥W−1∥2

.

3.2.10 Pessimistic Example

There exist matrices on which Algorithm Greedy-I.1, Greedy-I.2, Greedy-I.3, QR with

column pivoting do not perform any permutations. One well-known example is the

Kahan matrix ([13], Kahna, 1966).

Definition 3.2.1. Kahan matrix of order n is defined as

Kn =


1 0 · · · 0

0 s
.

... 0

0 · · · 0 sn−1




1 −c · · · −c

0 1
.

... −c

0 · · · 0 1

 ,

where c2 + s2 = 1.

Theorem 3.2.1. Algorithm Greedy-I.1 does not perform any permutations for Kahan

matrix.

Proof. We prove this by induction. At the first step, since all columns of Kn has unitary

2-norm, Greedy-I.1 won’t perform any permutations. Now suppose no permutations are

performed at the first l steps, then we have

Kn =

Kl b1 · · · bn−l

0 c1 · · · cn−l


As before, let γi = ∥ci∥2 for 1 ≤ i ≤ n− l. At the l + 1st step, the algorithm choose i

from 1, ..., n− l such that

σmin

Kl bi

0 ci

 = σmin

Kl bi

0 γi


38

Rank Revealing Algorithms and its Applications

is maximized. Identify that bi are exactly the same for all i. Since all columns of Kn

has unit 2-norm, γi are also the same for all i. So no permutations are performed in the

l+ 1st step. Thus, Algorithm Greedy-I.1 does not perform any permutations for Kahan

matrix.

For n = 100, k = 99, c = 0.2, we have

σ100(K100) ≈ 0.000000003678056, σ99(K100) ≈ 0.148211206273914

We see that the 100th and 99th singular value of K100 are well separated. Set k = 99

and apply QR with column pivoting, I obtain

σ99(R11) ≈ 0.000000004504681.

The numerical experiments accords that QR with column pivoting fails to reveal the

rank deficiency of the Kahan matrix. Section 6.1 shows the numerical results of all

these greedy algorithms on different matrices.

3.3 Greedy Algorithms for Problem Type-II

3.3.1 The Unification Principle

In Section 3.2, we discussed some greedy algorithms for solving Problem-I. Now we

focus on Problem-II which is

min
Π

σmax(R22)

such that

σmax(R22) ≤ σk+1(M)p2(k, n),

where p2(k, n) is a function bounded by low-degree polynomials in k, n.

In this section, we show the unification principle, which enable us to convert an

algorithm for solving Problem-I to a corresponding version for solving Problem-II.

Lemma 3.1.2 tells that given a matrix M ∈ Rm×n with m ≥ n, we can always first

39

Rank Revealing Algorithms and its Applications

QR factor M = Q̄R̄ and work on the triangular matrix R̄. Further, it is equivalent to

work on the upper n rows of R̄ since the rest portion are zero. So we can assume R̄ is

a square upper triangular matrix. Given a permutation matrix Π, QR factorization on

R̄Π gives

R̄Π = QR = Q

R11 R12

0 R22

 . (3-21)

Suppose R̄ is nonsingular. Inverting both sides of Equation (3-21), we obtain

ΠT R̄−1 =

R−1
11 −R−1

11 R12R
−1
22

0 R−1
22

QT . (3-22)

Take transpose on both sides of Equation (3-22),

(R̄−1)TΠ = Q

 (R−1
11)

T 0

−(R−1
22)

TRT
12(R

−1
11)

T (R−1
22)

T

 . (3-23)

Now we can formulate Problem-II as

min
Π

σmax(R22) = min
Π

1

σmin(R
−1
22)

=
1

maxΠ σmin(R
−1
22)

=
1

maxΠ σmin((R
−1
22)

T)
.

Now we set run an algorithm for solving Problem-I on matrix (R̄−1)T with k1 given by

n−k (k1 is the input parameter for the Problem-I algorithm and k is the input parameter

for the Problem-II algorithm). We obtain

(R̄−1)T Π̄ = Q̄P̄ = Q̄

P11 P12

0 P22

 , (3-24)

where P11 is an upper triangular matrices of order n − k. Now we need to convert

Equation (3-24) into an RRQR factorization of R. This can be achieved by permuting

40

Rank Revealing Algorithms and its Applications

the matrix P̄ into a lower triangular matrix shown in Equation (3-23). Notice that row

permutations can be absorbed into Q̄ while column permutations can be absorbed into

Π̄. After updated Π̄ and Q̄ to Π and Q, we get the final R by R = QT R̄Π.

Define Jp be a permutation matrix of order p with ones on the antidiagonal entries.

The following diagram illustrates the procedure to permute P .P11 P12

0 P22

 →

P12 P11

P22 0

 →

P22 0

P12 P11

 →

 JkP22Jk 0

Jn−kP12Jk Jn−kP11Jn−k


Now we see running an algorithm for solving Problem-I on the transpose of the inverse

of the matrix gives an algorithm for solving Problem-II. This is known as the unification

principle. From now on, we add ‘-I’ after the name of the algorithm to denote the

version for Problem-I and ‘-II’ to denote the version for for Problem-II.

Not all algorithms for Problem-II have to be implemented as in the unification prin-

ciple. There may be some ways to reformulate the Problem-II algorithms so that it

doesn’t need to deal with inverse explicitly.

Note, the unification principle just says we can modify the permutation matrix to

convert Problem-I algorithms to Problem-II algorithms. Since the permutations are

different, solving Problem-I does not implies solving Problem-II and vice versa.

3.3.2 Bounds for the Final Result

Section 3.2.8 shows we have the following bounds

σk(M)√
nk∥W−1∥2

≤ σmin(R11) ≤ σk(M),

for algorithm Chan-I and,

σk(M)√
n∥W−1∥2

≤ σmin(R11) ≤ σk(M),

for algorithm QR with column pivoting-I and GKS-I.

41

Rank Revealing Algorithms and its Applications

The k × k matrix W should satisfy

|Wii| = 1, for 1 ≤ i ≤ k,

|Wij| ≤ 1, for 1 ≤ i, j ≤ k,

Theorem 3.3.1. With the same W defined as above, the following bound

σk+1(M) ≤ σmax(R22) ≤ σk+1(M)
√
n(n− k) · ∥W−1∥2,

holds for algorithm Chan-II and,

σk+1(M) ≤ σmax(R22) ≤ σk+1(M)
√
n · ∥W−1∥2,

holds for algorithm QR with column pivoting-II, GKS-II.

Proof. The proof relies on the unification principle. I prove it for Chan-II. The proof

for QR with column pivoting-II and GKS-II are exactly the same.

In Section 3.3.1, we see that Problem-II can be reformulated as

min
Π

σmax(R22) =
1

maxΠ σmin((R
−1
22)

T)

Run Algoirhtm Chan-I on (M−1)T and use the lower bound for Chan-I,

σn−k((M
−1)T)√

n(n− k)∥W−1∥2
≤ σmin(Jn−k(R

−1
22)

TJn−k)

= σmin(R
−1
22)

=
1

σmax(R22)

Invert both sides gives

σmax(R22) ≤
√
n(n− k)∥W−1∥2
σn−k(M−1)

= σk+1(M)
√

n(n− k) · ∥W−1∥2

42

Rank Revealing Algorithms and its Applications

Combine the interlacing property, we obtain

σk+1(M) ≤ σmax(R22) ≤ σk+1(M)
√

n(n− k) · ∥W−1∥2

From the lower bound, we see that Chan-I works well for small k while Chan-II

works well when k is close to n. This property actually works on most algorithms. In

practice, when k is small, algorithms for Problem-I are preferred, while algorithms for

Problem-II are preferred if k is close to n.

3.3.3 Pessimistic Example

Section 3.2.10 shows that Algorithm Greedy-I.1, Greedy-I.2, Greedy-I.3, QR with col-

umn pivoting-I do not perform any permutations on Kahan matrices. By the unification

principle, Algorithm Greedy-II.1, Greedy-II.2, Greedy-II.3, QR with column pivoting-

II will fail to reveal the rank deficiency of the following modified Kahan matrix whose

inverse is given by

K̄n =


1 −c · · · −c

0 1
.

... −c

0 · · · 0 1




1 0 · · · 0

0 s
.

... 0

0 · · · 0 sn−1

 .

43

Rank Revealing Algorithms and its Applications

Chapter 4 Hybrid Rank Revealing QR Factorization

Section 3 present three formulations of the RRQR factorization problems and show a

set of greedy algorithms for solving Problem Type-I and Problem Type-II. An obvious

shortcoming of these greedy algorithms is that they never permute columns that have

already been selected and thus some of them perform very bad on some pessimistic

ill-conditioned matrix.

Hybrid algorithms improve these greedy algorithms by also considering previous

columns at each step. Given k, greedy algorithms will permutate k columns. However,

the total number of permutations that hybrid algorithms would perform is unknown.

There is no complete analysis of the worst-case operation count for hybrid algorithms,

which we believe that it might be combinatorial. In practice, hybrid algorithms run very

fast and always give a better result since they guarantee tighter bounds for the singular

values.

This chapter is organized as follows: In Section 4.1, I present a hybrid algorithm,

Hybrid-I, for solving Problem-I and it guarantees

σmin(R11) ≥
σk(M)√

k(n− k + 1)
,

σmax(R22) ≤ σmin(R11)
√

k(n− k + 1).

By unification principle, a hybrid algorithm, Hybrid-II, for Problem-II is shown in Sec-

tion 4.2 and it guarantees

σmin(R11) ≥
σmax(R22)√
(k + 1)(n− k)

,

σmax(R22) ≤ σk+1(M)
√
(k + 1)(n− k).

Combining Hybrid-I and Hybrid-II gives an algorithm Hybrid-III which simultaneously

44

Rank Revealing Algorithms and its Applications

solve Problem-I and Problem-II. It guarantees

σmin(R11) ≥
σk(M)√

k(n− k + 1)
,

σmax(R22) ≤ σk+1(M)
√
(k + 1)(n− k).

4.1 Hybrid Algorithm for Problem Type-I

4.1.1 Algorithm Hybrid-I

QR with column pivoting is a very efficient algorithm for computing the RRQR factor-

ization. The idea of algorithm Hybrid-I is to alternate between Problem-I version and

Problem-II version of QR with column pivoting.

Let’s first define some notations for algorithm Hybrid-I. Suppose we are given a

matrix R ∈ Rm×n such that its first k columns are upper triangular. Partition R in two

different ways


k − 1 n− k + 1

k − 1 Ā B̄

m− k + 1 0 C̄

 = R̄,


k n− k

k A B

m− k 0 C

 = R,

where Ā is upper triangular with order k − 1 and A is upper triangular with order k.

At each step, QR with column pivoting-I works on C̄, the lower right n − k + 1

portion of the triangular matrix R. It permutes the column with the largest 2-norm to the

kth column of R. QR with column pivoting-II works on Ā, the upper left k portion of

R. It permutes the worst column from that portion with the kth column. The algorithm

halts when QR with column pivoting-I agrees that column k is the best column among

all columns of C̄ and QR with column pivoting-II agrees that column k is the worst

column among all columns of A.

Algorithm Hybrid-I makes use of the fact that QR with column pivoting-I is good

at approximating the largest singular value of a matrix while QR with column pivoting-

II is good at approximating the smallest singular value. To see this, suppose we are

45

Rank Revealing Algorithms and its Applications

given an m × n matrix M , with m ≤ n. Apply QR with column pivoting-I and get

MΠ = QR. As shown in Section 3.2, we have

|r11| ≤ σmax(M) ≤
√
n|r11|, (4-1)

where r11 is the first diagonal entry of R. For QR with column pivoting-II, since we

permute the most dominant column of the inverse to the last column, we have

|r−1
nn | ≤ σmax(M

−1) ≤
√
n|r−1

nn |. (4-2)

This is equivalent to

σmin(M) ≤ |rnn| ≤
√
nσmin(M). (4-3)

So we see that QR with column pivoting-II is good at approximating the largest singular

value of M−1. The pseudocode of Hybrid-I is presented in Algorithm 4.1. One

may notice that QR with column pivoting-II involves calculating the 2-norm of rows

in A−1. Instead of calculating the inverse explicitly, we can update it in each iteration.

Also, after applying QR with column pivoting-I, we just need to retriangularize the kth

column of R because the upper left k − 1 portion remains unchanged. If we exchange

column k with column j such that j < k, then the upper left k − 1 portion is no longer

upper triangular. Notice, we just need column j to be at the kth position. If we left shift

column j+1, ..., k by one column and move column j to the kth position, then the upper

left k portion is a Hessenberg matrix, which can be efficiently triangularized by Givens

rotations. These implementation techniques are extremely important and they make

these hybrid algorithms to be efficient enough compared with those greedy algorithms.

They are shown in detail in Section 5.3.

46

Rank Revealing Algorithms and its Applications

Algorithm 4.1 RRQR Hybrid-I

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure HYBRID-I(M ,k)

QR factor M up to the kth column, QR = M ;
Π = I, permuted = true;
while permuted do

permuted = false;
Find j such that ∥C̄ej∥2 = max1≤i≤n−k+1 ∥C̄ei∥2;
if ∥C̄e1∥2 < ∥C̄ej∥2 then

permuted = true;
Exchange column k and k + j − 1 of R and update Π;
Retriangularize the kth column of R and update Q;

end if
Find j such that ∥eT

j A
−1∥2 = max1≤i≤k ∥eT

i A
−1∥2;

if ∥eT
kA

−1∥2 < ∥eT
j A

−1∥2 then
permuted = true
Left shift column j + 1, ..., k by one column and move column j to the

kth position.
Update Π;
Retriangularize the first k columns of R and update Q;

end if
end while

end procedure

47

Rank Revealing Algorithms and its Applications

4.1.2 Analytical Bound

Partition the final matrix R in two different ways

R =

R̄11 R̄12

0 R̄22

 =

R11 R12

0 R22

 ,

where R̄11 is an upper triangular with order k−1 and R11 is upper triangular with order

k.

Theorem 4.1.1. When Algorithm Hybrid-I halts, it guarantees

σmin(R11) ≥
σk(M)√

k(n− k + 1)
,

σmax(R22) ≤ σmin(R11)
√

k(n− k + 1).

Proof. At the time Hybrid-I halts, QR with column pivoting-I applied to R̄22 does not

cause any column permutations. Let rij denote the element eT
i Rej . By Inequality

(4-1),

|rkk| ≥
σmax(R̄22)√
n− k + 1

≥ σmax(R22)√
n− k + 1

, (4-4)

where the last inequality comes from the fact that R22 is a submatrix of R̄22. Note that

QR with column pivoting-II applied to R11 also does not cause any permutations. By

Inequality (4-3),

|rkk| ≤ σmin(R11)
√
k. (4-5)

Combining Inequality (4-4) and (4-5) gives the first bound

σmax(R22) ≤ σmin(R11)
√

k(n− k + 1) (4-6)

Apply the interlacing property on Inequality (4-4), we obtain

|rkk| ≥
σmax(R̄22)√
n− k + 1

≥ σk(M)√
n− k + 1

, (4-7)

48

Rank Revealing Algorithms and its Applications

Combining Inequality (4-5) and (4-7) gives the second bound

σmin(R11) ≥
σk(M)√

k(n− k + 1)
. (4-8)

Theorem 4.1.2. Algorithm Hybrid-I does halt given M ∈ Rm×n and 1 ≤ k ≤ n such

that σk(M) > 0.

Proof. Since | det(A)| is unique for any given permutation matrix, there are finitely

many possible values for | det(A)|. If | det(A)| is strictly increasing, the algorithm

must halt at some step. Now it remains to show that | det(A)| does strictly increase

during the algorithm.

Notice, QR with column pivoting-II won’t change det(A) because permutation of

columns and orthogonal transformation does not change the determinant of a matrix.

Now we focus on QR with column pivoting-I. First, if doesn’t perform any permu-

tations, then the algorithm will halt at the next loop. The proof is done.

Suppose QR with column pivoting-I permute the column j with the largest 2-norm

in C̄ to the kth column. After retriangularization, the value of the kth diagonal element

is ∥C̄ej∥2, which is strictly larger than the previous one. Since the other elements in A

does not change after retriangularization and A is an upper triangular matrix, | det(A)|

strictly increases at each step and this completes the halting argument.

4.2 Hybrid Algorithm for Problem Type-II

4.2.1 Algorithm Hybrid-II

Section 4.1 present a Hybrid algorithm for Problem-I. By the unification principle, there

is a corresponding Hybrid algorithm, Hybrid-II, for solving Problem-II. Actually, sim-

ply applying Hybrid-I with k + 1 gives Hybrid-II.

Now let’s define some notations for the Algorithm Hybrid-II. Suppose we are given

a matrix R ∈ Rm×n such that its first k + 1 columns are upper triangular. Partition R

49

Rank Revealing Algorithms and its Applications

in two different ways, R ∈ Rm×n.


k n− k

k A B

m− k 0 C

 = R,


k + 1 n− k − 1

k + 1 Â B̂

m− k − 1 0 Ĉ

 = R̂,

where Â is an upper triangular matrix of order k+1 and A is an upper triangular matrix

of order k. The pseudocode is shown in Algorithm 4.2.

Algorithm 4.2 RRQR Hybrid-II

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure HYBRID-II(M ,k)

QR factor M up to the k + 1th column, QR = M ;
Π = I, permuted = true;
while permuted do

permuted = false;
Find j such that ∥Cej∥2 = max1≤i≤n−k ∥Cei∥2;
if ∥Ce1∥2 < ∥Cej∥2 then

permuted = true;
Exchange column k + 1 and k + j of R and update Π;
Retriangularize the k + 1th column of R and update Q;

end if
Find j such that ∥eT

j Â
−1∥2 = max1≤i≤k+1 ∥eT

i Â
−1∥2;

if ∥eT
k+1Â

−1∥2 < ∥eT
j Â

−1∥2 then
permuted = true
Left shift column j + 1, ..., k + 1 by one column and move column j to

the k + 1th position.
Update Π;
Retriangularize the first k + 1 columns of R and update Q;

end if
end while

end procedure

50

Rank Revealing Algorithms and its Applications

4.2.2 Analytical Bound

Partition the final matrix R in two ways


k n− k

k R11 R12

m− k 0 R22

 = R,


k + 1 n− k − 1

k + 1 R̂11 R̂12

m− k − 1 0 R̂22

 = R̂,

where R̂ is an upper triangular matrix of order k+1 and R is an upper triangular matrix

of order k.

Theorem 4.2.1. Apply Hybrid-I with k + 1 on the given matrix. When the algorithm

halts, it guarantees

σmin(R11) ≥
σmax(R22)√
(k + 1)(n− k)

,

σmax(R22) ≤ σk+1(M)
√
(k + 1)(n− k).

Proof. At the time the algorithm halts, QR with column pivoting-I does not perform

any permutations in R22 and QR with column pivoting-II does not perform any permu-

tations in R̂11. By Inequality (4-1),

|rk+1,k+1| ≥
σmax(R22)√

n− k
. (4-9)

By inequality (4-3),

|rk+1,k+1| ≤ σmin(R̂11)
√
k + 1 ≤ σmin(R11)

√
k + 1, (4-10)

where the last inequality comes from the fact that R11 is a submatrix of R̂11. Combining

Inequality (4-9) and (4-10) gives the first bound

σmin(R11) ≥
σmax(R22)√
(k + 1)(n− k)

. (4-11)

51

Rank Revealing Algorithms and its Applications

Apply the interlacing property on Inequality (4-10), we obtain

|rk+1,k+1| ≤ σmin(R̂11)
√
k + 1 ≤ σk+1(M)

√
k + 1. (4-12)

Combining Inequality (4-9) and (4-12) gives the second bound

σmax(R22) ≤ σk+1(M)
√

(k + 1)(n− k). (4-13)

To prove that Hybrid-II does halt, we cannot reduce it to the proof for Hybrid-I,

because we cannot guarantee σk+1(M) > 0). However, we can use a similar idea to

complete the halting argument.

Theorem 4.2.2. Algorithm Hybrid-II does halt given M ∈ Rm×n and 1 ≤ k ≤ n such

that σk(M) > 0.

Proof. The proof is similar as for Hybrid-I. To show that the algorithm does halt, we

only need to show that | det(A)| is strictly increasing during the algorithm.

Notice, QR with column pivoting-I won’t change det(A) because it does not change

any elements in A. So we just need to focus on QR with column pivoting-II. If no

permutation is performed by it, then the algorithm halts at the next loop. The proof is

done.

Now suppose QR with column pivoting-II performs permutation. QR with column

pivoting-II wll permute the columns of Â so that the last row of Â−1 has largest 2-norm

among all rows. We split this procedure into two steps.

In the first step, we permute and retriangularize columns of A so that the last row

of A−1 has largest 2-norm among all rows. This procedure won’t affect the value of

det(A) because it only involves permutation and orthogonal transformation.

