
Exocompilation for Productive Programming of
Hardware Accelerators

Yuka Ikarashi
∗

MIT CSAIL, USA

Gilbert Louis Bernstein
∗

UC Berkeley, USA

Alex Reinking

UC Berkeley, USA

Hasan Genc

UC Berkeley, USA

Jonathan Ragan-Kelley

MIT CSAIL, USA

Abstract
High-performance kernel libraries are critical to exploiting

accelerators and specialized instructions in many applica-

tions. Because compilers are difficult to extend to support

diverse and rapidly-evolving hardware targets, and auto-

matic optimization is often insufficient to guarantee state-

of-the-art performance, these libraries are commonly still

coded and optimized by hand, at great expense, in low-level

C and assembly. To better support development of high-

performance libraries for specialized hardware, we propose

a new programming language, Exo, based on the principle of

exocompilation: externalizing target-specific code generation
support and optimization policies to user-level code. Exo

allows custom hardware instructions, specialized memories,

and accelerator configuration state to be defined in user li-

braries. It builds on the idea of user scheduling to externalize

hardware mapping and optimization decisions. Schedules

are defined as composable rewrites within the language, and

we develop a set of effect analyses which guarantee program

equivalence and memory safety through these transforma-

tions. We show that Exo enables rapid development of state-

of-the-art matrix-matrix multiply and convolutional neural

network kernels, for both an embedded neural accelerator

and x86 with AVX-512 extensions, in a few dozen lines of

code each.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: program optimization, hardware accelerators,

user-schedulable languages, instruction abstraction, sched-

uling, user-extensible backend & scheduling

∗
Both authors contributed equally to this paper

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523446

ACM Reference Format:
Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,

and Jonathan Ragan-Kelley. 2022. Exocompilation for Productive

Programming of Hardware Accelerators. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’22), June 13–17, 2022, San Diego,
CA, USA. ACM, New York, NY, USA, 23 pages. https://doi.org/10.
1145/3519939.3523446

1 Introduction
Modern computers are increasingly comprised of accelera-

tors. From neural and cryptography engines, to image signal

processors, to GPUs, a state-of-the-art system-on-chip (SoC)

today includes dozens of different specialized accelerators.

Even within their main CPUs, performance improvement

increasingly comes via new instructions performed by spe-

cialized functional units. This specialized hardware is or-

ders of magnitude more efficient than software running on

general-purpose hardware, but most applications are only

able to realize this performance and efficiency insofar as key

low-level libraries of high-performance kernels (e.g., BLAS,

cuDNN, MKL, etc.) are optimized to exploit the hardware.

While the role played by high-performance kernel libraries

is increasingly critical, there is little programming language

support for the performance engineers who write them.

Progress continues to be made after decades of effort on

fully-automatic compiler optimization, but state-of-the-art

kernels—from linear algebra, to deep learning, to signal pro-

cessing and cryptography—are still predominantly written

by hand, directly in low-level C and hardware-specific in-

trinsics or assembly, or with lightweight metaprogramming

(e.g., macros or C++ templates) of such low-level code. As a

result, developing and tuning these libraries is enormously

labor intensive, limiting the range of accelerated routines and

creating barriers to deploying new or improved accelerators.

Developing accelerated high-performance libraries is a

unique software engineering task, with several unusual char-

acteristics. First, in contrast to conventional programs on

general-purpose processors, the hardware-software inter-

faces to accelerators are both complex—including special-

ized memories, exposed configuration state, and complex

operations—and highly diverse, with different complexities

unique to each accelerator. Second, the rates of change at dif-

ferent levels in the stack—from applications to hardware

ISA—are inverted: accelerator architectures change more

https://orcid.org/0000-0001-5255-0918
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0003-3285-2112
https://orcid.org/0000-0002-6884-941X
https://orcid.org/0000-0001-6243-9543
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

rapidly than the essential functions which run on them (e.g.,

mobile phone SoCs are rebuilt every year, with major re-

visions to nearly every accelerator block, while the BLAS

standard changes much more slowly), and the implementa-

tion of these functions to most efficiently use the hardware is

iterated more quickly, still. This is especially acute during ac-

celerator development, where target application workloads

are often fixed, while both the hardware architecture and

kernels mapping to it are iteratively co-designed to maximize

performance and efficiency.

In this paper, we propose exocompilation as a new ap-

proach to programming language and compiler support for

developing hardware-accelerated high-performance libraries.

