
CHEP 2018, Sofia, Bulgaria

Optimizing Frameworks’ Performance
Using C++ Modules-Aware ROOT

Yuka Takahashi, Vassil Vassilev, Raphael Isemann{
yuka.takahashi, vvasilev, raphael.isemann

}
@cern.ch

1. Introduction
We will present our results and challenges
with C++ modules in ROOT. ROOT was ex-
tended with experimental support for using
C++ modules during runtime, with aims to
reduce it’s memory usage and improve its
correctness.

2. C++ Modules in a Nutshell
• Header information is stored in precom-

piled PCM files
• No more header parsing during ROOT’s

runtime
In C/C++, the interface of a library is ac-

cessed by including the appropriate header
files:

inc lude < s t d i o . h>

These textual includes cause well-known
problems:
• Compile-time scalability: #include is copy-

ing the contents to the includer’s code, so
the parser has to reparse the same common
header files multiple times, which is expen-
sive.

• Fragility: Textual includes are influenced by
previously defined macros. For example,
macro PI is #defined in Rcpp library. Includ-
ing this library while using local variable PI
will end up in a redefinition error.

C++ modules is a mechanism to boost com-
pilation time by precompiling headers into
PCM files, where AST information can be
lazily loaded.

3. From C++ Modules to Runtime C++
Modules

Figure 1: Runtime Modules (pcms). Each
PCM file (E.g. Core.pcm) corresponds to a li-
brary (E.g. libCore.so).

C++ modules are able to reduce compilation
times. However, the compilation scalability
issues in C/C++ becomes runtime issues for
an interpretative environment which ROOT
provides. They span from slow prompt to
slow IO.

4. Advantages over the Status Quo

Figure 2: Precompiled Headers (PCH). Infor-
mation of the header is stored in one file.

PCH files are precompiled header files and
work similar to C++ modules. The advan-
tage of modules over PCH is that they can
be used by experiments. Experiments are
still using textual includes as PCH only cov-
ers ROOT. PCH cannot be exported to ex-
periments because of various technical limi-
tations.

5. Results
5.1 Perfomance

Figure 3: CPU Time required to run se-
lected tutorials. The first column is displaying
ROOT’s time to start into an empty shell.

Figure 4: Residential memory used to run tu-
torials.

Fig.3 and Fig.4 are the performance results
we receive from modules, compared to tex-
tual headers. The results are coming from
synthetic benchmarks close to the experiment
software stacks and in particular CMSSW.

5.2 Correctness
PCH:
$ bin/root . exe − l
root [0] gMinuit //Cannot load v a r i a b l e
IncrementalExecutor : : executeFunct ion :
symbol ’ gMinuit ’ unresolved while
l i n k i n g [c l i n g i n t e r f a c e funct ion] !

Runtime Modules:
$ bin/root . exe − l
root [0] gMinuit //Could load l ibMinui t
(TMinuit *) n u l l p t r

Runtime Modules are supporting more fea-
tures than PCH. For example, gMinuit is an
extern variable which cannot be autoloaded
by ROOT at the moment. However, with

modules, we can automatically resolve sym-
bols and cases like those are now correctly
handled.

6. Implementation

Figure 5: Visualization of ROOT interpreter
core.

As shown in Fig.5, we are developing and
using LLVM/Clang implementation of C++
modules, collaborating with developers from
Google and Apple. Cling is a C++ interpreter
developed by CERN, and rootcling is a dictio-
nary generator for ROOT. We are implement-
ing runtime modules in these parts while in-
tegrating ROOT with them.

7. Roadmap
• Compile ROOT with C++ modules

Status: Completed
• Compile CMSSW with C++ modules

Status: Work in progress
• Use runtime C++ modules in ROOT

Status: Mostly Done
• Use runtime C++ modules in experiments

Status: Work in progress
To summarize, runtime modules are mostly

working, but need work to get better perfor-
mance.

8. Conclusion
Here we briefly introduced our experimen-
tal runtime C++ modules support in ROOT
and how it will affect experiments’ software
stacks. Modules are not yet competent com-
pared to PCH, but are more flexible and have
clear advantage over texual includes.

9. Future work
Runtime modules are still an experimental
feature. Our ultimate goal is to make it de-
fault in ROOT and in experiments:
• Stabilize modules behavior and tests
• Adoption by experiments and other ROOT

users
• Improve performance of loading modules

Further Information
• https://clang.llvm.org/docs/Modules.html
• https://root.cern.ch/
• https://root.cern.ch/cling