After we update A (thus Â is also updated). Suppose the following is the submatrix

52

Rank Revealing Algorithms and its Applications

formed by the k, k + 1th row and k, k + 1th column of Â,


k k + 1

k γ β

k + 1 0 α

.
Since Â is upper triangular, the submatrix formed by the k, k + 1row and k, k + 1th

column of Â−1 can be represented as


k k + 1

k 1/γ −β/γα

k + 1 0 1/α

.
In the second step, we permute column k with k+1. Since the permutation is performed

only if the 2-norm of the kth row of the inverse is larger than the 2-norm of the k + 1th

row of the inverse, we have
1

γ2
+

β2

γ2α2
>

1

α2
.

This implies γ2 < α2 + β2. After exchange column k with column k + 1 and re-

triangularize the matrix by Givens rotation, the value of the kth diagonal element is√
α2 + β2, which is strictly larger than the previous γ. Since all other elements in A

does not change after retriangularization and A is an upper triangular matrix, | det(A)|

strictly increases at each step. This completes the halting argument.

4.3 Hybrid Algorithm for Problem Type-III

4.3.1 Algorithm Hybrid-III

Combining algorithm Hybrid-I and Hybrid-II gives algorithm Hybrid-III, which guar-

antees to solve Problem-III. Algorithm Hybrid-III make use of Lemma 3.1.2 and alter-

nate between Hybrid-I and Hybrid-II until no permutations are performed. The idea is

motivated by the fact that the determinant of the upper left k × k block of R is strictly

increasing in both Hybrid-I and Hybrid-II. The pseudocode is presented in Algorithm

53

Rank Revealing Algorithms and its Applications

4.3.

Algorithm 4.3 RRQR Hybrid-III

Input: M ∈ Rm×n with m ≥ n and k.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure HYBRID-III(M ,k)

QR = MΠ ▷ Initialize by QR with column pivoting (M , k);
permuted = true;
while permuted do

permuted = false;
Q̄R̄ = RΠ̄ ▷ Apply Hybrid-I (R,k);
if Π is not the identity matrix then

permuted = true;
Π = ΠΠ̄;
Q = QQ̄;
R = R̄;

end if
Q̄R̄ = RΠ̄ ▷ Apply Hybrid-II (R,k);
if Π is not the identity matrix then

permuted = true;
Π = ΠΠ̄;
Q = QQ̄;
R = R̄;

end if
end while

end procedure

4.3.2 Analytical Bound

Theorem 4.3.1. When Algorithm Hybrid-III halts, it guarantees

σmin(R11) ≥
σk(M)√

k(n− k + 1)
,

σmax(R22) ≤ σk+1(M)
√
(k + 1)(n− k).

Proof. When Hybrid-III halts, both Hybrid-I and Hybrid-II do not perform any permu-

tations. So the bounds for Hybrid-I and Hybrid-II must hold simultaneously and this

completes the proof.

Theorem 4.3.2. Algorithm Hybrid-III does halt given M ∈ Rm×n and 1 ≤ k ≤ n such

54

Rank Revealing Algorithms and its Applications

that σk(M) > 0.

Proof. As shown in the halting argument of algorithm Hybrid-I and Hybrid-II, | det(A)|,

the magnitude of the determinant of the upper left k×k portion of R, is strictly increas-

ing during the procedure. Since there is finitely many possible values for | det(A)|, so

the algorithm will eventually halt.

55

Rank Revealing Algorithms and its Applications

Chapter 5 Strong Rank Revealing QR Factorization

This chapter is organized as follows: Section 5.1 discusses the shortcoming of RRQR

factorization and then gives the definition of strong RRQR factorization. Section 5.2

first shows algorithm SRRQR-1, which computes a strong RRQR factorization. Then

it presents a more efficient algorithm SRRQR-2 which is an variation of SRRQR-1.

Based on algorithm SRRQR-1, I proposed a greedy strong RRQR (GSRRQR) algo-

rithm in Section 5.2.3. Combined with the greedy strategy, algorithm GSRRQR-1 and

GSRRQR-2 run much faster than algorithm SRRQR-1 and SRRQR-2 for most large

scale matrices. In subsection 5.2.4, I discuss a general method to reveal the numerical

rank k and present an algorithm SRRQR-3. Section 5.3 shows some important imple-

mentation techniques that make these hybrid and strong RRQR algorithms efficient in

practice.

5.1 Background

In Chapter 3 and 4, we discussed algorithms for solving RRQR factorization,

MΠ = QR = Q

R11 R12

0 R22

 ,

where R11 is an upper triangular matrix of order k. Further, we have algorithm Hybrid-

III that guarantees

σmin(R11) ≥
σk(M)√

k(n− k + 1)
,

σmax(R22) ≤ σk+1(M)
√
(k + 1)(n− k).

When doing numerical experiments, we can measure the goodness of the RRQR

factorization by measuring the ratio σk(M)/σmin(R11) and σmax(R22)/σk+1(M). If

both two ratios are sufficiently small, then we regard the resulting factorization as a

56

Rank Revealing Algorithms and its Applications

good result. However, in practice, when we want to apply RRQR factorization in some

practical problems like null space determination, least squares and subsets selection,

since the matrix is of large scale, we don’t need to and also don’t want to compute the

singular values. Then, how good will it perform in these applications?

Suppose we want to estimate the right null space of M . We hope that

Π

−R−1
11 R12

In−k


will be a good approximation because∥∥∥∥∥∥MΠ

−R−1
11 R12

In−k

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Q
R11 R12

0 R22

−R−1
11 R12

In−k

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Q
 0

R22

∥∥∥∥∥∥
2

= ∥R22∥2 = σmax(R22).

However, this approximation is not guaranteed to be stable if we use an RRQR algo-

rithm because it has the potential probability for the elements of R−1
11 R12 to be very

large. To overcome this shortcut, Gu and Eisenstat ([2], 1996) proposed the idea of

strong RRQR factorization, which is defined as following.

Definition 5.1.1 (Strong RRQR). Given a matrix M ∈ Rm×n with m ≥ n. Let

MΠ = QR be the QR factorization of M with its columns permuted according to

the permutation matrix Π. Partition R as

R =

R11 R12

0 R22

 ,

where R11 is an upper triangular matrix with order k. Strong RRQR factorization aims

57

Rank Revealing Algorithms and its Applications

to choose Π such that

σmin(R11) ≥
σk(M)

q1(k, n)
and σmax(R22) ≤ σk+1(M)q2(k, n), (5-1)

and ∣∣(R−1
11 R12)i,j

∣∣ ≤ q3(k, n), (5-2)

for 1 ≤ i ≤ k, 1 ≤ j ≤ n − k, where q1(k, n), q2(k, n) and q3(k, n) are functions

bounded by some low-degree polynomials in k and n.

5.2 Strong RRQR Factorization

5.2.1 Algorithm SRRQR-1

For simplicity, let’s first define some notations. Let Πi,j denotes a permutation matrix

that permutes the ith and jth columns of a given matrix. Suppose

M = QRk = Q

Ak Bk

0 Ck

 ,

is the partial QR factorization of M ∈ Rm×n such that Ak is an k× k upper triangular

matrix. Define matrix operators Ak, Ck,Rk by

Ak(M) = Ak, Ck(M) = Ck, Rk(M) = Rk.

Assume Ak is nonsingular and let ωi(Ak) denote the reciprocal of the 2-norm of

the ith row of A−1
k , for 1 ≤ i ≤ k. Let γi(Ck) denote the 2-norm of the jth column

of C, for 1 ≤ j ≤ n − k. Write ω(Ak) = [ω1(Ak), . . . , ωk(Ak)]
T , and γ(Ck) =

[γ1(Ck), . . . , γn−k(Ck)]
T .

A strong RRQR factorization guarantees that the smallest singular value of R11

is sufficiently large, the largest singular value of R22 is sufficiently small and every

element of A−1
k Bk is bounded. One may ask, does there exist such factorization for any

matrices with any numerical deficiency? In this subsection, I first present an algorithm,

58

Rank Revealing Algorithms and its Applications

SRRQR-1 and then show that it guarantees a strong RRQR factorization.

The main idea of the algorithm SRRQR-1 is motivated by the previous hybrid algo-

rithms. Notice

det(Ak) =
k∏

i=1

σi(Ak) =

√
det(MTM)∏n−k
i=1 σi(Ck)

.

We see maximizing σmin(Ak) and minimizing σmax(Ck) will lead to a large det(Ak).

Thus algorithm SRRQR-1 focus on the determinant of Ak at each step and tries to per-

mute columns so that det(Ak) is maximized. However, finding the maximum det(Ak)

may cost combinatorial number of operations. So in practice, we set another parameter

f ≥ 1 and permute columns if and only if the new determinant of the upper left portion

is f times larger than the previous one. The pseudocode is shown in Algorithm 5.1.

Algorithm 5.1 SRRQR-1

Input: M ∈ Rm×n, k and f ≥ 1.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure SRRQR-1(M ,k,f)

QR factor M up to the kth column, QR = M ;
Π = I;
while these exist i and j such that det(A(RΠi,j+k))/ det(A(R)) > f do

Find such i, j;
Permute column i and j + k of R and update Π;
Retriangularize the first k columns of R and update Q;

end while
end procedure

Theorem 5.2.1. Algorithm SRRQR-1 does halt given M ∈ Rm×n, k and f ≥ 1.

Proof. Since there are only finitely many permutations, there are finitely many possible

det(Ak). The loop condition of SRRQR-1 ensures det(Ak) is strictly increasing at

each loop. So the algorithm does halt at some time.

Now, we show that Algorithm SRRQR-1 does compute a strong RRQR factoriza-

tion.

Lemma 5.2.1. Assume Ak = A(Rk) has positive diagonal elements (Householder

reflections and Givens rotations give the flexibility to choose the sign). Let Āk =

59

Rank Revealing Algorithms and its Applications

A(RkΠi,k+j), where i ≤ k and j > 1. Then

det(Āk)

det(Ak)
=

√
(A−1

k Bk)2i,j +

(
γj(Ck)

ωi(Ak)

)2

. (5-3)

Proof. Let AkΠi,k = Q̃Ãk be the QR factorization of AkΠi,k such that Ãk has positive

diagonal elements. Now define B̃k = Q̃TBkΠ1,j , C̃k = CkΠ1,j and

Π̃ =

Πi,k 0

0 Π1,j

 .

We have

RΠ̃ =

AkΠi,k BkΠ1,j

0 CkΠ1,j

 =

Q̃ 0

0 Im−k

Ãk B̃k

0 C̃k


being a partial QR factorization of RΠ̃. Since we ensure Ak and Ãk have positive

diagonal elements, so they have the same determinant. Since Ã−1
k = ΠT

i,kA
−1
k Q̃, we

have

Ã−1
k B̃k = (ΠT

i,kA
−1
k Q̃)(Q̃TBkΠ1,j) = ΠT

i,kA
−1
k BkΠ1,j.

This means (A−1
k Bk)i,j = (Ã−1

k B̃k)k,1. Since right multiplication by an orthogonal

matrix does not change the 2-norm of each row and Ã−1
k = ΠT

i,kA
−1
k Q̃, we have

ωi(Ak) = ωk(Ãk). By definition of C̃, we have γj(Ck) = γ1(C̃k).

Now we can assume i = k and j = 1, otherwise we can reduce the problem by

retriangularizing RΠ̃. Suppose

Rk+1(R) =


Ak−1 b1 b2 B

0 γ1 β cT1

0 0 γ2 cT2

0 0 0 Ck+1

 .

Then

A−1
k =

Ak−1 b1

0 γ1

−1

=

A−1
k−1 −A−1

k−1b1γ
−1
1

0 γ−1
1

 .

60

Rank Revealing Algorithms and its Applications

Notice that we assume i = k and j = 1. So ωi(Ak) = γ1, γj(Ck) = γ2 and

(A−1
k Bk)i,j = β/γ1. Also since the upper left k + 1 portion is upper triangular, we

have

det(Ak) = γ1 · det(Ak−1).

After permute column i and column j and retriangularize it by Givens rotation, the k-

kth element becomes
√

β2 + γ2
2 and all other elements of Āk remain unchanged. So

we have

det(Āk) =
√

β2 + γ2
2 · det(Ak−1).

Combine it with the formula of det(A)k). We obtain

det(Āk)

det(Ak)
=

√(
β

γ1

)2

+

(
γ2
γ1

)2

=

√
(A−1

k Bk)2i,j +

(
γj(Ck)

ωi(Ak)

)2

.

Theorem 5.2.2. When SRRQR-1 halts, it guarantees

∣∣(R−1
11 R12)i,j

∣∣ ≤ f, for 1 ≤ i ≤ k, 1 ≤ j ≤ n− k.

Proof. By Lemma 5.2.1, at the time SRRQR-1 halts, we have

det(Āk)

det(Ak)
=

√
(A−1

k Bk)2i,j +

(
γj(Ck)

ωi(Ak)

)2

< f,

for 1 ≤ i ≤ k, 1 ≤ j ≤ n− k. By definition, the final Ak, Bk are defined as R11, R12.

This completes the proof of the theorem.

For simplicity, we define

ρ(R, k) = max
1≤i≤k,1≤j≤n−k

√
(A−1

k Bk)2i,j +

(
γj(Ck)

ωi(Ak)

)2

(5-4)

By Theorem 5.2.2, we see algorithm SRRQR-1 provides a bound on all elements of

R−1
11 R12. An interesting question is, though the determinant of Ak also strictly in-

61

Rank Revealing Algorithms and its Applications

creases during those hybrid algorithms we’ve discussed in Chapter 4, why hybrid algo-

rithms cannot provide a similar bound like algorithm SRRQR-1? Recall that, in those

hybrid algorithms, we exchange column k with the best column among all columns

of Ck−1 and exchange column k with the worst column among all columns of Ak.

The goodness of these column are decided by γ and ω. Instead of considering all

pairs of i, j, algorithm Hybrid-I only consider j = argmax1≤j≤n−k+1 γj(Ck−1) and

i = argmax1≤i≤k ωi(Ak). So it cannot guarantee all elements of A−1
k Bk being small.

Theorem 5.2.3. Given M ∈ Rm×n and apply SRRQR-1. Partition the final matrix R

R =

R11 R12

0 R22

 = Rk(MΠ).

If R satisfy ρ(R, k) ≤ f , then

σi(R11) ≥
σi(M)√

1 + f 2k(n− k)
, for 1 ≤ i ≤ k

σj(R22) ≤ σj+k(M)
√

1 + f 2k(n− k), for 1 ≤ j ≤ n− k.

(5-5)

Proof. For simplicity, assume M has full column rank (actually we just need σmin(R11)

and σmax(R22) are positive). Let α = σmax(R22)/σmin(R11). Rewrite R as a product

of two matrices,

R =

R11 0

0 R22/α

Ik R−1
11 R12

0 αIn−k

 ≜ R̃W̃ . (5-6)

Then we have

σi(R) ≤ σi(R̃)∥W̃ ∥2, for 1 ≤ i ≤ n. (5-7)

The definition of α implies σmin(R11) = σmax(R22/α). This means the k most domi-

nant singular values of R̃ are exactly the same as the singular values of R11,

σi(R11) = σi(R̃), for 1 ≤ i ≤ k. (5-8)

62

Rank Revealing Algorithms and its Applications

Also R and M share the same singular values. For ∥W̃ ∥2, we have,

∥W̃ ∥22 ≤ 1 + ∥R−1
11 R12∥22 + α2

= 1 + ∥R−1
11 R12∥22 + ∥R22∥22∥R−1

11 ∥22
(5-9)

We can bound the 2-norm of a matrix by its Frobenius norm,

∥W̃ ∥22 ≤ 1 + ∥R−1
11 R12∥2F + ∥R22∥22∥R−1

11 ∥2F

= 1 +
k∑

i=1

n−k∑
j=1

(
(R−1

11 R12)
2
i,j +

γj(R22)
2

ωi(R11)2

)

≤ 1 + f 2k(n− k)

(5-10)

Combining Inequality (5-7), (5-8) and (5-10) gives the first bound

σi(R11) ≥
σi(M)√

1 + f 2k(n− k)
, for 1 ≤ i ≤ k.

For the second bound, we define R̂ and Ŵ by

R̂ ≜

αR11 0

0 R22

 =

R11 R12

0 R22

αIk −R−1
11 R12

0 In−k

 ≜ RŴ .

Then we have

σi(R̂) ≤ σi(R)∥Ŵ ∥2 = σi(M)∥Ŵ ∥2, for 1 ≤ i ≤ n. (5-11)

Since σmin(αR11) = σmax(R22), we have

σi(R22) = σi+k(R̂), for 1 ≤ i ≤ n− k. (5-12)

From Inequality (5-9) and (5-10), we see Ŵ also satisfies

∥Ŵ ∥2 ≤
√

1 + f 2k(n− k). (5-13)

63

Rank Revealing Algorithms and its Applications

Combining Inequality (5-11), (5-12) and (5-13) gives the second bound

σj(R22) ≤ σj+k(M)
√
1 + f 2k(n− k), for 1 ≤ j ≤ n− k.

Theorem 5.2.2 and Theorem 5.2.3 together show that SRRQR-1 does compute a

strong RRQR factorization. Since the halting argument requires f ≥ 1, so there exist a

strong RRQR factorization under

q1(k, n) = q2(k, n) =
√

1 + k(n− k) and q3(k, n) = 1.

However, setting f = 1 will guarantee that | detR11| reaches the exact maximum. This

may lead to combinatorial operations.

5.2.2 Algorithm SRRQR-2

In practice, instead of computing ρ(R, k), we compute

ρ̂(R, k) = max
1≤i≤k,1≤j≤n−k

max

{∣∣(A−1
k Bk)i,j

∣∣ , γj(Ck)

ωi(Ak)

}
. (5-14)

This gives algorithm SRRQR-2. The pseudocode is shown in Algorithm 5.2.

Algorithm 5.2 SRRQR-2

Input: M ∈ Rm×n, k and f ≥ 1.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure SRRQR-2(M ,k,f)

QR factor M up to the kth column, QR = M ;
Π = I;
while ρ̂(R, k) > f do

Find i, j such that
∣∣(A−1

k Bk)i,j
∣∣ > f or γj(Ck)/ωi(Ak) > f ;

Permute column i and j + k of R and update Π;
Retriangularize the first k columns of R and update Q;

end while
end procedure

64

Rank Revealing Algorithms and its Applications

When SRRQR-2 halts, we have ρ̂(R, k) ≤ f , which implies ρ(R, k) ≤
√
2f . Then

SRRQR-2 computes a strong RRQR factorization under

q1(k, n) = q2(k, n) =
√
1 + 2f 2k(n− k) and q3(k, n) =

√
2f.

5.2.3 Algorithm GSRRQR

Gu ([2], 1996) pointed out that we can speed up algorithm SRRQR-1 and SRRQR-2

by initializing the origin matrix by algorithm QR with column pivoting. This strategy

does improve the time efficiency. However, by embedding the greedy strategy into the

strong RRQR algorithms, we can speed up the algorithm further.

In this subsection, I present greedy strong RRQR (GSRRQR) algorithms, GSRRQR-

1 and GSRRQR-2. GSRRQR algorithms try to improve our selection of the columns

that are going to be permuted by the idea of QR with column pivoting.

Notice that in algorithm SRRQR-1, we select any i-j pair such that

√
(A−1

k Bk)2i,j +

(
γj(Ck)

ωi(Ak)

)2

> f. (5-15)

Though any i-j pair satisfying Inequality 5-15 will increase | det(Ak)| at least f times

after permuting column i with column j + k, we still want to choose a better i-j pair

such that they can increase | det(Ak)| much more. Choosing the best i-j pair is com-

putational expensive, but we can approximate it through greedy strategy.

Recall that algorithm QR with column pivoting-I inserts the column, which has the

largest column two-norm among all columns of Ck, into Ak. Algorithm QR with col-

umn pivoting-II removes the column, which has the largest column two-norm among

all columns of (A−1
k)T , from Ak. Inspired by this, algorithm GSRRQR-1 first consider

i = argmax1≤l≤n−k γl(Ck) and j = argmin1≤l≤k ωl(Ak) at each cycle. If such choice

of i and j cannot ensure Inequality (5-15), we then pick an arbitrary i-j pair that satisfy-

ing Inequality (5-15) so that GSRRQR-1 still guarantees a strong RRQR factorization.

The pseudocode is presented in Algorithm 5.3.

Computing the maximum of {γ1, ..., γn−k} and the minimum of {ω1, ..., ωk} re-

65

Rank Revealing Algorithms and its Applications

Algorithm 5.3 GSRRQR-1

Input: M ∈ Rm×n, k and f ≥ 1.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure GSRRQR-1(M ,k,f)

QR factor M up to the kth column, QR = M ;
Π = I;
while ρ(R, k) > f do

if max1≤l≤n−k γl(Ck)/min1≤l≤k ωl(Ak) > f then
Set i = argmax1≤l≤n−k γl(Ck), j = argmin1≤l≤k ωl(Ak);

else
Find i, j such that

√
(A−1

k Bk)2i,j + (γj(Ck)/ωi(Ak))2 > f ;
end if
Permute column i and j + k of R and update Π;
Retriangularize the first k columns of R and update Q;

end while
end procedure

quires O(max(n− k, k)) operations. The leading order of the time complexity remains

unchanged since computing ρ(R, k) requires O((n− k)k) operations.