The principle of exocompilation is to externalize as much

accelerator-specific code-generation logic and optimization

policy from the compiler as possible, instead exposing them

at the user level to high-performance library writers. Specif-

ically, we externalize accelerator specification to user-level

libraries, andwe build on the idea of user scheduling, popular-

ized by languages like Halide and TVM [8, 29], to externalize

hardware mapping and optimization decisions.

We develop a new language and compiler called Exo based

on this principle of exocompilation. Exo allows custom hard-

ware instructions to be user-defined and abstracted as pro-

cedures. It also allows specialized memories and accelerator

configuration state to be defined in user code, without modi-

fying the core compiler. User scheduling enables a rich space

of optimization and hardware mapping choices to be directly

explored by the performance engineer, rather than requiring

an automated optimizer to always make perfect decisions.

In contrast to optimization by manually rewriting low-

level code, scheduling transformations are concise and safe.

They elide many details like array and loop re-indexing

(which can be automatically inferred), while guaranteeing

both functional equivalence and memory safety. Different

schedules best optimize the same library function for differ-

ent hardware, or even for different parameter values, and

specialized versions for each case can be generated from a

single source algorithm. Arbitrary program fragments can

be replaced during scheduling with equivalent user-defined

accelerator instructions, or specialized subroutines, using

a unification procedure that automates the transformation

of essential arguments and array indexing. Finally, in con-

trast to languages like Halide and TVM, Exo implements

user scheduling via composable rewrite rules. This allows

the scheduling language itself to be easily extended, since

each operator defines an independent rewrite, rather than

interacting with all others in a monolithic lowering process.

We explore what is required of safety analyses for such a

language, and define a set of effect analyses which support

guarantees of program equivalence and memory safety af-

ter scheduling (§5). We make the simplifying assumption of

affine loops and array indexing, which has been shown to be

sufficient for many kernels of interest in high-performance

libraries [12]. Nonetheless, accelerator configuration intro-

duces global mutable state which breaks the classic “static

control program” assumption, and requires introducing ap-

proximation into the analyses. Our analyses are then de-

fined in a ternary logic, which distinguishes effects which

definitely occur (necessary for, e.g., eliminating redundant

setting of configuration state) from those which maybe oc-
cur (relevant for reasoning about the statement reorderings

which emerge from many loop transformations).

Finally, we perform a series of case studies applying Exo

to optimizing high-performance kernels for specialized hard-

ware. We develop user-level backends for the Berkeley Gem-

mini neural network accelerator [16] (a software-controlled

systolic array similar to many TPU-like architectures) and

x86-64 with AVX-512. For each target, we focus on opti-

mizing matrix multiply and convolutional neural network

layers — among the most highly-optimized kernels in com-

mon libraries. Using Exo, we were able to easily develop

implementations competitive with state-of-the-art libraries

in a few days and a few dozen lines of code.

2 Example
Today’s large machine learning models (and scientific com-

puting) rely on highly tuned matrix-matrix multiplication

kernels (aka. GEMM). In order to introduce Exo, we will

show how to write and optimize such GEMM kernels, target-

ing one to an accelerator ISA designed to resemble machine

learning accelerators. These accelerators all focus on the ef-

ficient execution of small (e.g. 16 × 16), dense matrix-matrix

multiplication instructions.

Optimizing these kernels is primarily an exercise in or-

chestrating data movement, and only secondarily a matter

of selecting compute instructions, such as the actual matrix

multiplication primitive. Therefore, we need to explicitly

schedule loads and stores from custom, explicitly managed

accelerator memories. Lastly, much of the behavior of hard-

ware accelerators is controlled by infrequently changing con-
figuration state. Instructions to configure such state usually

flush the accelerator pipeline.

To model a particular hardware accelerator, users must de-

fine custom memories, instructions and configuration state.

This work is done once per accelerator, written as a hardware
library. Throughout the example, we will indicate whether

each piece of code lives in the application (GEMM) or can be

abstracted out into a reusable description of the hardware.

2.1 Exo Procedures, Compilation, and Scheduling
Consider matrix-matrix multiplication, written in Exo:

@proc
def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for i in seq(0, 128):
for j in seq(0, 128):

for k in seq(0, 128):
C[i, j] += A[i, k] * B[k, j]

in app.py

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Exo is embedded in Python, and the function decorator

@proc indicates the beginning of an Exo function. Function

arguments are given by the syntax

⟨𝑛𝑎𝑚𝑒⟩:⟨𝑡𝑦𝑝𝑒⟩[⟨𝑠𝑖𝑧𝑒⟩] @ ⟨𝑚𝑒𝑚𝑜𝑟𝑦⟩
R is an abstract type for all numeric data types, which can

be specialized to specific precision types such as f32 and i8
via scheduling operations. For simplicity, the ⟨𝑠𝑖𝑧𝑒⟩ in this

example is constant, but usually refers dependently to other

function arguments. The @ symbol is a memory specification;
@DRAM means that the buffer is expected to be in DRAM.

Finally, for i in seq(0, 128) is a sequential for loop that

ranges from 0 to 127 (inclusive).
Exo compiles to C source code in the expected way:

void gemm(float *A, float *B, float *C) {
for (int i=0; i<128; i++) {

for (int j=0; i<128; i++) {
for (int k=0; i<128; i++) {

C[128*i + j] += A[128*i + k] * B[128*k + j];
} } } }

In order to target our accelerator, we need to expose a

16 × 16 matrix-multiplication as the inner loop nest. We do

this by using scheduling operations to rewrite the procedure.

In particular, we split(i,16,io,ii) (sim. for j, k) and then
reorder() the loops (see §3.3) to produce the following tiled
matrix multiplication:

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):
for io in seq(0, 8):

for jo in seq(0, 8):
for ko in seq(0, 8):

for ii in seq(0, 16):
for ji in seq(0, 16):

for ki in seq(0, 16):
C[16*io+ii, 16*jo+ji] += A[..] * B[..]

in app.py

2.2 Memories
Many accelerators—including ours in this example—have ex-

plicitly-managed memories. Performance critically depends

on how data movement to and from these memories is inter-

leaved with other computation. Therefore Exo puts schedul-

ing of data movement in the hands of the programmer. The

first step in doing this, is to define custom memories on a

per-accelerator basis. For example,

class ACCUMULATOR(Memory):
def alloc(...):

return f"{prim_type} {name} = hw_malloc({sz});"
def free(...):

return f"hw_free({name});"
def read(...): # also write, reduce

raise MemGenError('memory is not addressable')

in hw_lib.py

If a buffer is annotated with accumulator instead of

DRAM, then these alloc and free macros will determine the

C code that is generated when that buffer is allocated or freed.
(see §3) Furthermore, note that the accumulator memory

explicitly disables code generation for reading, writing and

accumulating into individual locations, preventing direct

access from C. Instead, wewill only allow custom instructions

(see below) to access this custom memory.

Supposing we have written custom accumulator and

scratchpad memories, we use stage_mem scheduling oper-

ations to stage C, A, and B into these memories:

def gemm(...):
res: R[...] @ ACCUMULATOR
a : R[...] @ SCRATCHPAD
b : R[...] @ SCRATCHPAD
for io in seq(0, 8):

for jo in seq(0, 8):
... # Load C to res
for ko in seq(0, 8):

Load A to a
for ii in seq(0, 16):

for ki in seq(0, 16):
a[...] = A[...]

... # Load B to b
Matmul of a and b
for ii in seq(0, 16):

for ji in seq(0, 16):
for ki in seq(0, 16):

res[..]+=a[..]*b[..]
... # Store res to C

in app.py

2.3 Instructions
We can clearly see opportunities in the above code to map

loops to semantically equivalent accelerator instructions.

However, to do this safely and soundly, the compiler needs

definitions of our accelerator instructions in terms of Exo’s

semantics. The key idea of exocompilation is to provide users

with a framework for defining these instructions in libraries,

without modifying the compiler itself. Below, we show an

example of such a definition for the scratchpad load.

@instr("config_ld({src}.strides[0]);\n"
"mvin({src}.data, {dst}.data, {m}, {n});")

def ld_data(n: size, m: size,
src: [R][n, m] @ DRAM,
dst: [R][n, 16] @ SCRATCHPAD):

assert m <= 16
for i in seq(0, n):

for j in seq(0, m):
dst[i,j] = src[i,j]

in hw_lib.py

Notice that this function has been annotated with @instr
rather than @proc. This indicates that the declaration asserts
equivalence between the Exo code in the body and the C

code template (i.e. macro) in the annotation. The resulting

ld_data function may be scheduled and called like any other

function, but Exo’s C code generator will instead emit the

C code “config_ld({src}.strides...)”, with argument

placeholders {src} and {dst} substituted appropriately.