At this time, it’s hard to say how much iterations does algorithm GSRRQR-1 guar-

antee to save from algorithm SRRQR-1. Numerical results in Section 6.1 show that

GSRRQR-1 is much faster than SRRQR-1 especially for large scale matrices.

We can also relax algorithm GSRRQR-1 by replacing ρ(R, k) by ρ̂(R, k). This

gives algorithm GSRRQR-2 and it is shown in Algorithm 5.4.

5.2.4 Algorithm SRRQR-3

In previous discussion, we assume the algorithm has k pre-given. However, this may

not be realistic assumption in some circumstances. In this subsection, I present a gen-

eral method for revealing the numerical rank k when computing the (strong) RRQR

factorization.

Since QR with column pivoting-I is good at approximating the largest singular

value, the idea is to run QR with column pivoting-I in the outer loop and run the (strong)

RRQR algorithm in the inner loop.

We start at k = 1 and increase k by 1 at each execution of the outer loop. The

66

Rank Revealing Algorithms and its Applications

Algorithm 5.4 GSRRQR-2

Input: M ∈ Rm×n, k and f ≥ 1.
Output: Orthogonal Q ∈ Rm×m, upper triangular R ∈ Rm×n and a permutation ma-

trix Π ∈ Rn×n such that MΠ = QR reveals the rank deficiency of M .
procedure GSRRQR-2(M ,k,f)

QR factor M up to the kth column, QR = M ;
Π = I;
while ρ̂(R, k) > f do

if max1≤l≤n−k γl(Ck)/min1≤l≤k ωl(Ak) > f then
Set i = argmax1≤l≤n−k γl(Ck), j = argmin1≤l≤k ωl(Ak);

else
Find i, j such that

∣∣(A−1
k Bk)i,j

∣∣ > f or γj(Ck)/ωi(Ak) > f ;
end if
Permute column i and j + k of R and update Π;
Retriangularize the first k columns of R and update Q;

end while
end procedure

outer loop terminate if it detects the largest singular value of the lower right portion is

sufficiently small. For example, combining algorithm SRRQR-2 with QR with column

pivoting-I gives Algorithm SRRQR-3. The pseudocode is presented in Algorithm 5.5.

Algorithm 5.5 SRRQR-3

Input: M ∈ Rm×n, δ, f ≥ 1.
Output: The numerical rank k of M ; Orthogonal Q ∈ Rm×m, upper triangular R ∈

Rm×n and a permutation matrix Π ∈ Rn×n such that MΠ = QR reveals the rank
deficiency of M .
procedure SRRQR-3(M ,δ, f)

k = 0, R = M , Π = Q = I;
while max1≤i≤n−k γi(Ck) ≥ δ do

Find j such that γj(Ck) = max1≤i≤n−k γi(Ck);
k = k + 1;
Permute column k and k + j − 1 of R and update Π;
Retriangularize the first k columns of R and update Q;
while ρ̂(R, k) > f do

Find i, j such that
∣∣(A−1

k Bk)i,j
∣∣ > f or γj(Ck)/ωi(Ak) > f ;

Permute column i and j + k of R and update Π;
Retriangularize the first k columns of R and update Q;

end while
end while

end procedure

67

Rank Revealing Algorithms and its Applications

The outer loop will terminate if σmax(C) is sufficiently small. Sometimes we also

want to detect the gap between the kth and k+1st singular values and terminate the loop

when the gap is sufficiently large. Measuring the quotient of σk+1(M) over σk(M)

gives
σk+1(M)

σk(M)
≥ 1

q1(k, n) q2(k, n)
· σmax(Ck)

σmin(Ak)

≥ 1

q1(k, n) q2(k, n)
max

1≤i≤k,1≤j≤n−k

γj(Ck)

ωi(Ak)
,

(5-16)

where the first inequality is guaranteed by SRRQR-II and the second inequality comes

from Inequality (4-1) and (4-3). Also, applying the interlacing property gives

σk+1(M)

σk(M)
≤ σmax(Ck)

σmin(Ak)

≤
√
k(n− k) max

1≤i≤k,1≤j≤n−k

γj(Ck)

ωi(Ak)
.

(5-17)

Inequality (5-16) and (5-17) together shows that max1≤i≤k,1≤j≤n−k γj(Ck)/ωi(Ak) is

good at approximating the gap between the kth and k + 1st singular value of M . It is

sometimes useful to add this stopping criteria into the loop condition of the outer loop.

5.3 Implementation Techniques

Many algorithms we have discussed before involves the computation of γ(Ck), ω(Ak)

and A−1
k Bk. Obviously, we don’t want to compute them directly at each iteration.

In this section, I present how to update these information efficiently. Due to these

techniques, algorithm QR with column pivoting-I, QR with column pivoting-II, Hybrid-

I, Hybrid-II, Hybrid-III, SRRQR-1, SRRQR-2, SRRQR-3 can run very fast in practice.

Since these information are updated at each iteration instead of recomputed, one

may care about the stability issue, whether the cumulating error will affect out results.

Note that since we only use these information to determine which column to permute, it

won’t cause stability problem to our factorization. One can recompute these information

after they have been updated sufficiently many times.

68

Rank Revealing Algorithms and its Applications

Subsection 5.3.1 consider how to update these information when we increase k to

k + 1. Subsection 5.3.2 shows how to reduce a general case to a special case when

we are going to permute two columns. Finally, Subsection 5.3.3 shows how to modify

these information under this special case.

5.3.1 Updating Formula

Partition Rk−1 and Rk ≜ R(Rk−1) as

Rk−1 =

Ak−1 Bk−1

0 Ck−1

 , Rk =

Ak Bk

0 Ck

 .

Suppose we already have Ak−1, Bk−1, Ck−1, ω(Ak−1), γ(Ck−1) and A−1
k−1Bk−1. Now

we want to compute ω(Ak), γ(Ck) and A−1
k Bk.

Let H be a Householder matrix of order m− k + 1 so that it zeroes out all but the

first entry of the first column of Ck−1,

HCk−1 =

γ cT

0 C

 ,

where γ = γ1(Ck−1). Partition Bk−1 as Bk−1 =
[
b B

]
. Then

Rk =

Ak Bk

0 Ck

 =


Ak−1 b B

0 γ cT

0 0 C

 .

So we get

Ak =

Ak−1 b

0 γ

 , Bk =

B
cT

 , Ck = C.

69

Rank Revealing Algorithms and its Applications

Suppose A−1
k−1Bk−1 =

[
u U

]
, then A−1

k−1b = u and A−1
k−1B = U . Then

A−1
k =

A−1
k−1 −u/γ

0 1/γ

 , A−1
k Bk =

U − ucT/γ

cT/γ

 .

Also ω(Ak) and γ(Ck) can be updated according to

ωk(Ak) = |γ|, and 1/ωi(Ak)
2 = 1/ωi(Ak−1)

2 + u2
i /γ

2 for 1 ≤ i ≤ k − 1,

and

γj(Ck)
2 = γj+1(Ck−1)

2 − c2j , for 1 ≤ j ≤ n− k.

5.3.2 Reduction from a General Case to a Special Case

Suppose we are going to permute column i with column j + k. In this subsection, I

show how to reduce this general case into a special case, that is i = k and j = 1.

If j > 1, then we exchange the column k + 1 and column k + j of R. After the

permutation, Ak and ω(Ak) remain unchanged and only the corresponding column 1

and j of Bk, Ck, γ(Ck) and A−1
k Bk are permuted. So now we assume j = 1 and i < k.

Partition Ak as

Ak ≜


A11 a1 A12

0 α aT
2

0 0 A22

 ,

where A11 and A22 are upper triangular of order i−1 and k−i. Let Πk be a permutation

matrix corresponding to left shifting columns i+ 1, ..., k − 1 of Ak by one column and

moving column i to the kth position. Then we have

AkΠk =


A11 A12 a1

0 aT
2 α

0 A22 0

 .

Now the matrix AkΠk is a Hessenberg matrix. Use Givens rotations to zero out the

70

Rank Revealing Algorithms and its Applications

nonzero elements on the off-diagonal entries. Let QT
k be the product of these Givens

rotations. Then QT
kAkΠk is upper triangular.

Now we define Π as

Π ≜

Πk 0

0 In−k

 .

This gives

RΠ =

AkΠk Bk

0 Ck

 and R(RΠ) =

QT
kAkΠk QT

kBk

0 Ck

 .

For simplicity, denote the matrix after permutation by adding bar. Then we have

Āk = QT
kAkΠk, B̄k = QT

kBk, C̄k = Ck.

Also since Ā−1
k = ΠT

kA
−1
k Qk and right multiplication by an orthogonal matrix does

not change the 2-norm of each row, we have

ω(Āk) = ΠT
k ω(A), γ(C̄k) = γ(Ck), Ā−1

k B̄k = ΠT
kA

−1
k Bk.

5.3.3 Modifying Formula for a Special Case

In this subsection, we discuss how to modify the formula after exchanging column k

with k + 1 and retriangularization. Partition Rk and R̄k ≜ R(RkΠk,k+1) as

Rk ≜

Ak Bk

0 Ck

 , R̄k ≜

Āk B̄k

0 C̄k

 .

Suppose we already have Ak, Bk, Ck, ω(Ak), γ(Ck) and A−1
k Bk, and we want to

compute ω(Āk), γ(C̄k) and Ā−1
k B̄k.

71

Rank Revealing Algorithms and its Applications

Further partition Rk as

Rk ≜


Ak−1 b1 b2 B

0 γ γµ cT1

0 0 γν cT2

0 0 0 Ck+1

 .

After permutation, retriagularize RkΠk,k+1 by Givens rotation and obtain

R̄k =


Ak−1 b2 b1 B

0 γ̄ γµ/ρ c̄T1

0 0 γν/ρ c̄T2

0 0 0 Ck+1

 ,

where ρ =
√

µ2 + ν2, γ̄ = γρ, c̄1 = (µc1 + νc2)/ρ, c̄2 = (νc1 + µc2)/ρ. This gives

Āk, B̄k, C̄k. From the partition of Rk, we have

A−1
k =

A−1
k−1 −A−1

k−1b1/γ

0 1/γ

 .

Define u = A−1
k−1b1. Define u1,u2,U by

A−1
k Bk =

A−1
k−1 −u/γ

0 1/γ

b2 B

γµ cT1

 ≜

u1 U

µ uT
2

 .

Then we have

A−1
k−1b2 = u1 + µu, A−1

k−1B = U + ucT1 /γ.

By the partition of R̄k, we have

Ā−1
k =

A−1
k−1 −A−1

k−1b2/γ̄

0 1/γ̄

 =

A−1
k−1 −(u1 + µu)/γ̄

0 1/γ̄

 .

72

Rank Revealing Algorithms and its Applications

Compute Ā−1
k B̄k. We obtain

Ā−1
k B̄k =

A−1
k−1 −(u1 + µu)/γ̄

0 1/γ̄

 b1 B

γµ/ρ c̄T1



=

(1− γµ2/(γ̄ρ))u− (γµ/(γ̄ρ))u1 A−1
k−1B − (u1 + µu)c̄T1 /γ̄

γµ/(γ̄ρ) c̄T1 /γ̄



=

(1− µ2/ρ2)u− (µ/ρ2)u1 U + (ucT1 /γ − µuc̄T1 /γ̄)− u1c̄
T
1 /γ̄

µ/ρ2 c̄T1 /γ̄



=

(ν2u− µu1)/ρ
2 U + (νuc̄T2 − u1c̄

T
1)/γ̄

µ/ρ2 c̄T1 /γ̄



.

Now we focus on ω(Ak) and γ(Ak). For simplicity, define

u = [s1, ..., sk−1]
T , c2 = [t1, ..., tn−k]

T ,

u1 + µu = [s̄1, ..., s̄k−1]
T , c̄2 = [t̄1, ..., t̄n−k]

T .

So we have

ωk(Āk) = |γ̄|, and 1/ωi(Āk)
2 = 1/ωi(Ak)

2 + s̄2/γ̄2 − s2/γ2 for 1 ≤ i ≤ k − 1,

and

γ1(C̄k) = |γν/ρ|, and γj(C̄k)
2 = γj(Ck)

2 + t̄2j − t2j for 2 ≤ j ≤ n− k.

73

Rank Revealing Algorithms and its Applications

Chapter 6 Applications and Numerical Experiments

This chapter is organzied as follows: Section 6.1 compares the numerical performance

of 15 QR algorithms we’ve discussed on 4 different kinds of matrices. Section 6.2

show how to apply RRQR factorization in rank deficient least squares problem and

compare its solution with the truncated SVD-based solution. Section 6.3 presents the

application in subset selection problem and compare its solution with the SVD-based

solution. Section 6.4 shows the application in matrix approximation and compare its

solution with the truncated SVD-based solution. It further shows the performance of

RRQR factorization in image compression.

6.1 Revealing Matrix Rank Deficiency

In this section, I report the numerical results of applying these (strong) RRQR algo-

rithms to some matrices. The algorithms I’ve tested includs algorithm Greedy-I.1,

Greedy-I.2, Greedy-I.3, QR with column pivoting-I, Chan-I, GKS-I, Foster-I, Hybrid-I,

Hybrid-II, Hybrid-III, SRRQR-1, SRRQR-2, GSRRQR-1 and GSRRQR-2. Since the

Type-II version of algorithm QR with column pivoting, Chan, GKS and Foster are not

tested, I emit ‘-I’ for simplicity. Also, I test the result of using tradition QR factorization

without any permutations.

All these algorithms are implemented in MATLAB R2016a, where the machine

precision is ϵ = 2.220446049250313 × 10−16. I use the following square test matrices

of order n:

Matrix-I A random matrix, typically of full rank, whose elements are from a uniform

distribution in [0, 1];

Matrix-II Modify Matrix-I by scaling its ith row by a factor ηi/n, where η = 20ϵ;

Matrix-III GKS matrix, an upper triangular matrix with value 1/
√
i on its ith diagonal

entry and −1/
√
j at the i-j for j > i;

74

Rank Revealing Algorithms and its Applications

Matrix-IV Kahan matrix (Definition 3.2.1) with c = 0.2;

In algorithm Greedy-I.1 and algorithm Chan which involve computing eigenvectors,

the power method is terminated until the error of the singular value is less than 0.01. The

parameter δ is set to 1e-04 in algorithm Foster. In SRRQR-1 and SRRQR-2, I set f =√
k(n− k) + min(k, n− k)/

√
k(n− k) so that these strong RRQR algorithms have

similar upper bounds on σk(M)/σmin(R11) and σmax(R22)/σk+1(M). In algorithm

GKS, I use SVD to compute the first k dominant singular vectors.

6.1.1 Matrix-I

Table 6.1 shows the numerical results of 15 different algorithms for Matrix-I of size 50

and 100.

For n = 50 and k = 40, SRRQR algorithms guarantee

max

{
σk(M)

σk(R11)
,
σ1(R22)

σk+1(M)

}
<

√
1 + k(n− k) + min(k, n− k) = 20.2731

and

max |R−1
11 R12| <

√
k(n− k) + min(k, n− k)√

k(n− k)
= 1.0124

For n = 100 and k = 80, the upper bounds are max{ σk(M)
σk(R11)

, σ1(R22)
σk+1(M)

} < 40.2616 and

max |R−1
11 R12| < 1.0062.

Since the Matrix-I is nonsinglar and the condition number is of order 103, σk(M)/σk(R11)

and σ1(R22)/σk+1(M) are much smaller than the upper bound even for the tradition

QR factorization which does not consider any permutations.

Among all the algorithms, Greedy-I.1 is the most expensive since it evolves com-

puting the smallest singular values for n − l different matrices at step l. Since the

running time of Greedy-I.1 is much more than computing the SVD, this algorithm is

rarely used in practice. Also as we’ve expected, Greedy-I.2 runs faster than Greedy-I.1

and Greedy-I.3 runs faster than Greedy-I.2. Though Greedy-I.3 costs similar running

time as hybrid and strong RRQR algorithms, the performance of Greedy-I.3 is consis-

tently worse than hybrid and strong RRQR algorithms. So Greedy-I.2 and Greedy-I.3

75

Rank Revealing Algorithms and its Applications

Table 6.1 Numerical Results for Matrix-I

n = 50, rank(M) = 50, cond(M) =8.5108e+03, set k = 40
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0117 (((((

(((((
(((((

QR 0.0014 2.8876 2.5026 0.9842
Greedy-I.1 0.1703 1.9364 2.2639 0.7649
Greedy-I.2 0.0165 2.5609 2.8417 0.8744
Greedy-I.3 0.0098 2.7971 2.6270 0.9207

ColumnPivot 0.0023 2.7971 2.6270 0.9207
Chan 0.0070 1.8310 2.0008 0.9166
GKS 0.0146 2.3144 2.2450 0.8617
Foster 0.0030 2.8362 2.4851 0.8639

Hybrid-I 0.0042 1.9115 1.8641 0.6485
Hybrid-II 0.0062 1.5410 2.3129 0.7179
Hybrid-III 0.0113 1.8934 1.8975 0.6797
SRRQR-1 0.0107 1.3935 1.8560 0.8002
SRRQR-2 0.0119 1.6703 2.0053 0.7267

GSRRQR-1 0.0066 1.5599 2.1660 0.6978
GSRRQR-2 0.0072 1.4833 1.9371 0.7247

n = 100, rank(M) = 100, cond(M) =1.9331e+03, set k = 80
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0846 (((((

(((((
(((((

QR 0.0060 2.7047 2.9856 0.9140
Greedy-I.1 1.0971 2.2114 2.9711 0.7298
Greedy-I.2 0.0654 2.2680 2.8928 0.8912
Greedy-I.3 0.0370 2.1525 2.7229 0.7355

ColumnPivot 0.0065 2.5955 2.8867 0.8141
Chan 0.0228 2.3599 2.0632 0.7345
GKS 0.0838 2.6569 2.8946 0.7804
Foster 0.0127 2.5422 2.6426 0.8276

Hybrid-I 0.0143 1.7832 2.3184 0.6388
Hybrid-II 0.0143 1.8311 2.5306 0.6431
Hybrid-III 0.0490 1.6072 2.4058 0.6656
SRRQR-1 0.0594 1.7842 2.1876 0.6077
SRRQR-2 0.0491 1.6519 2.4636 0.6844

GSRRQR-1 0.0272 1.8350 2.2535 0.5681
GSRRQR-2 0.0218 1.6624 2.1590 0.6187

76

Rank Revealing Algorithms and its Applications

also have no practical use.

As we can see, hybrid and strong RRQR algorithms give better results even for

nonsingular matrices. However, the running time of algorithm SRRQR-1 and SRRQR-

2 are close to the time for computing SVD. The new greedy strong RRQR algorithms

reduce the running time by half which make them even faster than algorithm Hybrid-III.

Table 6.2 shows the number of iterations they performed for the two matrices. We

can see by embedding the greedy strategy into the strong RRQR algorithms, the number

of iterations is significantly reduced.

Table 6.2 Matrix-I: Number of Iterations of strong RRQR algorithms

Num. of Iterations at n = 50 Num. of Iterations at n = 100
SRRQR-1 26 66

GSRRQR-1 10 27
SRRQR-2 14 37

GSRRQR-2 6 16

Algorithm QR with column pivoting is the most efficient RRQR algorithm. The

time cost is only a little more than the traditional QR factorization. Gu ([2], 1996)

suggested that instead of using traditional QR factorization to initialize R, using QR

with column pivoting may reduce the total number of iterations. Table 6.3 presents the

total running time and the number of iterations performed of algorithm SRRQR-1 and

SRRQR-2 on Matrix-I with size 1000 × 1000 before and after initialized by QR with

column pivoting.

Table 6.3 Matrix-I: Time efficiency of strong RRQR algorithms

Matrix-I of size 1000× 1000, k = 500 Time (s) Number of Iterations
SVD 69.2855 (((((

SRRQR-1 30.1796 888
SRRQR-1 (Initialized by ColumnPivot) 35.8319 868
GSRRQR-1 11.7054 269
SRRQR-2 27.5884 805
SRRQR-2 (Initialized by ColumnPivot) 33.5999 791
GSRRQR-2 11.5738 266

First, we see for large matrices, these strong RRQR algorithms are much faster than

77

Rank Revealing Algorithms and its Applications

SVD. For Matrix-I, the advantage of this kind of initialization is not clear because the

total running time does increase in the numerical results. But we can see that initializing

by QR with column pivoting decreases the number of iterations that SRRQR-1 and

SRRQR-2 will perform. However it’s still much larger than the number of iterations that

GSRRQR-1 and GSRRQR-2 will perform. This reveals the superiority of GSRRQR

algorithms.

6.1.2 Matrix-II

Table 6.4 shows the numerical results on Matrix-II. For n = 50, since σ1(M)/σ16(M) >

102 and σ16(M) < 0.0001, I select k = 15. For n = 100, since σ1(M)/σ31(M) > 102

and σ31(M) < 0.0001, I select k = 30.

For n = 50 and k = 15, SRRQR algorithms guarantee

max

{
σk(M)

σk(R11)
,
σ1(R22)

σk+1(M)

}
<

√
1 + k(n− k) + min(k, n− k) = 23.2594

and

max |R−1
11 R12| <

√
k(n− k) + min(k, n− k)√

k(n− k)
= 1.0142

For n = 100 and k = 30, the upper bounds are max{ σk(M)
σk(R11)

, σ1(R22)
σk+1(M)

} < 46.1628 and

max |R−1
11 R12| < 1.0071.

This time, the condition numbers of these two matrices are much higher than Matrix-

I. We see that algorithm Foster even failed to give a good RRQR factorization. Algo-

rithm Greedy-I.1 is again the most expensive algorithm. Algorithm Chan gets the best

results among all greedy algorithms while it also runs very fast (only slightly a little

slower than QR with column pivoting).

Also, we see that only SRRQR algorithms, including SRRQR-1, SRRQR-2, GSRRQR-

1 and GSRRQR-2, succeeded in achieving the above bounds. Hybrid algorithms failed

to control max |R−1
11 R12|. The best σk(R11) and σ1(R22) is also given by SRRQR

algorithms. This shows that it is meaningful to design SRRQR algorithms.

The result also shows that GSRRQR algorithms reduce the time cost of the ori-

78

Rank Revealing Algorithms and its Applications

Table 6.4 Numerical Results for Matrix-II

n = 50, rank(M) = 46, cond(M) =4.9411e+15, set k = 15
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0074 (((((

(((((
(((((

QR 0.0008 5.6597 4.3694 3.7278
Greedy-I.1 0.0269 10.7276 11.9016 8.4359
Greedy-I.2 0.0062 5.2200 4.5652 3.5922
Greedy-I.3 0.0034 5.2200 4.5652 3.5922

ColumnPivot 0.0008 5.2200 4.5652 3.5922
Chan 0.0015 3.7424 2.2174 1.2127
GKS 0.0090 6.0064 5.2097 8.1821
Foster 0.0020 9.8869 3.0568 3.5607

Hybrid-I 0.0020 3.1786 2.7320 1.2694
Hybrid-II 0.0020 3.0228 2.4930 1.5080
Hybrid-III 0.0043 1.9504 2.4807 1.3777
SRRQR-1 0.0067 2.3777 2.0571 0.9829
SRRQR-2 0.0089 2.4725 1.6376 0.9491

GSRRQR-2 0.0033 2.3935 1.7470 0.9836
GSRRQR-2 0.0048 1.9415 1.8019 0.9558

n = 100, rank(M) = 90, cond(M) =5.8480e+15 ,set k = 30
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0511 (((((

(((((
(((((

QR 0.0050 10.7159 7.2143 5.5968
Greedy-I.1 0.1731 7.4402 4.6532 3.7944
Greedy-I.2 0.0739 13.2902 5.1055 6.4425
Greedy-I.3 0.0170 11.6392 4.6704 3.9468

ColumnPivot 0.0049 11.6392 4.6704 3.9468
Chan 0.0084 4.2990 2.0698 1.5668
GKS 0.0548 7.6746 5.7229 4.0032
Foster 0.0112 263.9728 4.2487 37.3676

Hybrid-I 0.0076 3.3815 1.7790 1.4796
Hybrid-II 0.0116 3.0524 2.6152 1.2677
Hybrid-III 0.0263 3.3815 1.7790 1.4796
SRRQR-1 0.0310 2.4026 1.6851 0.9525
SRRQR-2 0.0310 2.8079 1.9037 0.9491

GSRRQR-1 0.0200 3.6254 2.1377 0.9848
GSRRQR-2 0.0223 2.4766 1.6020 0.9903

79

Rank Revealing Algorithms and its Applications

gin SRRQR algorithms almost by half. This make strong RRQR factorization much

more engaging comparing with SVD. Table 6.5 show the running time and the number

of iterations these algorithms performed for Matrix-II with size 1000 × 1000. Since

σ1/σ288 >1e+04, I choose k = 287 in this experiment.

Table 6.5 Matrix-II: Time efficiency of strong RRQR algorithms

Matrix-I of size 1000× 1000, k = 287 Time (s) Number of Iterations
SVD 42.8328 (((((

SRRQR-1 13.6208 399
SRRQR-1 (Initialized by ColumnPivot) 18.1257 423
GSRRQR-1 8.0523 207
SRRQR-2 9.8827 234
SRRQR-2 (Initialized by ColumnPivot) 12.4373 172
GSRRQR-2 5.5030 66

The results show that greedy SRRQR algorithms again reduce the number of it-

erations of the origin SRRQR algorithms approximately by half while their resulting

factorization is as good as the one provided by the origin SRRQR algorithms.

Also from the results, we see that initialization by QR with column pivoting does

not guarantee to reduce the number of iterations that the following SRRQR algorithms

will perform.

6.1.3 Matrix-III

Table 6.6 shows the numerical results on Matrix-III. The numerical rank of this matrix

is 49. The condition number of this matrix is 7.6873e+18. For all algorithms, I set

k = 48 and want to test whether the algorithm could split out the single bad column

from others.

The theoretical bounds for SRRQR algorithms are

max

{
σk(M)

σk(R11)
,
σ1(R22)

σk+1(M)

}
<

√
1 + k(n− k) + min(k, n− k) = 9.9499

and

max |R−1
11 R12| <

√
k(n− k) + min(k, n− k)√

k(n− k)
= 1.0104

80

Rank Revealing Algorithms and its Applications

Table 6.6 Numerical Results for Matrix-III

n = 50, rank(M) = 49, cond(M) =7.6873e+18, set k = 48
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0132 (((((

(((((
(((((

QR 0.0017 2.4059e+13 1.0574 2.0105e+13
Greedy-I.1 0.1142 4.4050e+04 1.6907 5.8773e+04
Greedy-I.2 0.0259 5.6010e+03 1.7015 8.1890e+03
Greedy-I.3 0.0076 1.4006e+03 1.3302 2.1894e+03

ColumnPivot 0.0021 9.3993e+10 1.1611 8.6922e+10
Chan 0.0078 1.0197 1.1665 2.3094
GKS 0.0144 5.8525e+12 1.1656 5.0024e+12
Foster 0.0038 1.6923e+13 1.0504 1.3527e+13

Hybrid-I 0.0034 1.0040 1.1611 0.7071
Hybrid-II 0.0042 1.0050 1.1776 0.7071
Hybrid-III 0.0101 1.0040 1.1611 0.7071
SRRQR-1 0.0168 1.0040 1.1611 0.7071
SRRQR-2 0.0045 1.0129 1.3034 0.7071

GSRRQR-1 0.0135 1.0040 1.1611 0.7071
GSRRQR-2 0.0024 1.0050 1.1776 0.7071

This matrix is much more tough than the previous two. From the numerical results,

we see that all greedy algorithms except Chan failed to find a good RRQR factorization.

Algorithm Chan, though give a very good σk(R11) and σ1(R22), failed to control the

magnitude of R−1
11 R12.

Table 6.7 Matrix-III: Number of Iterations of hybrid algorithms

Matrix-III of size 50× 50, k = 48 Number of Iterations
Hybrid-I 2
Hybrid-II 2
Hybrid-III 2

This matrix shows the deficiency of greedy algorithms. All hybrid algorithms and

strong RRQR algorithms succeed in finding a strong RRQR factorization. We also

see that the theoretical bound on σk(M)/σk(R11) and σ1(R22)/σk+1(M) is far from

reached for both hybrid algorithms and strong RRQR algorithms. And again, greedy

SRRQR algorithms run faster than the origin SRRQR algorithms.

From Table 6.7, we see that hybrid algorithms only use 2 iterations to find a good

permutation. Since algorithm Hybrid-III involves alternating between Hybrid-I and

81

Rank Revealing Algorithms and its Applications

Hybrid-II, we see that after algorithm Hybrid-III performs Hybrid-I for the first time,

Hybrid-II agrees with its solution and so no more iterations are required.

6.1.4 Matrix-IV

Finally, the numerical results for the Kahan matrix with size 50 is presented in Table

6.8. The condition number of this matrix is 4.9910e+04, which is much smaller than

the preivous Matrix-III. We again choose k = 48. So the theoretical bounds for SRRQR

algorithms are the same as for Matrix-III, which are

max

{
σk(M)

σk(R11)
,
σ1(R22)

σk+1(M)

}
<

√
1 + k(n− k) + min(k, n− k) = 9.9499

and

max |R−1
11 R12| <

√
k(n− k) + min(k, n− k)√

k(n− k)
= 1.0104

Table 6.8 Numerical Results for Matrix-IV

n = 50, rank(M) = 49, rank(M) =4.9910e+04, k = 48
Time (s) σk(M)/σk(R11) σ1(R22)/σk+1(M) max |R−1

11 R12|
SVD 0.0129 (((((

(((((
(((((

QR 0.0018 3.0303e+03 1.0000 1.0533e+03
Greedy-I.1 0.2349 1.0058 1.0954 0.8333
Greedy-I.2 0.0148 1.2472e+03 1.1993 654.2344
Greedy-I.3 0.0077 1.2472e+03 1.1993 654.2344

ColumnPivot 0.0017 1.2472e+03 1.1993 654.2344
Chan 0.0042 3.0303e+03 1.0202 1.0533e+03
GKS 0.0136 1.0058 1.0954 0.8333
Foster 0.0026 3.0303e+03 1.0202 0.8333

Hybrid-I 0.0025 1.0058 1.0954 0.8333
Hybrid-II 0.0043 1.0058 1.0954 0.8333
Hybrid-III 0.0102 1.0058 1.0954 0.8333
SRRQR-1 0.0032 1.0058 1.0954 0.8333
SRRQR-2 0.0032 1.0058 1.0954 0.8333

GSRRQR-1 0.0031 1.0058 1.0954 0.8333
GSRRQR-2 0.0030 1.0058 1.0954 0.8333

Only two greedy algorithms, Greedy-I.1 and GKS, succeeded in finding a good

82

Rank Revealing Algorithms and its Applications

permutation for the Kahan matrix. Kahan matrix shows the deficiency of these greedy

RRQR algorithms again.

In Section 3.2.10, we showed that exact execution of Algorithm Greedy-I.1, Greedy-

I.2, Greedy-I.3 and QR with column pivoting won’t perform any permutation for Kahan

matrices. However, due to the error in computing the smallest singular value (by inverse

iteration), as I shown in the results, Algorithm Greedy-I.1 does succeed in finding a

good permutation.

Table 6.9 Matrix-IV: Number of iterations of strong RRQR algorithms

Matrix-IV of size 50× 50 Number of Iterations
SRRQR-1 1

GSRRQR-1 1
SRRQR-2 1

GSSRRQR-2 1

Table 6.9 show the number of iterations performed by these strong RRQR algo-

rithms. Though the origin SRRQR algorithms only require 1 iteration, greedy SRRQR

algorithms run faster because they use heuristic, or say greedy strategy, to find that i-j

pair.

6.2 Rank Deficient Least Squares Problem

6.2.1 Theoretical Analysis

In this section, we consider the linear least squares problem

min ∥Ax− b∥2,

where A ∈ Rm×n is ill-conditioned. The usual least squares method first QR factor

A = QR and then solve the linear least squares problem min ∥Rx−QTb∥2. Let ˜bmR

denote the matrix formed by the first n rows of R and b̃ be the vector formed by the

first n rows of QTb, then the solution is given by x = R̃−1b̃. However, this solution

is unstable since R̃ is nearly singular. The solution is extremely sensitive the small

perturbations of b.

83

Rank Revealing Algorithms and its Applications

One practical approach for solving the problem is by the truncated SVD (TSVD).

TSVD only keeps the information of the k most dominant singular values of the origin

matrix A, where k is the numerical rank of A. We have

A =
k∑

i=1

uiσiv
T
i ,

where ui (vi) is the left (right) singular vector of A corresponding to σi. Then the

solution xTSV D is given by

xTSV D =
k∑

i=1

uT
i bvi

σi

.

Instead of using SVD, we can also use (strong) RRQR factorization to give a solution

for the least squares problem. For convention, we change our notation here. We use A

instead of M as the input of RRQR factorization. Suppose (strong) RRQR factorization

gives

AΠ = QR = Q

R11 R12

0 R22

 .

Since σmax(R22) is small, we neglect the submatrix R22. Now our problem turns to

min

∥∥∥∥∥∥
R11 R12

0 0

ΠTx−QTb

∥∥∥∥∥∥
2

.

Find an orthogonal transformation Q̂ such that

Q̂T

RT
11

RT
12

 =

R̂T
11

0

 .

This Q̂ also gives R11 R12

0 0

 Q̂ =

R̂11 0

0 0

 .

84

Rank Revealing Algorithms and its Applications

Now the problem can be restated as

min

∥∥∥∥∥∥
R̂11 0

0 0

 Q̂TΠTx−QTb

∥∥∥∥∥∥
2

,

and the truncated RRQR solution xTQR is given by

xTQR = ΠQ̂

R̂−1
11 0

0 0

QTb.

Another way to compute the solution, which is more efficient, is to also neglect the

submatrix R12. The basic solution xBQR is then given by

xBQR = Π

R−1
11 0

0 0

QTb.

Now we analyze the difference and goodness of these three solutions.

Definition 6.2.1. The residual vectors are defined as

rTSV D = AxTSV D − b

rTQR = AxTQR − b

rBQR = AxBQR − b

Theorem 6.2.1. The differences between xTSV D, xTQR, xBQR can be controlled by

∥xTSV D − xTQR∥2 ≤ ∥R22∥2∥R−1
11 ∥2

(
2∥xTSV D∥2 +

∥rTSV D∥2
σk

)

∥xTQR − xBQR∥2 ≤
1 +

√
5

2
∥R−1

11 ∥22∥R12∥2∥b∥2.

(6-1)

85

Rank Revealing Algorithms and its Applications

The differences between the residual vectors satisfy

∥rTSV D − rTQR∥2 ≤ ∥R22∥2
(
∥xTSV D∥2 +

∥rTSV D∥2
σk

)

∥rTQR − rBQR∥2 ≤ ∥R22∥2∥R−1
11 ∥2∥b∥2

(6-2)

Proof. Note that solution xTQR is identical to the TSVD solution xTSV D applied to the

problem

min

∥∥∥∥∥∥Q
R11 R12

0 0

ΠTx− b

∥∥∥∥∥∥
2

We can regard xTQR as a TSVD solution for the perturbed matrix Ã with perturbation

E,

Ã = Q

R11 R12

0 0

ΠT , E = Q

0 0

0 R22

ΠT (6-3)

From the derivation of xTQR, we see the pseudo-inverse of Ã is

Ã+ ≜

R̂−1
11 0

0 0

 .

Then we have

∥Ã+∥2 = ∥R̂−1
11 ∥2 ≤ ∥R−1

11 ∥2, (6-4)

where the last inequality comes from the derivation of R̂11. Also by Equation (6-3), we

have ∥E∥2 = ∥R22∥2 and σk+1(Ã) = 0.

Hansen ([24], 1987) gave general perturbation bounds for the TSVD solutions:

∥xTSV D − xTQR∥2 ≤ ∥Ã+∥2∥E∥2
(
∥xTSV D∥2 +

∥rTSV D∥2
σk

)
+

∥E∥2∥xTSV D∥2
σk

∥rTSV D − rTQR∥2 ≤ ∥E∥2∥xTSV D∥2 +
∥E∥2∥rTSV D∥2

σk

,

(6-5)

86

Rank Revealing Algorithms and its Applications

where σk denotes the kth largest singular value of A. The interlacing property tells

σ−1
k ≤ ∥R−1

11 ∥2. (6-6)

Plugging Inequality (6-4) and (6-6) into Inequality (6-5) gives

∥xTSV D − xTQR∥2 ≤ ∥R22∥2∥R−1
11 ∥2

(
2∥xTSV D∥2 +

∥rTSV D∥2
σk

)

∥rTSV D − rTQR∥2 ≤ ∥R22∥2
(
∥xTSV D∥2 +

∥rTSV D∥2
σk

)
By definition of xBQR, we have

∥xTQR − xBQR∥2 ≤ ∥Π∥2 ·

∥∥∥∥∥∥
R11 R12

0 0

+

−

R11 0

0 0

+∥∥∥∥∥∥
2

· ∥Q∥2 · ∥b∥2

Now define

Ē ≜

0 R12

0 0

 , Ā ≜

R11 0

0 0

 .

By the property of perturbed pseudo-inverse (Thm 5.3 in [25], Björck, 1990), we have

∥(Ā+ Ē)+ − Ā+∥2 ≤
1 +

√
5

2
∥Ā+∥2 ∥(Ā+ Ē)+∥2 ∥Ē∥2 (6-7)

This gives the bound

∥xTQR − xBQR∥2 ≤
1 +

√
5

2
∥R−1

11 ∥22 ∥R12∥2 ∥b∥2.

Finally, by definition of the residual vectors, we have

rTQR − rBQR = A(xTQR − xBQR)

= QRΠTΠ

Q̂

R̂−1
11 0

0 0

−

R−1
11 0

0 0

QTb

(6-8)

87

Rank Revealing Algorithms and its Applications

Partition Q̂ as

Q̂ =

Q̂11 Q̂12

Q̂21 Q̂22

 ,

where Q̂11 is of order k. The definition of Q̂ tells

R̂11 = R11Q̂11 +R12Q̂21 (6-9)

Now follow Equation (6-8),

rTQR − rBQR = QR

Q̂11R̂
−1
11 0

Q̂21R̂
−1
11 0

−

R−1
11 0

0 0

QTb

= Q

(R11Q̂11 +R12H21)R̂
−1
11 0

R22Q̂21R̂
−1
11 0

−

I 0

0 0

QTb

= Q

 0 0

R22Q̂21R̂
−1
11 0

QTb

(6-10)

Taking two norm on both sides of Inequality (6-10) gives

∥rTQR − rBQR∥2 ≤ ∥R22∥2∥R−1
11 ∥2∥b∥2

Since most RRQR algorithms ensure ∥R22∥2 ≤ σk+1(A) q(n, k) and since ∥R−1
11 ∥2

is small as long as σk+1(A) is small, Theorem 6.2.1 tells that solution xTSV D and xTQR

are approximately the same. But xTQR is cheaper to compute than xTSV D.

Theorem 6.2.1 also says that the residual rBQR is approximately the same as rTQR

and rTSV D, though the solution xBQR may be very different from the other two (xBQR

may have a large component in the null space of A).

88

Rank Revealing Algorithms and its Applications

6.2.2 Numerical Experiment

In Section 6.1, we see hybrid algorithms and SRRQR algorithms always give a good

permutation for RRQR factorization. Since RRQR algorithms guarantee |R−1
11 R12| to

be small, I use algorithm GSRRQR-2 in the experiment.

The dimension of the system is m = n = 100 and the matrix A is chosen such

that the first k singular values of A span linearly between 1000 and 1, and the rest

n − k singular values of A are chosen to be the same. Then I pick a random unitary

vector xexact to generate b = Axexact. I also compute the solution given by full SVD,

xFSV D = R−1QTb, and its residual rFSV D = AxFSV D−b. Table 6.10 and 6.11 show

the numerical results under different k and ratio σk/σk+1.

Table 6.10 Norm of Residuals

Matrix n = 100, k = 50 Results
σ1 σ50 σ51, ..., σ100 ∥rTSV D∥2 ∥rTQR∥2 ∥rBQR∥2 ∥rFSV D∥2

1000 1 10−1 0.0680 0.0680 0.1711 6.2423e-13
1000 1 10−4 7.8631e-05 7.8631e-05 1.2905e-04 1.0609e-12
1000 1 10−7 6.8505e-08 6.8505e-08 1.5457e-07 1.1350e-12
Matrix n = 100, k = 90 Results
σ1 σ90 σ91, ..., σ100 ∥rTSV D∥2 ∥rTQR∥2 ∥rBQR∥2 ∥rFSV D∥2

1000 1 10−1 0.0271 0.0270 0.0919 8.7051e-13
1000 1 10−4 3.3660e-05 3.3660e-05 7.6489e-05 2.0268e-12
1000 1 10−7 2.6954e-08 2.6954e-08 1.0541e-07 1.1925e-12

Table 6.11 Differences between Solutions

Matrix n = 100, k = 50 Results
σ1 σ50 σ51, ..., σ100 ∥xTSV D − xexact∥2 ∥xTSV D − xTQR∥2 ∥xTSV D − xBQR∥2

1000 1 10−1 0.7113 0.0043 0.9879
1000 1 10−4 0.7315 2.0382e-09 1.0418
1000 1 10−7 0.6347 2.2103e-14 1.1225
Matrix n = 100, k = 90 Results
σ1 σ90 σ91, ..., σ100 ∥xTSV D − xexact∥2 ∥xTSV D − xTQR∥2 ∥xTSV D − xBQR∥2

1000 1 10−1 0.3421 0.0018 0.9667
1000 1 10−4 0.2000 8.6806e-11 0.7315
1000 1 10−7 0.3685 4.4359e-14 0.7650

From Table 6.10, we see that RRQR-based solution xTQR and xBQR give compa-

89

Rank Revealing Algorithms and its Applications

rably small residuals as the TSVD-based solution xTSV D when the linear system goes

ill-conditioned. Also, we see the residuals rTSV D, rTQR, rBQR are of the same order as

σk/σk+1 and they are irrelevant to the numerical rank k.