Exo provides a replace() scheduling directive (§3.4) for

matching code in one procedure with the body of another

procedure (including an @instr like ld_data), then replac-
ing the matched code with an appropriate procedure call.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

2.4 Configuration State
We could issue this directive now to schedule the accelerator

instructions, however, the C code has fused the expensive

config_ld instruction to the mvin instruction we are really

interested in scheduling. Since the stride does not actually

change during the kernel, this will cause the accelerator

pipeline to repeatedly flush and stall. We must somehow

schedule the configuration instruction independently of the

actual load.

Therefore, we need a way to define hardware state. The

following code models the stride configuration state in Exo.

@config
class ConfigLoad:

src_stride : stride

@instr("config_ld({s});")
def config_ld_def(s : stride):

ConfigLoad.src_stride = s

in hw_lib.py

Here, ConfigLoad defines a global struct of configuration

variables, here containing a single src_stride field that

models the state of the stride hardware parameter. We also

write an instruction definition, config_ld_def, that updates
the src_stride field. Now we can write a new instruction

for the 16 × 16 load without the config_ld setup:
@instr("mvin({src}.data, {dst}.data, {m}, {n});")
def real_ld_data(...):

assert ConfigLoad.src_stride ==
stride(src, 0)

same as ld_data

in hw_lib.py

Using scheduling instructions, we will rewrite the body of

ld_data into a call to config_ld_def(), followed by a call

to real_ld_data(). First, we use the configwrite_at()
scheduling operation to rewrite ld_data into the following:

def ld_data(...):
assert m <= 16
ConfigLoad.src_stride = stride(src, 0)
for i in seq(0, n):

for j in seq(0, m):
dst[i,j] = src[i,j]

in hw_lib.py

Unlike previous scheduling operations, configwrite_at()
only partially preserves procedure equivalence—the new

ld_data() is only equivalent up to the configuration state

ConfigLoad.src_stride. In general, Exo needs to reason

about this kind of program equivalence modulo configura-

tion state (see definition 4.1 and §6.2).

Since the statement ConfigLoad.src_stride = ... is

equivalent to the body of config_ld_def, and the state-

ment for i in seq(...):... is equivalent to the body of

real_ld_data, we can now replace() the body of ld_data
with the two calls, as desired:

def ld_data(...):
assert m <= 16
config_ld_def(stride(src, 0))
real_ld_data(n, m, src, dst)

in hw_lib.py

By following this same procedure, we can create instruction

abstractions for our 16x16 matmul and store instructions. At

last, we can replace the code in gemm with calls to ld_data
and inline its definition.

def gemm(...):
res: R[...] ...
for io in seq(0, 8):

for jo in seq(0, 8):
... # Loading C to res
for ko in seq(0, 8):

config_ld_def(stride(A, 0))
real_ld_data(16, 16, A[...], a[...])

... # etc. etc.

in app.py

We will hoist the call to config_ld_def using scheduling

operations reorder_stmts(), fission_after(), as well as
remove_loop(). Doing so will require Exo’s program analy-

sis to both reason about when different statements commute
(can be reordered) as well as when they are idempotent (allow-
ing the loop to be removed). To further complicate matters,

the presence of global, mutable configuration state means

that fully precise analyses are undecidable, and thus impossi-

ble in Exo. By using a ternary logic (§5), Exo can distinguish

between memory locations that are definitely written to (a

necessary condition for idempotency) and locations that are

maybe written to (the relevant condition for commutativity).

def gemm(...):
config_ld(stride(A, 0))
res: R[...] ...
for io in seq(0, 8):

for jo in seq(0, 8):
... # Loading C to res
for ko in seq(0, 8):

real_ld_data(16, 16, A[...], a[...])
... # etc. etc.

in app.py

All of the above code transformations are achievable using

the scheduling primitives discussed in Section 3. Full defi-

nitions of the memory, configuration, and load instructions

for the Gemmini accelerator can be found in supplemental

appendix G.

3 The Exo Language and System
The Exo system consists of an imperative programming lan-

guage (§3.1), means of defining hardware targets via libraries

(§3.2), and a rewrite-based scheduling system (§3.3, 3.4). Fig-

ure 1 shows the Exo system from the standpoint of a particu-

lar program being compiled. In this section, we explain each

part of this process.