Table 6.11 checks the similarity between xTSV D, xTQR, xBQR and xexact. We see

that the similarity between xTSV D and xTQR depends on the ratio σk(A)/σk+1(A)

instead of the numerical rank k. This accords with our analytical statement.

Also we see since the system is ill-conditioned, there may be many good approxi-

mate solutions. Our xTSV D and xTQR may be very different from xexact. Also, we see

the solution xBQR is very different from both xTQR and xTSV D.

So if one wants to get a faster solution for this system, I suggest xBQR which offers

the same order of residual as xTSV D. If one wants to get a solution that TSVD will

give, I suggest xTQR, which is nearly the same as xTSV D.

6.3 Subset Selection Problem

6.3.1 Theoretical Analysis

In this section, we consider the subset selection problem, which aims to determine the

k most linearly independent columns of the given matrix A, where k is the numerical

rank of A. Specifically, we try to find a permutation matrix Π such that the condition

number of the submatrix formed by the first k columns of AΠ is maximized.

Golub, Klema and Stewart ([22], 1976) proposed an SVD-based algorithm for solv-

ing the subset selection problem. The algorithm has two steps. Given a matrix A ∈

Rm×n, at the first step, we compute the SVD of A,

A = UΣV T , V =

V11 V12

V21 V22

 .

At the second step, we apply algorithm QR with column pivoting-I on matrix
[
V T

11 V T
21

]
and get a permutation matrix ΠSV D. Then the first k columns of AΠSV D give the SVD-

based solution for the problem.

90

Rank Revealing Algorithms and its Applications

Theorem 6.3.1. Let A = UΣV T be the SVD factorization of A. Partition AΠ and

ΠTV , where Π is a permutation matrix,

AΠ =
[
B1 B2

]
, ΠTV =

Ṽ11 Ṽ12

Ṽ21 Ṽ22

 .

If Ṽ11 ∈ Rk×k is nonsingular and k ≤ rank(A), then

σk(A)

∥Ṽ −1
11 ∥2

≤ σk(B1) ≤ σk(A) (6-11)

Proof. The interlacing property gives the upper bound of σk(B1). Partition the diagonal

matrix Σ as

Σ =

Σ1 0

0 Σ2

 ,

where Σ1 is of order k. Now let v ∈ Rk be the right singular vector of B1 corresponding

to the least dominant singular value so that ∥B1v∥2 = σk(B1) and ∥v∥2 = 1. Then we

have

σk(B1)
2 = ∥B1v∥22 =

∥∥∥∥∥∥UΣV TΠ

v
0

∥∥∥∥∥∥
2

2

= ∥Σ1Ṽ
T
11v∥22 + ∥Σ2Ṽ

T
12v∥22. (6-12)

Notice that

σk(A) = ∥Σ1v∥2 = ∥(Ṽ T
11)

−1Σ1Ṽ
T
11w∥2 ≤ ∥Ṽ −1

11 ∥2 · ∥Σ1Ṽ
T
11w∥2 (6-13)

Combining Equation (6-12) and Inequality (6-13) gives the lower bound

σk(A)

∥Ṽ −1
11 ∥2

≤ σk(B1)

Notice that the submatrix Ṽ T
11 can be computed by V T

11Π + V T
21Π. For the SVD-

based algorithm, since Π is found by the QR with column-pivoting-I factorization of

91

Rank Revealing Algorithms and its Applications[
V T

11 V T
21

]
, it ensures V T

11Π+ V T
21Π to be well-conditioned. Then by Theorem 6.3.1,

we have a lower bound for the smallest singular value of the first k columns.

We can also use (strong) RRQR factorization to give a solution ΠQR for the subset

selection problem. Suppose the (strong) RRQR factorization of the matrix A is given

by

AΠQR = QR, R =

R11 R12

0 R22

 ,

where R11 is an upper triangular matrix of order k. The permutation matrix ΠQR gives

the RRQR-based solution for the problem.

To see how good the subspace is, we measure the principle angle between the sub-

space that the algorithm has selected with the subspace spanned by the k most dominant

left singular vectors.

Theorem 6.3.2. Let VU denote the subspace spanned by the first k left singular vectors

u1, ...,uk. Let VQR denote the subspace spanned by the first k columns of AΠQR and

let VSV D denote the subspace spanned by the first k columns of AΠSV D. Let θ(V1,V2)

denote the principle angle between subspace V1 and V2. Then

sin(θ(VU ,VSV D)) ≤
σk+1(A)

σk(A)
∥Ṽ −1

11 ∥2

sin(θ(VU ,VQR)) ≤ σk+1(A)∥R−1
11 ∥2

(6-14)

Proof. Let VU∗ denote the subspace spanned by the last m − k left singular vec-

tors uk+1, ...,um. Since U is an orthogonal matrix, we have VU∗⊥VU . This gives

sin(θ(VU ,VSV D)) = cos(θ(VU∗ ,VSV D)) and sin(θ(VU ,VQR)) = cos(θ(VU∗ ,VQR)).

For simplicity, partition U , AΠSV D as

U =
[k m− k

U1 U2

]
, AΠSV D =

[k m− k

B1 B2

]

92

Rank Revealing Algorithms and its Applications

Then we have

cos(θ(VU∗ ,VSV D)) ≤
∥∥∥∥ UT

2 B1

(BT
1 B1)1/2

∥∥∥∥
2

≤ ∥UT
2 B1∥2∥(BT

1 B1)
−1/2∥2

(6-15)

Note that
UT

2 AΠSV D = UT
2

[
U1 U2

]
ΣV TΠSV D

=
[
0 I

]Σ1 0

0 Σ2

V TΠSV D

=
[
0 Σ2

]
V TΠSV D.

(6-16)

Inequality (6-15) can be written as

cos(θ(VU∗ ,VSV D)) ≤
σk+1(A)

σk(B1)
≤ σk+1(A)

σk(A)
∥Ṽ −1

11 ∥2, (6-17)

where the last inequality comes from Theorem 6.3.1. Let B̄1 be the matrix formed by

the first k columns of AΠQR. We have

B̄1 = Q

R11

0

 . (6-18)

By the same argument, we have

cos(θ(VU∗ ,VQR)) ≤
σk+1(A)

σk(B̄1)
=

σk+1(A)

σk(R11)
= σk+1(A)∥R−1

11 ∥2 (6-19)

Since RRQR algorithms guarantee

∥R−1
11 ∥2 =

1

σmin(R11)
≤ q(k, n)

σk(A)
.

Combine this with Theorem 6.3.2, we see the sine of both angles has the same order

93

Rank Revealing Algorithms and its Applications

as σk+1(A)/σk(A). This means both subspace VSV D and VQR are close to VU and

therefore they represent approximately the same subspace, although they may not use

the same permutation matrix.

Notice that the basic solution xBQR in Section 6.2 is the least squares solution in

the subspace VQR.

6.3.2 Numerical Experiment

The matrix A is selected according to the same criteria as in Section 6.2.2. VQR is gen-

erated using Algorithm GSRRQR-2. I also define Sim(VSV D,VQR) to be the number

of same columns these two algorithms have picked among the first k columns of A.

The numerical results are presented in Table 6.12.

Table 6.12 Sine of the angle between VU , VSV D and VQR

n = 500, k = 200 Results
σ1 σ200 σ201, ..., σ500 sin(θ(VU ,VSV D)) sin(θ(VU ,VQR)) Sim(VSV D,VQR)

1000 1 10−1 0.5838 0.8375 99
1000 1 10−4 4.3261e-04 0.0029 82
1000 1 10−7 3.0032e-07 9.9717e-06 79

n = 500, k = 400 Results
σ1 σ400 σ401, ..., σ500 sin(θ(VU ,VSV D)) sin(θ(VU ,VQR)) Sim(VSV D,VQR)

1000 1 10−1 0.2935 0.9710 330
1000 1 10−4 2.3591e-04 0.0035 318
1000 1 10−7 2.1639e-07 2.1654e-06 318

Table 6.13 Time for computing VSV D and VQR

n = 500, k = 200 Time (s)
σ1 σ200 σ201, ..., σ500 VQR VSV D

1000 1 10−1 0.9417 5.4794
1000 1 10−4 1.8715 5.4611
1000 1 10−7 1.7896 5.4190

n = 500, k = 400 Time (s)
σ1 σ400 σ401, ..., σ500 VQR VSV D

1000 1 10−1 1.4389 7.7955
1000 1 10−4 2.1173 7.6238
1000 1 10−7 2.2196 7.6246

94

Rank Revealing Algorithms and its Applications

The results accord with our former analysis, that the sine of both angles is dominated

σk+1(A)/σk(A), though the theoretical upper bound of SRRQR algorithms depend

on k. Also, the columns these two algorithms picked are different. An interesting

observation is that the subspace VQR is closer to VU in all the results. This means in

all our numerical results, the RRQR-based solution perform better than the SVD-based

solution. This is not that surprising. Notice that the SVD-based solution use QR with

column pivoting to find permutation matrix and we’ve already seen in Section 6.1 that

algorithm SRRQR-1 outperforms QR with column pivoting. This may be the reason for

why RRQR-based solution performs better than the SVD-based solution.

Also, note that the SVD solution is generated by first running truncated SVD and

then apply QR with column pivoting. We can see from Table 6.13 that computing VSV D

costs three times more than computing VQR by using algorithm GSRRQR-2 for matrix

of size 500× 500.

6.4 Matrix Approximation and Image Compression

6.4.1 Theoretical Analysis

In this section, we discuss the matrix approximation problem, which has potential ap-

plication to image compression. Given a matrix A ∈ Rm×n, we want to find Ak with

rank k such that ∥A−Ak∥2 is minimized.

This problem is solved by truncated SVD,

Ak =
k∑

i=1

uiσiv
T
i

And the solution gives

∥A−Ak∥2 = σk+1

Suppose AΠ = QR is an RRQR factorization of A. Consider the approximation

95

Rank Revealing Algorithms and its Applications

given by truncating the RRQR factorization,

Bk = Q

R11 R12

0 0

ΠT .

Theorem 6.4.1. For Bk defined as above, we have

∥A−Bk∥2 ≤ σk+1(A)q2(k, n),

where q2(k, n) is given by the RRQR algorithm.

Proof. Since

∥A−Bk∥2 =

∥∥∥∥∥∥Q
R11 R12

0 R22

ΠT −Q

R11 R12

0 0

ΠT

∥∥∥∥∥∥
2

= ∥R22∥2,

and since RRQR algorithm promises

∥R22∥2 ≤ σk+1(A)q2(k, n),

we have

∥A−Bk∥2 ≤ σk+1(A)q2(k, n).

From Theorem 6.4.1, we see that RRQR-based algorithm also gives a good rank-

k approximation. From triangular inequality, we see the difference ∥Ak − Bk∥2 is

bounded by (1 + q2(k, n))σk+1(A). When σk+1(A) is sufficiently small, the difference

between Ak and Bk is negligible. Also since the bound does not depend on the gap

between σk(A) and σk+1(A), the RRQR-based algorithm works for any matrix inde-

pendently of its singular values. This gives it the potential for application in image

compressing.

96

Rank Revealing Algorithms and its Applications

6.4.2 Numerical Experiment

We choose the same matrix A as in Section 6.2.2 and select GSRRQR-2 as the rank

revealing algorithm. Table 6.14 shows the numerical results.

Table 6.14 Matrix approximation using SVD, GSRRQR-2

Matrix n = 500, k = 200 Error Time (s)
σ1 σ200 σ201, ..., σ500 ∥A−Bk∥2 ∥A−Ak∥2 Bk Ak

1000 1 10−1 2.0257 0.1000 1.1274 5.3695
1000 1 10−4 0.0018 1.0000e-04 1.6541 5.3798
1000 1 10−7 1.9152e-06 1.0000e-07 1.7952 5.3417
Matrix n = 500, k = 400 Error Time (s)
σ1 σ400 σ401, ..., σ500 ∥A−Bk∥2 ∥A−Ak∥2 Bk Ak

1000 1 10−1 1.6829 0.1000 1.9864 7.4138
1000 1 10−4 0.0017 1.0000e-04 2.1029 7.4044
1000 1 10−7 1.6289e-06 1.0000e-07 2.0819 7.2584

We can see that the approximation error for RRQR-based solution is about ten times

σk+1. So as long as σk+1, the approximation is good. Also we see, computing an RRQR-

based solution is much faster than computing an SVD-based solution.

Now let’s see the application of rank revealing algorithms in image compression.

The origin image is shown in Figure 6.1. In Section 6.1, we see all strong RRQR

algorithms will guarantee a good RRQR factorization. In practice, what we really care

is their time efficiency. Table 6.15 shows the time cost of these strong RRQR algorithms

under different settings of k. We can see that in practice, greedy SRRQR algorithms

run significantly faster than the origin SRRQR algorithms.

Figure 6.1 Origin figure (608× 1024)

97

Rank Revealing Algorithms and its Applications

Table 6.15 Time efficiency of strong RRQR algorithms on Figure 6.1

Time (s) Number of Iterations
SVD 32.2644 (((((

k = 50 Time (s) Number of Iterations
SRRQR-1 5.6498 370
GSRRQR-1 1.0632 68
SRRQR-2 3.6098 313
GSRRQR-2 0.8495 42
k = 100 Time (s) Number of Iterations
SRRQR-1 8.6829 626
GSRRQR-1 1.9944 117
SRRQR-2 7.6097 512
GSRRQR-2 1.8059 74
k = 150 Time (s) Number of Iterations
SRRQR-1 14.9104 933
GSRRQR-1 3.0059 179
SRRQR-2 10.9214 752
GSRRQR-2 2.3592 112
k = 250 Time (s) Number of Iterations
SRRQR-1 31.6790 1480
GSRRQR-1 5.1366 249
SRRQR-2 22.6242 1155
GSRRQR-2 3.9903 179

Figure 6.2 shows the compressed image using SVD and GSRRQR-2.

As expected, we see when k is small, the RRQR-based approximation is bad. As

we increase k, the difference between the RRQR-based approximation and the SVD-

based approximation becomes negligible. Since we typically don’t want to loose much

information after compression which means k is not too small, rank revealing algorithm

can be used as a more efficient alternative to SVD.

98

Rank Revealing Algorithms and its Applications

(a) k = 50, SVD (b) k = 50, GSRRQR-2

(c) k = 100, SVD (d) k = 100, GSRRQR-2

(e) k = 150, SVD (f) k = 150, GSRRQR-2

(g) k = 250, SVD (h) k = 250, GSRRQR-2

Figure 6.2 Image compression using SVD and GSRRQR-2

99

Rank Revealing Algorithms and its Applications

Chapter 7 Conclusions

7.1 Summary of the Thesis

This thesis focuses on the rank revealing QR (RRQR) factorization and aims to give a

survey of almost all famous algorithms for computing the RRQR factorization. This

is the first literature that compares these algorithms both analytically and numerically.

In this thesis, I propose a greedy strong RRQR (GSRRQR) algorithm for computing a

strong RRQR factorization. This thesis also discusses several potential applications of

the RRQR factorization.

I designed numerical experiments on matrices of different kinds and different sizes

and the results show that the new proposed algorithm, GSRRQR, runs significantly

faster than the origin SRRQR algorithm. Also, GSRRQR algorithm guarantees the

same analytical bounds as the origin SRRQR algorithm. So I suggest that one should

use GSRRQR algorithm as the default algorithm for computing a strong RRQR factor-

ization.

Gu ([2], 1996) and Ipsen ([3], 1994) suggested that using algorithm QR with column

pivoting to initialize the given matrix could improve the time efficiency of hybrid and

strong RRQR algorithms. However, since GSRRQR algorithm is embedded with the

greedy strategy, this initialization step is useless for GSRRQR.

Besides algorithm GSRRQR, I also complete some theoretical work in this thesis. I

extends several theorems and completes some parts of the theoretical analysis indepen-

dently (see Section 1.2 for detail). I also corrects some error from previous literatures.

RRQR factorization are designed to substitute SVD in rank deficient problems.

For rank deficient least squares, we see that not only the 2-norm of the residuals

of RRQR-based solution and SVD-based solution are similar, but also the difference

between RRQR-based solution and SVD-based solution is negligible as the system goes

more and more ill-conditioned.

For subset selection problem, by using algorithm GSRRQR-2, we see the RRQR-

100

Rank Revealing Algorithms and its Applications

based solution gives a better result than the SVD-based solution while they are much

more efficient to compute.

For matrix rank-k approximation, the difference between the approximation error

of RRQR-based approximation and SVD-based approximation has the same order as

the k + 1st largest singular value of the origin matrix.

7.2 Future Work

Numerical results show algorithm GSRRQR runs much faster than the origin SRRQR.

However, we still lack a theoretical analysis for its time efficiency. How can we bound

the number of iterations that algorithm GSRRQR will perform by some formula related

to the given matrix? It’s hard to show this bound since till now, we still don’t have a

bound for the number of iterations that hybrid algorithms will perform.

Greedy strong RRQR algorithms improve the time efficiency of the origin SRRQR

algorithms by first consider the greedy i-j pair. However, when dealing with a sparse

matrix, we really want to maintain the sparsity of the matrix at each iteration. GSRRQR

algorithms cannot guarantee this, neither can these hybrid and strong RRQR algorithms

presented in this thesis.

Note, by the halting argument of strong RRQR algorithm only require that the de-

terminant of the k× k principal submatrix should increase strictly at each step. We can

compromise the selection of the pivoting column as long as it satisfies this condition.

To find such column that also maintains sparsity of the matrix is the research with lots

of potential at this current stage.

Parallel implementation is of great importance for matrices of very large scale.

Householder transformation can be extended into block Householder transformation

which enables parallel implementation of QR factorization. It’s not clear how to mod-

ify the hybrid and strong RRQR algorithms so that they can be implemented in parallel.

This is another potential area of research.

101

Rank Revealing Algorithms and its Applications

REFERENCES

[1] Tony F Chan and Per Christian Hansen. Some applications of the rank revealing qr

factorization. SIAM Journal on Scientific and Statistical Computing, 13(3):727–

741, 1992.

[2] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a

strong rank-revealing qr factorization. SIAM Journal on Scientific Computing,

17(4):848–869, 1996.

[3] Shivkumar Chandrasekaran and Ilse CF Ipsen. On rank-revealing factorisations.

SIAM Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.

[4] John GF Francis. The qr transformation a unitary analogue to the lr transforma-

tionpart 1. The Computer Journal, 4(3):265–271, 1961.

[5] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU

Press, 2012.

[6] Alan M Turing. Rounding-off errors in matrix processes. The Quarterly Journal

of Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[7] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.

Siam, 1997.

[8] Gene Golub and William Kahan. Calculating the singular values and pseudo-

inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics,

Series B: Numerical Analysis, 2(2):205–224, 1965.

[9] Gene Golub. Numerical methods for solving linear least squares problems. Nu-

merische Mathematik, 7(3):206–216, 1965.

[10] Peter Businger and Gene H Golub. Linear least squares solutions by householder

transformations. Numerische Mathematik, 7(3):269–276, 1965.

102

Rank Revealing Algorithms and its Applications

[11] William B Gragg and Gilbert W Stewart. A stable variant of the secant method for

solving nonlinear equations. SIAM Journal on Numerical Analysis, 13(6):889–

903, 1976.

[12] Tony F Chan. Rank revealing QR factorizations. Linear Algebra and its Applica-

tions, 88-89:67–82, 1987.

[13] William Kahan. Numerical linear algebra. Canadian Math. Bulletin, 9(757-

801):103, 1966.

[14] Yoo Pyo Hong and C-T Pan. Rank-revealing factorizations and the singular value

decomposition. Mathematics of Computation, 58(197):213–232, 1992.

[15] Tony F Chan. On the existence and computation of -factorizations with small

pivots. Mathematics of computation, 42(166):535–547, 1984.

[16] Tsung-Min Hwang, Wen-Wei Lin, and Eugene K Yang. Rank revealing LU fac-

torizations. Linear Algebra and its Applications, 175:115–141, 1992.

[17] L Miranian and M Gu. Strong rank revealing LU factorizations. Linear Algebra

and its Applications, 367:1–16, 2003.

[18] VE Kane, RC Ward, and GJ Davis. Assessment of linear dependencies in mul-

tivariate data. SIAM Journal on Scientific and statistical computing, 6(4):1022–

1032, 1985.

[19] Sabine Van Huffel and Joos Vandewalle. Subset selection using the total least

squares approach in collinearity problems with errors in the variables. Linear

algebra and its applications, 88:695–714, 1987.

[20] Christian H Bischof, John G Lewis, and Daniel J Pierce. Incremental condition es-

timation for sparse matrices. SIAM Journal on Matrix Analysis and Applications,

11(4):644–659, 1990.