3.1 The Exo Language
Exo is a familiar imperative language in the mold of the

static control program model [12]. It supports for-loops, if-

conditions, arrays and procedures, but not while-loops or

recursion. A BNF grammar for its formal core is defined

later (Fig. 3). In addition to that grammar, the full language

supports stride values and expressions, as well as memory

annotations, both of which were shown in the example (§2).

Six relatively standard (but not universally adopted) fea-

tures of Exo are worth discussing further: (1) control/data

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Type Check

*.exo Bounds Check

Assert Check

Memory/Precision Check

Codegen
*.c

Frontend
Backend

User schedules via rewrites (§3.3)

User defined (§3.2):
• Memory
• Config
• Instructions

.split()

.reorder()
…
.unroll()
.inline()
.replace() (§3.4)

Figure 1. Exo system overview

separation, (2) mutable global control state, (3) dependently

typed arrays [38], (4) array windowing/slicing, (5) explicit

+= reduction primitives, and (6) static assertions.

(1) Exo is built around a distinction between control and

data values. Control values (types int, bool, size, etc.)
are constrained so that they may be analyzed more pre-

cisely. Arithmetic on integer control values must be quasi-

affine, meaning that values can only be multiplied, divided,

or modulo-ed by an integer literal. Expressions inside loop

bounds and branches must be control values. Meanwhile,

data values (types R, f32, i8, etc.) are floating-point or fixed-
point numbers stored in scalars or arrays. There are no re-

strictions on allowed computations between data values. (2)

Configuration state (§2) is introduced via structs of variables

using @config and modeled formally as global variables (§4).

Unlike the other sources of control values, configuration

state is mutable. Consistent with the idea of static control

programs, Exo currently prohibits any dependence of control

values on data-values, regardless of whether those control

variables are local or global.

(3) Dependently typed arrays allow sizes to be specified

by control value expressions of strictly positive value. Exo

then performs static bounds checks, guaranteeing memory

safety without incurring any of the costs of dynamic bounds

checks. This is made possible by the control/data separation

idea. (4) Arrays in Exo are further extended with support

for windowing (aka. slicing) via the x[lo:hi] syntax. Cre-
ating a window does not copy data; instead, reading from

and writing to locations in a window accesses the under-

lying buffer (e.g. if y = x[3:8] then y[2] == x[3+2]). In
particular, note that windows may be lower-dimensional

than their underlying buffers by slicing some indices, while

point-accessing others. For instance, x[0:n,j] creates a 1-
dimensional window on column j of matrix x. (5) In addition

to primitive reading and writing, reduction via the += syn-
tax is supported as a special commutative and associative

operation from the point of view of program analysis.

(6) Finally, we allow static assertions about control values

to be made at the beginning of procedures. These asser-

tions act as pre-conditions and not as dynamic tests. Program

analysis within a procedure may assume its asserted pre-

conditions, whereas a calling procedure is only valid if it

ensures that the callee’s pre-conditions are true.

3.1.1 Backend Checks: Precision and Memory. Type-
checking, bounds-checking, and assertion checking are all

front-end checks on Exo code. By contrast, consistency of

data-variable precision types as well as consistency of mem-

ory annotations are performed as back-end checks immedi-

ately prior to code generation. Exo requires all data-expres-

sions to have consistent precision, (e.g. multiplying an f32
and i8 is forbidden) but inserts type-casts as necessary just

before writing or reducing data values.

3.1.2 Code Generation. Exo is designed to generate hu-

man-readable C-code that is more or less a syntactic trans-

lation of the corresponding Exo code. This enables the pro-

grammer to more easily integrate Exo with existing tools

and workflows. There are a few non-obvious details with this

translation that merit discussion. First, all data values (in-

cluding scalars, buffers, and windows) are passed by pointer

rather than by value. This is necessary even in the case of

scalars to allow “returning” modified scalar values to a caller.

Second, windows are compiled to structs containing both

the data pointer and stride values, since the static size of

a window is insufficient to compute a linear address into

the underlying buffer. Lastly, we translate static assertions

into compiler-specific optimization hints to help improve

downstream analyses and optimizations.

3.2 Hardware Targets as Libraries
To add support for a new hardware accelerator to Exo, pro-

grammers write a library, rather than a compiler backend.

These libraries use three key features of the Exo language: (1)

memories, (2) instructions, and (3) configuration state. Using

these features, an Exo programmer can hand-write code to

target a given accelerator, or use scheduling to rewrite a

simple program into one targeting a given accelerator (§3.3).