[21] Pierre Comon and Gene H Golub. Tracking a few extreme singular values and

vectors in signal processing. Proceedings of the IEEE, 78(8):1327–1343, 1990.

103

Rank Revealing Algorithms and its Applications

[22] Gene Golub, Virginia Klema, and Gilbert W Stewart. Rank degeneracy and least

squares problems. Technical report, DTIC Document, 1976.

[23] Leslie V Foster. Rank and null space calculations using matrix decomposition

without column interchanges. Linear Algebra and its Applications, 74:47–71,

1986.

[24] Per Christian Hansen. The truncatedsvd as a method for regularization. BIT Nu-

merical Mathematics, 27(4):534–553, 1987.

[25] Åke Björck. Least squares methods. Handbook of numerical analysis, 1:465–652,

1990.

104

Rank Revealing Algorithms and its Applications

ACKNOWLEDGEMENT

It has been such a long journey and an extraordinary experience working on this

graduation research with all the people that have helped me. I would mainly like to

acknowledge my advisor Prof. Zengqi Wang for the continuous support of my study

and research. Although I was studying abroad during the whole semester and it was

sometimes inconvenient to keep in touch by email, she was always so nice with patience

and always willing to lend a helping hand.

I also want to thank the rest of my thesis committee: Prof. Xiaoming Wang and

Prof. Jinyan Fan for their insightful comments and questions.

I thank Prof. Shi Jin, my advisor in University of Wisconsin, and my dear friend,

Yisi Liu. I could not have imagined how I can tild over this busy semester without their

encouragement.

I would like to express my sincere gratitude to Prof. Amos Ron in University of

Wisconsin for leading me to the field of numerical linear algebra.

Last but not the least, I would like to thank my family: my parents Junzhou Bao

and Xibei Huo, for giving birth to me at the first place and supporting me spiritually

throughout my life.

105

Rank Revealing Algorithms and its Applications

Appendix A MATLAB Code for RRQR Factorization

A.1 QR Factorization

A.1.1 Householder Transformation

1 function v=house(x)

2 v = x;

3 if x(1) > 0;

4 v(1) = v(1)+norm(x);

5 else

6 v(1) = v(1)-norm(x);

7 end

8 end

house.m

A.1.2 Givens Rotation

1 function [c,s] = givens(a,b)

2 if abs(a) > abs(b)

3 t = b/a;

4 c = 1/sqrt(1+tˆ2);

5 s = t*c;

6 else

7 t = a/b;

8 s = 1/sqrt(1+tˆ2);

9 c = t*s;

10 end

11 end

givens.m

A.1.3 Householder QR

1 function [Q,R]=QR_Householder(A)

2 [m,n] = size(A);

3 Q = eye(m);

4 R = A;

5 for j = 1:n,

106

Rank Revealing Algorithms and its Applications

6 v = house(R(j:m,j));

7 c = 2/(v’*v);

8 R(j:m,:) = R(j:m,:) - c*v*(v’*R(j:m,:));

9 Q(:,j:m) = Q(:,j:m) - c*(Q(:,j:m)*v)*v’;

10 end

11 end

QR Householder.m

1 function [Q,R]=TQR_Householder(A,k)

2 [m,n] = size(A);

3 Q = eye(m);

4 R = A;

5 for j = 1:k,

6 v = house(R(j:m,j));

7 c = 2/(v’*v);

8 R(j:m,:) = R(j:m,:) - c*v*(v’*R(j:m,:));

9 Q(:,j:m) = Q(:,j:m) - c*(Q(:,j:m)*v)*v’;

10 end

11 end

TQR Householder.m

A.1.4 Givens QR

1 function [Q,R]=QR_Givens(A)

2 [m,n] = size(A);

3 Q = eye(m);

4 R = A;

5 for j = 1:n

6 for i = m:-1:j+1

7 [c,s] = givens(R(i-1,j),R(i,j));

8 G = [c, -s; s, c];

9 R([i-1,i],j:n) = G’*R([i-1,i],j:n);

10 Q(:,[i-1,i]) = Q(:,[i-1,i])*G;

11 end

12 end

13 end

QR Givens.m

107

Rank Revealing Algorithms and its Applications

A.2 Greedy RRQR Factorization

A.2.1 Power Method

1 function [lambda, vnew] = powerMethod(A, delta)

2 vold = rand(length(A),1);

3 vnew = A*vold;

4 lambda = vold’*vnew/norm(vold);

5 while norm(vnew-lambda*vold)/norm(vnew) > delta

6 vnew = vnew/norm(vnew);

7 vold = vnew;

8 vnew = A*vold;

9 lambda = vold’*vnew/(vold’*vold);

10 end

11 vnew = vnew/norm(vnew);

12 end

powerMethod.m

A.2.2 Inverse Power Method

1 function [lambda, vnew] = inversePowerMethod(A, delta)

2 [L,U,P] = lu(A); %PA=LU

3 vold = rand(length(A),1);

4 tmp = L\(P*vold);

5 vnew = U\tmp;

6 lambda = vold’*vnew/norm(vold);

7 while norm(vnew-lambda*vold)/norm(vnew) > delta

8 vnew = vnew/norm(vnew);

9 vold = vnew;

10 tmp = L\(P*vold);

11 vnew = U\tmp;

12 lambda = vold’*vnew/(vold’*vold);

13 end

14 vnew = vnew/norm(vnew);

15 lambda = 1/lambda;

16 end

inversePowerMethod.m

A.2.3 Algorithm Greedy-I.1

108

Rank Revealing Algorithms and its Applications

1 function [Q, R, Pi] = QR_Greedy1(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 Q = eye(m);

5 R = M;

6 p = 1:n;

7 gamma = sqrt(sum(R.ˆ2,1));

8 for l = 0:k-1

9 lambda_max = realmin;

10 for i = 1:n-l

11 tmp = [R(1:l,1:l),R(1:l,l+i);zeros(1,l),gamma(i)];

12 [lambda,˜] = inversePowerMethod(tmp’*tmp, 0.01);

13 if (lambda > lambda_max)

14 lambda_max = lambda;

15 j = i;

16 end

17 end

18 p([l+1,l+j]) = p([l+j,l+1]);

19 R(:,[l+1,l+j]) = R(:,[l+j,l+1]);

20 v = house(R(l+1:m,l+1));

21 c = 2/(v’*v);

22 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

23 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

24 gamma = gamma(2:end);

25 gamma = sqrt(gamma.ˆ2-R(l+1,l+2:n).ˆ2);

26 end

27 Pi = Pi(:,p);

28 end

QR Greedy1.m

A.2.4 Algorithm Greedy-I.2

1 function [Q, R, Pi] = QR_Greedy2(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 Q = eye(m);

5 R = M;

6 p = 1:n;

7 gamma = sqrt(sum(R.ˆ2,1));

8 invA = [];

9 for l = 0:k-1

10 lambda_max = realmin;

11 for i = 1:n-l

109

Rank Revealing Algorithms and its Applications

12 tmp = [invA, -invA*R(1:l,i+l)/gamma(i);zeros(1,l),1/gamma

(i)];

13 lambda = 1/max(sqrt(sum(tmp.ˆ2,2)));

14 if (lambda > lambda_max)

15 lambda_max = lambda;

16 j = i;

17 end

18 end

19 invA = [invA, -invA*R(1:l,j+l)/gamma(i);zeros(1,l),1/gamma(j)

];

20 p([l+1,l+j]) = p([l+j,l+1]);

21 R(:,[l+1,l+j]) = R(:,[l+j,l+1]);

22 v = house(R(l+1:m,l+1));

23 c = 2/(v’*v);

24 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

25 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

26 gamma = gamma(2:end);

27 gamma = sqrt(gamma.ˆ2-R(l+1,l+2:n).ˆ2);

28 end

29 Pi = Pi(:,p);

30 end

QR Greedy2.m

A.2.5 Algorithm Greedy-I.3

1 function [Q, R, Pi] = QR_Greedy3(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 Q = eye(m);

5 R = M;

6 p = 1:n;

7 gamma = sqrt(sum(R.ˆ2,1));

8 invA = [];

9 for l = 0:k-1

10 lambda_max = realmin;

11 for i = 1:n-l

12 tmp = abs([-invA*R(1:l,i+l)/gamma(i);1/gamma(i)]);

13 lambda = 1/max(tmp);

14 if (lambda > lambda_max)

15 lambda_max = lambda;

16 j = i;

17 end

18 end

110

Rank Revealing Algorithms and its Applications

19 invA = [invA, -invA*R(1:l,j+l)/gamma(i);zeros(1,l),1/gamma(j)

];

20 p([l+1,l+j]) = p([l+j,l+1]);

21 R(:,[l+1,l+j]) = R(:,[l+j,l+1]);

22 v = house(R(l+1:m,l+1));

23 c = 2/(v’*v);

24 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

25 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

26 gamma = gamma(2:end);

27 gamma = sqrt(gamma.ˆ2-R(l+1,l+2:n).ˆ2);

28 end

29 Pi = Pi(:,p);

30 end

QR Greedy3.m

A.2.6 Algorithm QR with Column Pivoting

1 function [Q, R, Pi] = QR_ColumnPivoting(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 Q = eye(m);

5 R = M;

6 p = 1:n;

7 gamma = sqrt(sum(R.ˆ2,1));

8 for l = 0:k-1

9 [˜,j] = max(gamma);

10 p([l+1,l+j]) = p([l+j,l+1]);

11 R(:,[l+1,l+j]) = R(:,[l+j,l+1]);

12 v = house(R(l+1:m,l+1));

13 c = 2/(v’*v);

14 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

15 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

16 gamma = gamma(2:end);

17 gamma = sqrt(gamma.ˆ2-R(l+1,l+2:n).ˆ2);

18 end

19 Pi = Pi(:,p);

20 end

QR ColumnPivoting.m

A.2.7 Algorithm Chan

111

Rank Revealing Algorithms and its Applications

1 function [Q, R, Pi] = QR_Chan(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 Q = eye(m);

5 R = M;

6 p = 1:n;

7 for l = 0:k-1

8 C = R(l+1:m,l+1:n);

9 [˜,v] = powerMethod(C’*C,0.01);

10 [˜,j] = max(abs(v));

11 p([l+1,l+j]) = p([l+j,l+1]);

12 R(:,[l+1,l+j]) = R(:,[l+j,l+1]);

13 v = house(R(l+1:m,l+1));

14 c = 2/(v’*v);

15 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

16 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

17 end

18 Pi = Pi(:,p);

19 end

QR Chan.m

A.2.8 Algorithm GKS

1 function varargout = mySVD(A,varargin)

2 % Author: Brian Moore

3 MAX_SVD_ITER = 30;

4 % Input check

5 if nargin > 1

6 mode = varargin{1};

7 else

8 mode = ’full’;

9 end

10 [m n] = size(A);

11 if (n > m)

12 [Ut St Vt] = mySVD(A’,mode);

13 if (nargout == 3)

14 varargout{1} = Vt;

15 varargout{2} = St’;

16 varargout{3} = Ut;

17 else

18 if (min(size(St)) == 1)

19 varargout{1} = St(1,1);

20 else

112

Rank Revealing Algorithms and its Applications

21 varargout{1} = diag(St);

22 end

23 end

24 return;

25 end

26

27 % Initialize variables

28 Ufull = zeros(m);

29 Ufull(1:m,1:n) = A;

30 svals = zeros(n,1);

31 Vfull = zeros(n);

32 vect = zeros(n,1);

33 l = 0;

34 mn = 0;

35 g = 0;

36 scale = 0.0;

37 norm = 0.0;

38

39 % Householder reduction to bidiagonal form

40 for i = 1:n

41 l = i + 1;

42 vect(i) = scale * g;

43 g = 0.0;

44 s = 0.0;

45 scale = 0.0;

46 for k = i:m

47 scale = scale + abs(Ufull(k, i));

48 end

49 if (scale ˜= 0)

50 for k = i:m

51 Ufull(k, i) = Ufull(k, i) / scale;

52 s = s + Ufull(k, i) * Ufull(k, i);

53 end

54 f = Ufull(i, i);

55 g = -sqrt(s) * sign(f);

56 h = f * g - s;

57 Ufull(i, i) = f - g;

58 for j = l:n

59 s = 0.0;

60 for k = i:m

61 s = s + Ufull(k, i) * Ufull(k, j);

62 end

63 f = s / h;

64 for k = i:m

65 Ufull(k, j) = Ufull(k, j) + f * Ufull(k, i);

113

Rank Revealing Algorithms and its Applications

66 end

67 end

68 for k = i:m

69 Ufull(k, i) = Ufull(k, i) * scale;

70 end

71 end

72 svals(i) = scale * g;

73 g = 0.0;

74 s = 0.0;

75 scale = 0.0;

76 for k = l:n

77 scale = scale + abs(Ufull(i, k));

78 end

79 if (scale ˜= 0)

80 for k = l:n

81 Ufull(i, k) = Ufull(i, k) / scale;

82 s = s + Ufull(i, k) * Ufull(i, k);

83 end

84 f = Ufull(i, l);

85 g = -sqrt(s) * sign(f);

86 h = f * g - s;

87 Ufull(i, l) = f - g;

88 for k = l:n

89 vect(k) = Ufull(i, k) / h;

90 end

91 for j = l:m

92 s = 0.0;

93 for k = l:n

94 s = s + Ufull(j, k) * Ufull(i, k);

95 end

96 for k = l:n

97 Ufull(j, k) = Ufull(j, k) + s * vect(k);

98 end

99 end

100 for k = l:n

101 Ufull(i, k) = Ufull(i, k) * scale;

102 end

103 end

104 norm = max(norm, (abs(svals(i)) + abs(vect(i))));

105 end

106

107 % Accumulate right-hand transformations

108 for i = n:-1:1

109 if (g ˜= 0)

110 % Double division to avoid possible underflow

114

Rank Revealing Algorithms and its Applications

111 for j = l:n

112 Vfull(j, i) = (Ufull(i, j) / Ufull(i, l)) / g;

113 end

114 for j = l:n

115 s = 0.0;

116 for k = 1:n

117 s = s + Ufull(i, k) * Vfull(k, j);

118 end

119 for k = l:n

120 Vfull(k, j) = Vfull(k, j) + s * Vfull(k, i);

121 end

122 end

123 end

124 for j = l:n

125 Vfull(i, j) = 0.0;

126 Vfull(j, i) = 0.0;

127 end

128 Vfull(i, i) = 1.0;

129 g = vect(i);

130 l = i;

131 end

132

133 % Accumulate left-hand transformations

134 for i = n:-1:1

135 l = i + 1;

136 g = svals(i);

137 for j = l:n

138 Ufull(i, j) = 0.0;

139 end

140 if (g ˜= 0)

141 g = 1.0 / g;

142 for j = l:n

143 s = 0.0;

144 for k = l:m

145 s = s + Ufull(k, i) * Ufull(k, j);

146 end

147 f = (s / Ufull(i, i)) * g;

148 for k = i:m

149 Ufull(k, j) = Ufull(k, j) + f * Ufull(k, i);

150 end

151 end

152 for j = i:m

153 Ufull(j, i) = Ufull(j, i) * g;

154 end

155 else

115

Rank Revealing Algorithms and its Applications

156 for j = i:m

157 Ufull(j, i) = 0.0;

158 end

159 end

160 Ufull(i, i) = Ufull(i, i) + 1;

161 end

162

163 % Diagonalize the bidiagonal form

164 for k = n:-1:1 % loop over all singular values

165 for iters = 1:MAX_SVD_ITER % loop over allowed iterations

166 flag = 1;

167 % Test for splitting

168 for l = k:-1:1

169 mn = l - 1;

170 % Note: vect(1) = 0, always

171 if ((abs(vect(l)) + norm) == norm)

172 flag = 0;

173 break;

174 end

175 if ((abs(svals(mn)) + norm) == norm)

176 break;

177 end

178 end

179 if (flag ˜= 0)

180 % Cancel vect(l), l > 1

181 c = 0.0;

182 s = 1.0;

183 for i = l:k

184 f = s * vect(i);

185 vect(i) = c * vect(i);

186 if ((abs(f) + norm) == norm)

187 break;

188 end

189 g = svals(i);

190 h = SafeDistance(f, g);

191 svals(i) = h;

192 h = 1.0 / h;

193 c = g * h;

194 s = -f * h;

195 for j = 1:m

196 y = Ufull(j, mn);

197 z = Ufull(j, i);

198 Ufull(j, mn) = y * c + z * s;

199 Ufull(j, i) = z * c - y * s;

200 end

116

Rank Revealing Algorithms and its Applications

201 end

202 end

203 z = svals(k);

204 if (l == k) % We converged!

205 % Make singular value nonnegative

206 if (z < 0.0)

207 svals(k) = -z;

208 for j = 1:n

209 Vfull(j, k) = -Vfull(j, k);

210 end

211 end

212 break;

213 end

214 if (iters == MAX_SVD_ITER)

215 disp([’mySVD() reached maximum number of iterations: ’

num2str(MAX_SVD_ITER)]);

216 end

217

218 % Shift from bottom 2 x 2 minor

219 x = svals(l);

220 mn = k - 1;

221 y = svals(mn);

222 g = vect(mn);

223 h = vect(k);

224 f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);

225 g = SafeDistance(f, 1.0);

226 f = ((x - z) * (x + z) + h * ((y / (f + abs(g) * sign(f))) - h)

) / x;

227

228 % Perform next QR decomposition

229 c = 1.0;

230 s = 1.0;

231 for j = l:mn

232 i = j + 1;

233 g = vect(i);

234 y = svals(i);

235 h = s * g;

236 g = c * g;

237 z = SafeDistance(f, h);

238 vect(j) = z;

239 c = f / z;

240 s = h / z;

241 f = x * c + g * s;

242 g = g * c - x * s;

243 h = y * s;

117

Rank Revealing Algorithms and its Applications

244 y = y * c;

245 for jj = 1:n

246 x = Vfull(jj, j);

247 z = Vfull(jj, i);

248 Vfull(jj, j) = x * c + z * s;

249 Vfull(jj, i) = z * c - x * s;

250 end

251 z = SafeDistance(f, h);

252 svals(j) = z;

253 if (z ˜= 0) % Note: Rotation can be arbitrary if z = 0

254 z = 1.0 / z;

255 c = f * z;

256 s = h * z;

257 end

258 f = c * g + s * y;

259 x = c * y - s * g;

260 for jj = 1:m

261 y = Ufull(jj, j);

262 z = Ufull(jj, i);

263 Ufull(jj, j) = y * c + z * s;

264 Ufull(jj, i) = z * c - y * s;

265 end

266 end

267 vect(l) = 0.0;

268 vect(k) = f;

269 svals(k) = x;

270 end

271 end

272

273 if strcmpi(mode,’compact’)

274 % Compute singular value tolerance

275 SVD_TOL = max(m,n) * max(svals) * eps(class(A));

276

277 % Determine rank to working tolerance

278 r = 0;

279 for i = 1:n

280 if (svals(i) > SVD_TOL)

281 r = r + 1;

282 end

283 end

284

285 % Sort ascending

286 [svals inds] = sort(svals);

287

288 % Return compact SVD

118

Rank Revealing Algorithms and its Applications

289 if (nargout ˜= 3)

290 varargout{1} = svals(n:-1:(n-r+1));

291 else

292 % Populate compact r-dimensional entries

293 U = zeros(m, r);

294 S = zeros(r);

295 V = zeros(n, r);

296 for i = 1:r

297 U(:, i) = Ufull(:, inds(n + 1 - i));

298 S(i, i) = svals(n + 1 - i);

299 V(:, i) = Vfull(:, inds(n + 1 - i));

300 end

301

302 % Return SVD matrices

303 varargout{1} = U;

304 varargout{2} = S;

305 varargout{3} = V;

306 end

307 else

308 % Sort ascending

309 [svals inds] = sort(svals);

310

311 % Return full SVD

312 if (nargout ˜= 3)

313 varargout{1} = svals(n:-1:1);

314 else

315 % Populate full n-dimensional entries

316 U = zeros(m);

317 S = zeros(m,n);

318 V = zeros(n);

319 for i = 1:n

320 U(:, i) = Ufull(:, inds(n + 1 - i));

321 S(i, i) = svals(n + 1 - i);

322 V(:, i) = Vfull(:, inds(n + 1 - i));

323 end

324

325 % Return SVD matrices

326 varargout{1} = U;

327 varargout{2} = S;

328 varargout{3} = V;

329 end

330 end

331 end

332

333 function dist = SafeDistance(a,b)

119

Rank Revealing Algorithms and its Applications

334 abs_a = abs(a);

335 abs_b = abs(b);

336 if (abs_a > abs_b)

337 dist = abs_a * sqrt(1.0 + (abs_b / abs_a)ˆ2);

338 else

339 if (abs_b == 0)

340 dist = 0;

341 else

342 dist = abs_b * sqrt(1.0 + (abs_a / abs_b)ˆ2);

343 end

344 end

345 end

mySVD.m

1 function [Q, R, Pi] = QR_GKS(M, k)

2 [˜,˜,V] = mySVD(M);