Defining hardware in libraries has two advantages over

defining hardware in compiler backends (as Halide, TVM,

LLVM and most compilers do). First, hardware vendors do

not need to maintain compiler forks in order to protect pro-

prietary details of their hardware. Second, the cost of adding

support for new hardware is significantly reduced. Our ex-

perience adding support for new hardware to both Exo and

Halide suggests that the library approach requires at least

an order of magnitude less development time.

3.2.1 Memories. By default, all Exo buffers are assumed

to reside in system DRAM and are managed using standard

malloc and free. However, hardware accelerators often re-

quire modeling buffers that are resident in special acceler-

ator memories, are pinned to special address ranges in the

global address space, or otherwise exhibit strange behavior.

To support these scenarios, Exo allows users to tag buffer

and window types with a memory annotation. For example,

x : f32[n] @ MEM says that the vector x lives in a custom

memory MEM. These custom memories are defined by sub-

classing a Memory base class (§2) and overloading methods.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Exo allows custom memories to change code generation

for buffer alloc, free, and windowing via string interpola-
tion. The author of a custom memory chooses whether to

allow standard reading and writing the buffer (e.g., if the

memory simply changes the memory management policy) or

disable all usual accessing of the memory. The latter option

is ideal for modeling hardware scratchpads, which should

only be accessed using custom instructions. Such improper

accesses are prevented by “backend checks.” In general, mem-

ory annotations are ignored during scheduling.

3.2.2 Instructions. Instructions in Exo are procedures

that are annotated with a macro/string-template. For ex-

ample, given a vector load procedure with the signature

load(n : size, dst : f32[n], src : f32[n]), we can
make it into an instruction by annotating it with @instr(
"hw_ld({src},{dst},{n})") instead of @proc. When code

generating calls to instructions, this annotation string is used

instead of a sub-procedure call. Arguments are interpolated

into the template as strings. This works as well for schedul-

ing fine-grained intrinsics as it does for coarse-grained calls

to existing microkernels or library calls.

As a result, the annotated Exo procedure has no effect on

code generation, but instead serves as a semantic specifica-

tion of the instruction for the purposes of checking cor-

rectness and program equivalence (for scheduling). This

approach to an instruction mechanism has the following

benefits and tradeoffs. First, programmers need not learn

any additional specification language beyond Exo. Second,

Exo entrusts programmers with the responsibility of veri-

fying the link between the Exo procedure and annotation.

Third and finally, programmers can use instructions in clever

ways, including as an escape hatch. For example, a prefetch

instruction can be modeled using a no-op procedure and

thereby be inserted anywhere.

3.2.3 Configuration State. As we saw in §2, Exo models

hardware configuration state via global structs of control

variables annotated by @config. When defining configura-

tions, programmers have the choice of realizing them as

DRAM-resident data or disabling direct access to the config-

uration state (similar to disabling direct reading and writing

of a memory). In the latter case, no global struct is generated.

3.3 Scheduling via Rewrites
Rather than directly writing code that uses a hardware li-

brary, Exo users transform a simple program into an equiva-

lent, but more complex and high-performance version, tar-

geted to the specific hardware accelerator. This transforma-

tion is accomplished via successive rewriting of the applica-

tion—a process called scheduling.

Because Exo is an embedded DSL, schedules are written

as meta-programs in the host language (Python). Each prim-

itive scheduling operator (Figure 2) takes a procedure p plus

some other arguments as input, and returns an equivalent,

Command Transform

p.reorder(i,j)
for i:

for j:
⇝

for j:
for i:

p.split(i,c,io,ii) for i<I:⇝
for io<I/c:

for ii<c:

p.unroll(i) for i:⇝
for 0:
...