3 [˜,˜,Pi] = QR_ColumnPivoting(V(:,1:k)’,k);

4 [Q,R] = QR_Householder(M*Pi);

5 end

QR GKS.m

A.2.9 Algorithm Foster

1 function [Q, R, Pi] = QR_Foster(M, k)

2 delta = 0.1; %tolerance

3 [m,n] = size(M);

4 Pi = eye(n);

5 [Q,R] = QR_Householder(M);

6 p = 1:n;

7 i = n;

8 l = 0;

9 for count = 1:n

10 if max(abs(R(i,i:n))) > delta

11 [˜,j] = max(abs(R(i,i:n)));

12 j = i+j-1;

13 p([l+1,j]) = p([j,l+1]);

14 R(:,[l+1,j]) = R(:,[j,l+1]);

15 v = house(R(l+1:m,l+1));

16 c = 2/(v’*v);

17 R(l+1:m,:) = R(l+1:m,:) - c*v*(v’*R(l+1:m,:));

18 Q(:,l+1:m) = Q(:,l+1:m) - c*(Q(:,l+1:m)*v)*v’;

19 l = l+1;

20 else

120

Rank Revealing Algorithms and its Applications

21 i = i-1;

22 end

23 end

24 Pi = Pi(:,p);

25 end

QR Foster.m

A.3 Hybrid RRQR Factorization

A.3.1 Algorithm Hybrid-I

1 function [Q, R, Pi] = QR_Hybrid1(M, k)

2 [m,n] = size(M);

3 Pi = eye(n);

4 [Q,R] = TQR_Householder(M,k);

5 p = 1:n;

6 gamma = sqrt(sum(R(k:m,k:n).ˆ2,1))’;

7 permuted = true;

8 invAk = inv(R(1:k,1:k));

9 omega = sqrt(sum(invAk.ˆ2,2));

10 invA = invAk(1:k-1, 1:k-1);

11 while permuted == true

12 permuted = false;

13 % QR with column pivoting I

14 [˜,j] = max(gamma);

15 if gamma(1) < gamma(j)

16 permuted = true;

17 if j > 2

18 p([k+1,k-1+j]) = p([k-1+j,k+1]);

19 R(:,[k+1,k-1+j]) = R(:,[k-1+j,k+1]);

20 gamma([2,j]) = gamma([j,2]);

21 v = house(R(k+1:m,k+1));

22 c = 2/(v’*v);

23 R(k+1:m,:) = R(k+1:m,:) - c*v*(v’*R(k+1:m,:));

24 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

25 end

26 g = R(k,k);

27 mu = R(k,k+1)/g;

28 nu = R(k+1,k+1)/g;

29 rho = sqrt(muˆ2+nuˆ2);

30 gbar = g*rho;

31 b1 = R(1:k-1,k);

32 b2 = R(1:k-1,k+1);

121

Rank Revealing Algorithms and its Applications

33 u = invA*b1;

34 invAb2 = invA*b2;

35 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+ invAb2.ˆ2/gbarˆ2-u

.ˆ2/gˆ2);

36 gamma([1 2]) = gamma([2 1]);

37 [c,s] = givens(R(k,k+1), R(k+1,k+1));

38 G = [c, -s; s, c];

39 p([k+1,k]) = p([k,k+1]);

40 R(:,[k+1,k]) = R(:,[k,k+1]);

41 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

42 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

43 omega(k) = abs(1/R(k,k));

44 end

45 % QR with column pivoting II

46 [˜,j] = max(omega);

47 if omega(k) < omega(j)

48 permuted = true;

49 if j < k-1

50 p([j:k-2 k-1]) = p([j+1:k-1 j]);

51 omega([j:k-2 k-1]) = omega([j+1:k-1 j]);

52 R(:,[j:k-2 k-1]) = R(:,[j+1:k-1 j]);

53 Qk = eye(k-1);

54 for t = j:k-2

55 [c,s] = givens(R(t,t),R(t+1,t));

56 G = [c, -s; s, c];

57 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

58 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

59 Qk(:,[t,t+1]) = Qk(:,[t,t+1])*G;

60 end

61 invA = invA*Qk;

62 invA([j:k-2 k-1],:) = invA([j+1:k-1 j],:);

63 end

64 invAm = invA(1:k-2,1:k-2);

65 g = R(k-1,k-1);

66 mu = R(k-1,k)/g;

67 nu = R(k,k)/g;

68 rho = sqrt(muˆ2+nuˆ2);

69 b2 = R(1:k-2,k);

70 c2 = R(k,k+1:n)’;

71 invAb2 = invAm*b2;

72 omega([k,k-1]) = omega([k-1 k]);

73 p([k,k-1]) = p([k-1,k]);

74 R(:,[k,k-1]) = R(:,[k-1,k]);

75 [c,s] = givens(R(k-1,k-1), R(k,k-1));

76 G = [c, -s; s, c];

122

Rank Revealing Algorithms and its Applications

77 R([k-1,k],k-1:n) = G’*R([k-1,k],k-1:n);

78 gamma(1) = abs(g*nu/rho);

79 gamma(2:end) = sqrt(gamma(2:end).ˆ2+(R(k,k+1:n)’).ˆ2-c2

.ˆ2);

80 Q(:,[k-1,k]) = Q(:,[k-1,k])*G;

81 invA = [invAm, -invAb2/R(k-1,k-1);zeros(1,k-2),1/R(k-1,k

-1)];

82 end

83 end

84 Pi = Pi(:,p);

85 end

QR Hybrid1.m

A.3.2 Algorithm Hybrid-II

1 function [Q, R, Pi] = QR_Hybrid2(M, k)

2 [Q,R,Pi] = QR_Hybrid1(M,k+1);

3 end

QR Hybrid2.m

A.3.3 Algorithm Hybrid-III

1 function [Q, R, Pi] = QR_Hybrid3(M, k)

2 permuted = true;

3 [Q,R] = TQR_Householder(M,k);

4 [˜,n] = size(M);

5 Pi = eye(n);

6 while permuted

7 permuted = false;

8 [tildeQ,tildeR,P] = QR_Hybrid1(R,k);

9 if norm(P-eye(n),1) > 0.1

10 permuted = true;

11 Pi = Pi*P;

12 Q = Q*tildeQ;

13 R = tildeR;

14 end

15 [tildeQ,tildeR,P] = QR_Hybrid2(R,k);

16 if norm(P-eye(n),1) > 0.1

17 permuted = true;

18 Pi = Pi*P;

19 Q = Q*tildeQ;

123

Rank Revealing Algorithms and its Applications

20 R = tildeR;

21 end

22 end

23 end

QR Hybrid3.m

A.4 Strong RRQR Factorization

A.4.1 Algorithm SRRQR-1

1 function [Q, R, Pi] = QR_Strong1(M, k)

2 [m,n] = size(M);

3 f = 10*sqrt(n);

4 Pi = eye(n);

5 [Q,R] = TQR_Householder(M,k);

6 p = 1:n;

7 gamma = sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’;

8 invAk = inv(R(1:k,1:k));

9 omega = sqrt(sum(invAk.ˆ2,2));

10 invAkB = R(1:k,1:k)\R(1:k,k+1:n);

11 while 1

12 % Debug

13 % invAk = inv(R(1:k,1:k));

14 % norm(gamma-sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’)

15 % norm(omega-sqrt(sum(invAk.ˆ2,2)))

16 % norm(invAkB-R(1:k,1:k)\R(1:k,k+1:n))

17 gammaOmega = (gamma*ones(1,k)).*(ones(n-k,1)*omega’);

18 if max(max(abs(invAkB).ˆ2+(gammaOmega’).ˆ2)) <= fˆ2

19 break

20 end

21 flag = false;

22 for s = 1:k

23 for t = 1:n-k

24 if abs(invAkB(s,t))ˆ2+gammaOmega(t,s)ˆ2 > fˆ2

25 i = s;

26 j = t;

27 flag = true;

28 break

29 end

30 end

31 if flag

32 break

33 end

124

Rank Revealing Algorithms and its Applications

34 end

35

36 if i < k

37 p([i:k-1 k]) = p([i+1:k i]);

38 omega([i:k-1 k]) = omega([i+1:k i]);

39 R(:,[i:k-1 k]) = R(:,[i+1:k i]);

40 for t = i:k-1

41 [c,s] = givens(R(t,t),R(t+1,t));

42 G = [c, s; s, -c];

43 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

44 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

45 end

46 invAkB([i:k-1 k],:) = invAkB([i+1:k i],:);

47 end

48

49 if j > 1

50 p([k+1,k+j]) = p([k+j,k+1]);

51 R(:,[k+1,k+j]) = R(:,[k+j,k+1]);

52 gamma([1,j]) = gamma([j,1]);

53 v = house(R(k+1:m,k+1));

54 c = 2/(v’*v);

55 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

56 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

57 invAkB(:,[1,j]) = invAkB(:,[j,1]);

58 elseif j == 1

59 v = house(R(k+1:m,k+1));

60 c = 2/(v’*v);

61 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

62 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

63 end

64 g = R(k,k);

65 mu = R(k,k+1)/g;

66 nu = R(k+1,k+1)/g;

67 rho = sqrt(muˆ2+nuˆ2);

68 b1 = R(1:k-1,k);

69 c2 = R(k+1,k+2:n)’;

70 u = R(1:k-1,1:k-1)\b1;

71 u1 = invAkB(1:k-1,1);

72 invAb2 = u1+mu*u;

73 U = invAkB(1:k-1,2:end);

74 [c,s] = givens(R(k,k+1), R(k+1,k+1));

75 G = [c, s; s, -c];

76 p([k+1,k]) = p([k,k+1]);

125

Rank Revealing Algorithms and its Applications

77 R(:,[k+1,k]) = R(:,[k,k+1]);

78 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

79 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

80 omega(k) = 1/abs(R(k,k));

81 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAb2.ˆ2/R(k,k)ˆ2-u.ˆ2/g

ˆ2);

82 gamma(1) = abs(R(k+1,k+1));

83 if k < n-1

84 gamma(2:n-k) = sqrt(gamma(2:n-k).ˆ2+(R(k+1,k+2:n)’).ˆ2-c2

.ˆ2);

85 end

86 invAkB = [(nuˆ2*u-mu*u1)/rhoˆ2, U+(nu*u*R(k+1,k+2:n)-u1*R(k,k

+2:n))/R(k,k);mu/rhoˆ2,R(k,k+2:n)/R(k,k)];

87 end

88 Pi = Pi(:,p);

89 norm(Q*Q’-eye(m))

90 norm(M*Pi-Q*R)

91 end

QR Strong1.m

A.4.2 Algorithm SRRQR-2

1 function [Q, R, Pi] = QR_Strong2(M, k)

2 [m,n] = size(M);

3 %f = 2;%10*sqrt(n);

4 f = sqrt(k*(n-k)+min(k,n-k))/sqrt(k*(n-k));

5 Pi = eye(n);

6 [Q,R] = TQR_Householder(M,k);

7 p = 1:n;

8 gamma = sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’;

9 invAk = inv(R(1:k,1:k));

10 omega = sqrt(sum(invAk.ˆ2,2));

11 invAkB = R(1:k,1:k)\R(1:k,k+1:n);

12 cnt = 0;

13 while 1

14 % Debug

15 % invAk = inv(R(1:k,1:k));

16 % norm(gamma-sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’)

17 % norm(omega-sqrt(sum(invAk.ˆ2,2)))

18 % norm(invAkB-R(1:k,1:k)\R(1:k,k+1:n))

19 gammaOmega = (gamma*ones(1,k)).*(ones(n-k,1)*omega’);

20 if max(max(max(abs(invAkB))), max(max(gammaOmega))) <= f

21 break

126

Rank Revealing Algorithms and its Applications

22 end

23 flag = false;

24 for s = 1:k

25 for t = 1:n-k

26 if max(abs(invAkB(s,t)), gammaOmega(t,s)) > f

27 i = s;

28 j = t;

29 flag = true;

30 break

31 end

32 end

33 if flag

34 break

35 end

36 end

37 cnt = cnt + 1;

38

39 if i < k

40 p([i:k-1 k]) = p([i+1:k i]);

41 omega([i:k-1 k]) = omega([i+1:k i]);

42 R(:,[i:k-1 k]) = R(:,[i+1:k i]);

43 for t = i:k-1

44 [c,s] = givens(R(t,t),R(t+1,t));

45 G = [c, s; s, -c];

46 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

47 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

48 end

49 invAkB([i:k-1 k],:) = invAkB([i+1:k i],:);

50 end

51

52 if j > 1

53 p([k+1,k+j]) = p([k+j,k+1]);

54 R(:,[k+1,k+j]) = R(:,[k+j,k+1]);

55 gamma([1,j]) = gamma([j,1]);

56 v = house(R(k+1:m,k+1));

57 c = 2/(v’*v);

58 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

59 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

60 invAkB(:,[1,j]) = invAkB(:,[j,1]);

61 elseif j == 1

62 v = house(R(k+1:m,k+1));

63 c = 2/(v’*v);

64 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

127

Rank Revealing Algorithms and its Applications

65 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

66 end

67 g = R(k,k);

68 mu = R(k,k+1)/g;

69 nu = R(k+1,k+1)/g;

70 rho = sqrt(muˆ2+nuˆ2);

71 b1 = R(1:k-1,k);

72 c2 = R(k+1,k+2:n)’;

73 u = R(1:k-1,1:k-1)\b1;

74 u1 = invAkB(1:k-1,1);

75 invAb2 = u1+mu*u;

76 U = invAkB(1:k-1,2:end);

77 [c,s] = givens(R(k,k+1), R(k+1,k+1));

78 G = [c, s; s, -c];

79 p([k+1,k]) = p([k,k+1]);

80 R(:,[k+1,k]) = R(:,[k,k+1]);

81 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

82 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

83 omega(k) = 1/abs(R(k,k));

84 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAb2.ˆ2/R(k,k)ˆ2-u.ˆ2/g

ˆ2);

85 gamma(1) = abs(R(k+1,k+1));

86 if k < n-1

87 gamma(2:n-k) = sqrt(gamma(2:n-k).ˆ2+(R(k+1,k+2:n)’).ˆ2-c2

.ˆ2);

88 end

89 invAkB = [(nuˆ2*u-mu*u1)/rhoˆ2, U+(nu*u*R(k+1,k+2:n)-u1*R(k,k

+2:n))/R(k,k);mu/rhoˆ2,R(k,k+2:n)/R(k,k)];

90 end

91 cnt

92 Pi = Pi(:,p);

93 end

QR Strong2.m

A.4.3 Algorithm GSRRQR-1

1 function [Q, R, Pi] = QR_GStrong1(M, k)

2 [m,n] = size(M);

3 f = 2;%10*sqrt(n);

4 f = sqrt(k*(n-k)+min(k,n-k))/sqrt(k*(n-k));

5 Pi = eye(n);

6 [Q,R] = TQR_Householder(M,k);

7 p = 1:n;

128

Rank Revealing Algorithms and its Applications

8 gamma = sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’;

9 invAk = inv(R(1:k,1:k));

10 omega = sqrt(sum(invAk.ˆ2,2));

11 invAkB = R(1:k,1:k)\R(1:k,k+1:n);

12 cnt = 0;

13 gcnt = 0;

14 while 1

15 % Debug

16 % invAk = inv(R(1:k,1:k));

17 % norm(gamma-sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’)

18 % norm(omega-sqrt(sum(invAk.ˆ2,2)))

19 % norm(invAkB-R(1:k,1:k)\R(1:k,k+1:n))

20 if (max(gamma)*max(omega) > f)

21 [˜,j] = max(gamma);

22 [˜,i] = max(omega);

23 gcnt = gcnt+1;

24 else

25 gammaOmega = (gamma*ones(1,k)).*(ones(n-k,1)*omega’);

26 if max(max(abs(invAkB).ˆ2+(gammaOmega’).ˆ2)) <= fˆ2

27 break

28 end

29 flag = false;

30 for s = 1:k

31 for t = 1:n-k

32 if abs(invAkB(s,t))ˆ2+gammaOmega(t,s)ˆ2 > fˆ2

33 i = s;

34 j = t;

35 flag = true;

36 break

37 end

38 end

39 if flag

40 break

41 end

42 end

43 end

44 cnt = cnt + 1;

45 if i < k

46 p([i:k-1 k]) = p([i+1:k i]);

47 omega([i:k-1 k]) = omega([i+1:k i]);

48 R(:,[i:k-1 k]) = R(:,[i+1:k i]);

49 for t = i:k-1

50 [c,s] = givens(R(t,t),R(t+1,t));

51 G = [c, s; s, -c];

52 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

129

Rank Revealing Algorithms and its Applications

53 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

54 end

55 invAkB([i:k-1 k],:) = invAkB([i+1:k i],:);

56 end

57

58 if j > 1

59 p([k+1,k+j]) = p([k+j,k+1]);

60 R(:,[k+1,k+j]) = R(:,[k+j,k+1]);

61 gamma([1,j]) = gamma([j,1]);

62 v = house(R(k+1:m,k+1));

63 c = 2/(v’*v);

64 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

65 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

66 invAkB(:,[1,j]) = invAkB(:,[j,1]);

67 elseif j == 1

68 v = house(R(k+1:m,k+1));

69 c = 2/(v’*v);

70 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

71 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

72 end

73 g = R(k,k);

74 mu = R(k,k+1)/g;

75 nu = R(k+1,k+1)/g;

76 rho = sqrt(muˆ2+nuˆ2);

77 b1 = R(1:k-1,k);

78 c2 = R(k+1,k+2:n)’;

79 u = R(1:k-1,1:k-1)\b1;

80 u1 = invAkB(1:k-1,1);

81 invAb2 = u1+mu*u;

82 U = invAkB(1:k-1,2:end);

83 [c,s] = givens(R(k,k+1), R(k+1,k+1));

84 G = [c, s; s, -c];

85 p([k+1,k]) = p([k,k+1]);

86 R(:,[k+1,k]) = R(:,[k,k+1]);

87 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

88 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

89 omega(k) = 1/abs(R(k,k));

90 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAb2.ˆ2/R(k,k)ˆ2-u.ˆ2/g

ˆ2);

91 gamma(1) = abs(R(k+1,k+1));

92 if k < n-1

93 gamma(2:n-k) = sqrt(gamma(2:n-k).ˆ2+(R(k+1,k+2:n)’).ˆ2-c2

.ˆ2);

130

Rank Revealing Algorithms and its Applications

94 end

95 invAkB = [(nuˆ2*u-mu*u1)/rhoˆ2, U+(nu*u*R(k+1,k+2:n)-u1*R(k,k

+2:n))/R(k,k);mu/rhoˆ2,R(k,k+2:n)/R(k,k)];

96 end

97 Pi = Pi(:,p);

98 cnt

99 gcnt

100 end

QR GStrong1.m

A.4.4 Algorithm GSRRQR-2

1 function [Q, R, Pi] = QR_GStrong2(M, k)

2 [m,n] = size(M);

3 %f = 2;%10*sqrt(n);

4 f = sqrt(k*(n-k)+min(k,n-k))/sqrt(k*(n-k));

5 Pi = eye(n);

6 [Q,R] = TQR_Householder(M,k);

7 p = 1:n;

8 gamma = sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’;

9 invAk = inv(R(1:k,1:k));

10 omega = sqrt(sum(invAk.ˆ2,2));

11 invAkB = R(1:k,1:k)\R(1:k,k+1:n);

12 cnt = 0;

13 gcnt = 0;

14 while 1

15 % Debug

16 % invAk = inv(R(1:k,1:k));

17 % norm(gamma-sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’)

18 % norm(omega-sqrt(sum(invAk.ˆ2,2)))

19 % norm(invAkB-R(1:k,1:k)\R(1:k,k+1:n))

20 if (max(gamma)*max(omega) > f)

21 [˜,j] = max(gamma);

22 [˜,i] = max(omega);

23 gcnt = gcnt+1;

24 else

25 if max(max(abs(invAkB))) <= f

26 break

27 end

28 flag = false;

29 for s = 1:k

30 for t = 1:n-k

31 if abs(invAkB(s,t)) > f

131

Rank Revealing Algorithms and its Applications

32 i = s;

33 j = t;

34 flag = true;

35 break

36 end

37 end

38 if flag

39 break

40 end

41 end

42 end

43 cnt = cnt + 1;

44 if i < k

45 p([i:k-1 k]) = p([i+1:k i]);

46 omega([i:k-1 k]) = omega([i+1:k i]);

47 R(:,[i:k-1 k]) = R(:,[i+1:k i]);

48 for t = i:k-1

49 [c,s] = givens(R(t,t),R(t+1,t));

50 G = [c, s; s, -c];

51 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

52 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

53 end

54 invAkB([i:k-1 k],:) = invAkB([i+1:k i],:);

55 end

56

57 if j > 1

58 p([k+1,k+j]) = p([k+j,k+1]);

59 R(:,[k+1,k+j]) = R(:,[k+j,k+1]);

60 gamma([1,j]) = gamma([j,1]);

61 v = house(R(k+1:m,k+1));

62 c = 2/(v’*v);

63 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

64 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

65 invAkB(:,[1,j]) = invAkB(:,[j,1]);

66 elseif j == 1

67 v = house(R(k+1:m,k+1));

68 c = 2/(v’*v);

69 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k+1:n))

;

70 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

71 end

72 g = R(k,k);

73 mu = R(k,k+1)/g;

74 nu = R(k+1,k+1)/g;

132

Rank Revealing Algorithms and its Applications

75 rho = sqrt(muˆ2+nuˆ2);

76 b1 = R(1:k-1,k);

77 c2 = R(k+1,k+2:n)’;

78 u = R(1:k-1,1:k-1)\b1;

79 u1 = invAkB(1:k-1,1);

80 invAb2 = u1+mu*u;

81 U = invAkB(1:k-1,2:end);

82 [c,s] = givens(R(k,k+1), R(k+1,k+1));

83 G = [c, s; s, -c];

84 p([k+1,k]) = p([k,k+1]);

85 R(:,[k+1,k]) = R(:,[k,k+1]);

86 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

87 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

88 omega(k) = 1/abs(R(k,k));

89 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAb2.ˆ2/R(k,k)ˆ2-u.ˆ2/g

ˆ2);

90 gamma(1) = abs(R(k+1,k+1));

91 if k < n-1

92 gamma(2:n-k) = sqrt(gamma(2:n-k).ˆ2+(R(k+1,k+2:n)’).ˆ2-c2

.ˆ2);

93 end

94 invAkB = [(nuˆ2*u-mu*u1)/rhoˆ2, U+(nu*u*R(k+1,k+2:n)-u1*R(k,k

+2:n))/R(k,k);mu/rhoˆ2,R(k,k+2:n)/R(k,k)];

95 end

96 cnt

97 gcnt

98 Pi = Pi(:,p);

99 end

QR GStrong2.m

A.4.5 Algorithm SRRQR-3

1 function [Q, R, Pi, k] = QR_Strong3(M)

2 delta = 0.0001;

3 [m,n] = size(M);

4 f = 10*sqrt(n);

5 Pi = eye(n);

6 Q = eye(m);

7 p = 1:n;

8 R = M;

9 k = 0;

10 gamma = sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’;

11 omega = [];

133

Rank Revealing Algorithms and its Applications

12 invAkB = [];

13 while max(gamma) >= delta

14 [˜,j] = max(gamma);

15 k = k + 1;

16 p([k,k+j-1]) = p([k+j-1,k]);

17 R(:,[k,k+j-1]) = R(:,[k+j-1,k]);

18 gamma([1,j]) = gamma([j,1]);

19 if k > 1

20 invAkB(:,[1,j]) = invAkB(:,[j,1]);

21 end

22

23 v = house(R(k:m,k));

24 c = 2/(v’*v);

25 R(k:m,:) = R(k:m,:) - c*v*(v’*R(k:m,:));

26 Q(:,k:m) = Q(:,k:m) - c*(Q(:,k:m)*v)*v’;

27 omega(k) = 1/abs(R(k,k));

28 if k > 1

29 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAkB(:,1).ˆ2/R(k,k)

ˆ2);

30 end

31

32 if k == n

33 gamma = [];

34 else

35 gamma = sqrt(gamma(2:end).ˆ2-(R(k,k+1:n)’).ˆ2);

36 end

37

38 if k > 1

39 invAkB = [invAkB(:,2:end)-invAkB(:,1)*R(k,k+1:n)/R(k,k);R

(k,k+1:n)/R(k,k)];

40 else

41 invAkB = [R(k,k+1:n)/R(k,k)];

42 end

43

44 omega = omega(:);

45

46 while length(gamma) > 0

47 gammaOmega = (gamma*ones(1,k)).*(ones(n-k,1)*omega’);

48 if max(max(max(abs(invAkB))), max(max(gammaOmega))) <= f

49 break

50 end

51 flag = false;

52 for s = 1:k

53 for t = 1:n-k

54 if max(abs(invAkB(s,t)), gammaOmega(t,s)) > f

134

Rank Revealing Algorithms and its Applications

55 i = s;

56 j = t;

57 flag = true;

58 break

59 end

60 end

61 if flag

62 break

63 end

64 end

65

66 if i < k

67 p([i:k-1 k]) = p([i+1:k i]);

68 omega([i:k-1 k]) = omega([i+1:k i]);

69 R(:,[i:k-1 k]) = R(:,[i+1:k i]);

70 for t = i:k-1

71 [c,s] = givens(R(t,t),R(t+1,t));

72 G = [c, s; s, -c];

73 R([t,t+1],t:n) = G’*R([t,t+1],t:n);

74 Q(:,[t,t+1]) = Q(:,[t,t+1])*G;

75 end

76 invAkB([i:k-1 k],:) = invAkB([i+1:k i],:);

77 end

78

79 if j > 1

80 p([k+1,k+j]) = p([k+j,k+1]);

81 R(:,[k+1,k+j]) = R(:,[k+j,k+1]);

82 gamma([1,j]) = gamma([j,1]);

83 v = house(R(k+1:m,k+1));

84 c = 2/(v’*v);

85 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k

+1:n));

86 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

87 invAkB(:,[1,j]) = invAkB(:,[j,1]);

88 elseif j == 1

89 v = house(R(k+1:m,k+1));

90 c = 2/(v’*v);

91 R(k+1:m,k+1:n) = R(k+1:m,k+1:n) - c*v*(v’*R(k+1:m,k

+1:n));

92 Q(:,k+1:m) = Q(:,k+1:m) - c*(Q(:,k+1:m)*v)*v’;

93 end

94 g = R(k,k);

95 mu = R(k,k+1)/g;

96 nu = R(k+1,k+1)/g;

97 rho = sqrt(muˆ2+nuˆ2);

135

Rank Revealing Algorithms and its Applications

98 b1 = R(1:k-1,k);

99 c2 = R(k+1,k+2:n)’;

100 u = R(1:k-1,1:k-1)\b1;

101 u1 = invAkB(1:k-1,1);

102 invAb2 = u1+mu*u;

103 U = invAkB(1:k-1,2:end);

104 [c,s] = givens(R(k,k+1), R(k+1,k+1));

105 G = [c, s; s, -c];

106 p([k+1,k]) = p([k,k+1]);

107 R(:,[k+1,k]) = R(:,[k,k+1]);

108 R([k,k+1],k:n) = G’*R([k,k+1],k:n);

109 Q(:,[k,k+1]) = Q(:,[k,k+1])*G;

110 omega(k) = 1/abs(R(k,k));

111 omega(1:k-1) = sqrt(omega(1:k-1).ˆ2+invAb2.ˆ2/R(k,k)ˆ2-u

.ˆ2/gˆ2);

112 gamma(1) = abs(R(k+1,k+1));

113 if k < n-1

114 gamma(2:n-k) = sqrt(gamma(2:n-k).ˆ2+(R(k+1,k+2:n)’)

.ˆ2-c2.ˆ2);

115 end

116 invAkB = [(nuˆ2*u-mu*u1)/rhoˆ2, U+(nu*u*R(k+1,k+2:n)-u1*R

(k,k+2:n))/R(k,k);mu/rhoˆ2,R(k,k+2:n)/R(k,k)];

117 end

118

119 % % Debug

120 % if k < n

121 % invAk = inv(R(1:k,1:k));

122 % norm(gamma-sqrt(sum(R(k+1:m,k+1:n).ˆ2,1))’)

123 % norm(omega-sqrt(sum(invAk.ˆ2,2)))

124 % norm(invAkB-R(1:k,1:k)\R(1:k,k+1:n))

125 % end

126

127 end

128 Pi = Pi(:,p);

129 % norm(Q*Q’-eye(m))

130 % norm(M*Pi-Q*R)

131 end

QR Strong3.m

136

Rank Revealing Algorithms and its Applications

Appendix B MATLAB Code for Numerical Experiments

B.1 Revealing Matrix Rank Deficiency

1 function M = matrixGKS(n)

2 % Generate a GKS Matrix

3 M = zeros(n,n);

4 for i = 1:n

5 M(i,i) = 1/sqrt(i);

6 for j = i+1:n

7 M(i,j) = -1/sqrt(j);

8 end

9 end

10 end

matrixGKS.m

1 function M = matrixKahan(n,s,c)

2 % Generate a ’Kahan’ Matrix M=S*K.

3 S = diag(s.ˆ(0:n-1));

4 K = eye(n) + triu(ones(n,n)*-c, 1);

5 M = S * K;

6 end

matrixKahan.m

1 function M = matrixScaled(n)

2 % Generate a scaled Matrix

3 eta = 20*eps;

4 M = rand(n);

5 for i = 1:n

6 M(i,:) = M(i,:)*etaˆ(i/n);

7 end

8 end

matrixScaled.m

1 n = 100;

2 k = 50;

3 % M = rand(n,n);

4 % M = matrixScaled(n);

5 % M = matrixGKS(n);

6 % M = matrixKahan(50,sqrt(1-0.2ˆ2),0.2);

137

Rank Revealing Algorithms and its Applications

7 r = rank(M);

8 % measurements:

9 T = zeros(1,15); % running time averaged by 5 times

10 Q1 = T; % sigma_k(M)/min(sigma(R11)), averaged by 5, smaller is

better

11 Q2 = T; % max(sigma(R22)) / sigma_k+1(M), averaged by 5, smaller is

better

12 Q3 = T; % max(R(11)ˆ{-1}*R_12), averaged by 5, smaller is better

13 V = svd(M);

14 skM = V(k);

15 sk1M = V(k+1);

16

17 b1 = sqrt(1+k*(n-k)+min(k,n-k)) % bound 1

18 b2 = sqrt(k*(n-k)+min(k,n-k))/sqrt(k*(n-k)) % bound 2

19

20 for t = 1:1

21 tic;[˜,R] = TQR_Householder(M,k);

22 T(1) = toc;

23 V1 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

24 Q1(1) = skM/V1(k);

25 Q2(1) = V1(k+1)/sk1M;

26 Q3(1) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

27

28 tic;[˜,R,˜] = QR_Greedy1(M,k);

29 T(2) = toc;

30 V2 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

31 Q1(2) = skM/V2(k);

32 Q2(2) = V2(k+1)/sk1M;

33 Q3(2) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

34

35 tic;[˜,R,˜] = QR_Greedy2(M,k);

36 T(3) = toc;

37 V3 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

38 Q1(3) = skM/V3(k);

39 Q2(3) = V3(k+1)/sk1M;

40 Q3(3) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

41

42 tic;[˜,R,˜] = QR_Greedy3(M,k);

43 T(4) = toc;

44 V4 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

45 Q1(4) = skM/V4(k);

46 Q2(4) = V4(k+1)/sk1M;

47 Q3(4) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

48

49 tic;[˜,R,˜] = QR_ColumnPivoting(M,k);

138

Rank Revealing Algorithms and its Applications

50 T(5) = toc;

51 V5 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

52 Q1(5) = skM/V5(k);

53 Q2(5) = V5(k+1)/sk1M;

54 Q3(5) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

55

56 tic;[˜,R,˜] = QR_Chan(M,k);

57 T(6) = toc;

58 V6 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

59 Q1(6) = skM/V6(k);

60 Q2(6) = V6(k+1)/sk1M;

61 Q3(6) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

62

63 tic;[˜,R,˜] = QR_GKS(M,k);

64 T(7) = toc;

65 V7 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

66 Q1(7) = skM/V7(k);

67 Q2(7) = V7(k+1)/sk1M;

68 Q3(7) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

69

70 tic;[˜,R,˜] = QR_Foster(M,k);

71 T(8) = toc;

72 V8 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

73 Q1(8) = skM/V8(k);

74 Q2(8) = V8(k+1)/sk1M;

75 Q3(8) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

76

77 tic;[˜,R,˜] = QR_Hybrid1(M,k);

78 T(9) = toc;

79 V9 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

80 Q1(9) = skM/V9(k);

81 Q2(9) = V9(k+1)/sk1M;

82 Q3(9) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

83

84 tic;[˜,R,˜] = QR_Hybrid2(M,k);

85 T(10) = toc;

86 V10 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

87 Q1(10) = skM/V10(k);

88 Q2(10) = V10(k+1)/sk1M;

89 Q3(10) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

90

91 tic;[˜,R,˜] = QR_Hybrid3(M,k);

92 T(11) = toc;

93 V11 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

94 Q1(11) = skM/V11(k);

139

Rank Revealing Algorithms and its Applications

95 Q2(11) = V11(k+1)/sk1M;

96 Q3(11) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

97

98 tic;[˜,R,˜] = QR_Strong1(M,k);

99 T(12) = toc;

100 V12 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

101 Q1(12) = skM/V12(k);

102 Q2(12) = V12(k+1)/sk1M;

103 Q3(12) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

104

105 tic;[˜,R,˜] = QR_Strong2(M,k);

106 T(13) = toc;

107 V13 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

108 Q1(13) = skM/V13(k);

109 Q2(13) = V13(k+1)/sk1M;

110 Q3(13) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

111

112 tic;[˜,R,˜] = QR_GStrong1(M,k);

113 T(14) = toc;

114 V14 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

115 Q1(14) = skM/V14(k);

116 Q2(14) = V14(k+1)/sk1M;

117 Q3(14) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

118

119 tic;[˜,R,˜] = QR_GStrong2(M,k);

120 T(15) = toc;

121 V15 = [svd(R(1:k,1:k));svd(R(k+1:n,k+1:n))];

122 Q1(15) = skM/V15(k);

123 Q2(15) = V15(k+1)/sk1M;

124 Q3(15) = max(max(abs(R(1:k,1:k)\R(1:k,k+1:n))));

125 end

DeficiencyRevealing.m

B.2 Rank Deficient Least Square Problems

1 function [M] = matrixCustom(n,k)

2 d = [linspace(1000,1,k)’;ones(n-k,1)./10];

3 P = orth(randn(n,n));

4 M = P’*diag(d)*P;

5 end

matrixCustom.m

140

Rank Revealing Algorithms and its Applications

1 n = 100;

2 k = 90;

3 A = matrixCustom(n, k);

4 xexact = rand(n,1);

5 xexact = xexact/norm(xexact);

6 b = A*xexact;

7 [U,S,V] = svd(A);

8 % FSVD solution (exact solution)

9 xfull = zeros(n,1);

10 for i = 1:n

11 xfull = xfull + U(:,i)’*b*V(:,i)/S(i,i);

12 end

13 rfull = A*xfull-b;

14

15 % TSVD solution

16 xsvd = zeros(n,1);

17 for i = 1:k

18 xsvd = xsvd + U(:,i)’*b*V(:,i)/S(i,i);

19 end

20 rsvd = A*xsvd-b;

21

22 % BQR solution based on SRRQR-I

23 [Q,R,P] = QR_Strong1(A,k);

24 xbqr = P*[inv(R(1:k,1:k)),zeros(k,n-k);zeros(n-k,k),zeros(n-k,n-k)]*Q

’*b;

25 rbqr = A*xbqr-b;

26

27 % TQR solution

28 R11 = R(1:k,1:k);

29 R12 = R(1:k,k+1:n);

30 [H,tildeR] = QR_Householder([R11’;R12’]);

31 xtqr = P*H*[inv(tildeR(1:k,1:k)’),zeros(k,n-k);zeros(n-k,k),zeros(n-k

,n-k)]*Q’*b;

32 rtqr = A*xtqr-b;

33

34 res1 = [norm(xsvd-xexact),norm(xtqr-xsvd),norm(xsvd-xbqr)];

35 res2 = [norm(rsvd),norm(rtqr),norm(rbqr),norm(rfull)];

LeastSquare.m

B.3 Subset Selection Problem

1 function [cnt] = ComparePermutation(P1, P2,k)

2 cnt = 0;

141

Rank Revealing Algorithms and its Applications

3 for i = 1:k

4 for j = 1:k

5 if P1(:,i) == P2(:,j)

6 cnt = cnt+1;

7 end

8 end

9 end

10 end

ComparePermutation.m

1 n = 500;

2 k = 400;

3 A = matrixCustom(n, k);

4 % svd

5 tic;

6 [U,S,V] = mySVD(A);

7 [˜,˜,Psvd] = QR_ColumnPivoting([V(1:k,1:k)’, V(k+1:n,1:k)’],k);

8 toc

9 Bsvd = A*Psvd;

10 B1svd = Bsvd(:,1:k);

11

12 % qr

13 tic;

14 [˜,˜,Pqr] = QR_GStrong2(A,k);

15 toc

16 Bqr = A*Pqr;

17 B1qr = Bqr(:,1:k);

18

19 sin(subspace(B1svd, U(:,1:k)))

20 sin(subspace(B1qr, U(:,1:k)))

21 ComparePermutation(Psvd,Pqr,k)

22 %norm(Psvd-Pqr)

SubsetSelection.m

B.4 Matrix Approximation and Image Compression

1 n = 500;

2 k = 400;

3 A = matrixCustom(n, k);

4

5 % SVD

6 tic;[U,S,V] = mySVD(A);toc

7 Ak = zeros(n,n);

142

Rank Revealing Algorithms and its Applications

8 for i = 1:k

9 Ak = Ak + U(:,i)*S(i,i)*V(:,i)’;

10 end

11

12 % RRQR

13 tic;[Q,R,P] = QR_GStrong2(A,k);toc

14 Bk = Q*[R(1:k,:);zeros(n-k,n)]*P’;

15

16 norm(A-Bk)

17 norm(A-Ak)

MatrixApproximation.m

1 function [A] = imageCompression(path, method, k)

2 RGB = imread(path);

3 A = rgb2gray(RGB);

4 A = double(A);

5 [m,n] = size(A);

6 if strcmp(method,’svd’)

7 [U,S,V] = svd(A);

8 A = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;

9 else

10 [Q,R,P] = QR_GStrong2(A,k);

11 A = Q*[R(1:k,:);zeros(m-k,n)]*P’;

12 end

13 figure

14 imshow(uint8(A))

15 end

imageCompression.m

143

	Introduction
	Overview of this Thesis
	Main Contributions
	Backgrounds
	Matrix Factorization
	Rank Revealing Algorithms

	QR Factorization
	Householder QR Factorization
	Householder Reflections
	Algorithm Householder QR

	Givens QR Factorization
	Givens Rotations
	Algorithm Givens QR

	Comparison between Householder Reflections and Gives Rotations

	Greedy Rank Revealing QR Factorization
	Background
	Greedy Algorithms for Problem Type-I
	Algorithm Greedy-I.1
	Algorithm Greedy-I.2
	Algorithm Greedy-I.3
	Algorithm QR with Column Pivoting
	Algorithm Chan
	Algorithm GKS
	Algorithm Foster
	Bounds at each Iteration
	Bounds for the Final Result
	Pessimistic Example

	Greedy Algorithms for Problem Type-II
	The Unification Principle
	Bounds for the Final Result
	Pessimistic Example

	Hybrid Rank Revealing QR Factorization
	Hybrid Algorithm for Problem Type-I
	Algorithm Hybrid-I
	Analytical Bound

	Hybrid Algorithm for Problem Type-II
	Algorithm Hybrid-II
	Analytical Bound

	Hybrid Algorithm for Problem Type-III
	Algorithm Hybrid-III
	Analytical Bound

	Strong Rank Revealing QR Factorization
	Background
	Strong RRQR Factorization
	Algorithm SRRQR-1
	Algorithm SRRQR-2
	Algorithm GSRRQR
	Algorithm SRRQR-3

	Implementation Techniques
	Updating Formula
	Reduction from a General Case to a Special Case
	Modifying Formula for a Special Case

	Applications and Numerical Experiments
	Revealing Matrix Rank Deficiency
	Matrix-I
	Matrix-II
	Matrix-III
	Matrix-IV

	Rank Deficient Least Squares Problem
	Theoretical Analysis
	Numerical Experiment

	Subset Selection Problem
	Theoretical Analysis
	Numerical Experiment

	Matrix Approximation and Image Compression
	Theoretical Analysis
	Numerical Experiment

	Conclusions
	Summary of the Thesis
	Future Work

	REFERENCES
	Appendix MATLAB Code for RRQR Factorization
	QR Factorization
	Householder Transformation
	Givens Rotation
	Householder QR
	Givens QR

	Greedy RRQR Factorization
	Power Method
	Inverse Power Method
	Algorithm Greedy-I.1
	Algorithm Greedy-I.2
	Algorithm Greedy-I.3
	Algorithm QR with Column Pivoting
	Algorithm Chan
	Algorithm GKS
	Algorithm Foster

	Hybrid RRQR Factorization
	Algorithm Hybrid-I
	Algorithm Hybrid-II
	Algorithm Hybrid-III

	Strong RRQR Factorization
	Algorithm SRRQR-1
	Algorithm SRRQR-2
	Algorithm GSRRQR-1
	Algorithm GSRRQR-2
	Algorithm SRRQR-3

	Appendix MATLAB Code for Numerical Experiments
	Revealing Matrix Rank Deficiency
	Rank Deficient Least Square Problems
	Subset Selection Problem
	Matrix Approximation and Image Compression