p.inline(foo) inline a callsite of foo in p

p.set_memory(a,MEM’) a @ MEM⇝ a @ MEM’

p.set_precision(a,typ’) a : typ⇝ a : typ’

p.call_eqv(foo,foo’) call foo’ at a callsite of foo

p.bind_expr(a,a’) s⇝
a’ : R
a’ = a
s[a ↦→ a’]

p.stage_mem(a,a’,s) s⇝

a’ : R[]
for i:

a’ = a
s[a |↦→ a’]
for i:

a = a’

p.bind_config(config,a) s⇝
config = a
s[a ↦→ config]

p.lift_alloc(a:R)
for i:

a : R
s

⇝
a : R
for i:

s

p.fission_after(s1)
for i:

s1
s2

⇝

for i:
s1

for i:
s2

p.reorder_stmts(s1,s2)
s1
s2
⇝

s2
s1

p.configwrite_at(s,config,e) s⇝
s
config = e

p.replace(s,foo) s⇝ foo(«inferred»)

p.add_guard(s,e) s⇝
if e: s
else: s

p.fuse_loop(i)

for i:
s1

for i:
s2

⇝
for i:

s1
s2

p.lift_if(if c: s)
for i:

if c: s
⇝

if c:
for i: s

p.partition_loop(i,c)

for i in lo,hi:
⇝
for i in lo,c:
for i in c,hi:

p.remove_loop(i)
for i:

s
⇝ s

Figure 2. Some primitive Exo scheduling operators. Each

operator rewrites 𝑠0⇝ 𝑠1 within a procedure p. This sort of
rewrite based scheduling makes it easier to expand the list of

primitive operators, since the correctness of each operator

is independent of the correctness of each other operator.

rewritten procedure as output. Most of these operators re-

quire pointing at a location within the procedure. In our

prototype, this is accomplished via simple syntactic pattern

matching strings. For instance, src : _ points at the first

allocation of a buffer named src, and for i in _: _ #2

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

points at the third loop in p with an iteration variable named

i. This API is currently being re-designed, but was sufficient

to demonstrate the benefits of rewrite-based scheduling.

Exo advances the idea of user-scheduling in two important

ways. First, like Lift and Elevate [19, 31] but unlike Halide

and TVM, scheduling operators are rewrites of programs,

rather than arguments to a monolithic lowering process. As

a result, the implementation and correctness of a schedul-

ing primitive is independent of each other primitive. This

makes the Exo implementation much simpler and easier to

maintain. Importantly, Exo rewrites imperative rather than

functional programs (Lift and Elevate). This makes checking

the correctness of primitive rewrites more complex (§5,F).

Second, Exo supports scheduling of programs decomposed

into procedures. This happens via the inline(), call_eqv(),
and replace() primitives. inline() simply inlines a proce-

dure’s body at some call site, and replace() can be thought

of as the inverse of inline() (see next section). call_eqv()
on the other hand replaces a call to some sub-procedure f
with a call to an equivalent sub-procedure f’. This equiva-
lence is tracked by provenance, since the Exo system records

the sequence of transformations by which fwas transformed

into f’. This concept of an equivalent sub-procedure is com-

plicated by those scheduling primitives which pollute con-

figuration state (e.g. bind_config()). To handle these, Exo

tracks a lattice of different equivalence relations, modulo

different parts of the configuration state (§6).

This provenance tracking system also enables an impor-

tant optimization: when constructing SMT queries we may

use the simplest equivalent (including configuration) defini-

tion of a procedure when constructing SMT queries. This

is necessary to keep the cost of calling the solver low as

scheduling complicates a procedure.

3.4 Code Replacement & Instruction Selection

The replace() scheduling primitive takes a designated state-

ment block s and replaces it with a call to a designated sub-

procedure foo. In particular, when foo is an @instr, this
rewriting performs instruction selection. In other cases, it

allows Exo programmers to manage code size trade-offs, as

well as more neatly abstract and organize their code.

Our implementation of replace() is based on a form of

unification modulo linear equalities. First, we attempt to

unify (i.e. pattern match) the body of the sub-procedure foo
with the designated statement block s. When doing this,

the arguments of foo are designated as unknowns, the free

variables of s as known symbols and any symbols intro-

duced/bound in the body of foo or within s are unified. The

ASTs are required to match exactly with respect to state-

ments, and with respect to all expressions which are not

simply integer typed control. Equivalences between integer

typed control expressions are recorded as a system of linear

equations to be solved in a second step.

If Exo did not support windowing, then we could deter-

mine expressions for the unknown argument variables by

symbolically solving the resulting linear system of equa-

tions. However, the possibility of windowing expressions as

arguments forces us to make categorical choices between

different possible windowing expressions, resulting in dis-

junctions as well as conjunctions of linear equalities. For

example, if replace is asked to infer a 1-dimensional window

onto a 2-dimensional buffer x, it could infer an expression

of the form x[i,jlo:jhi] or of the form x[ilo:ihi,j]. To
handle this complication, we observe that all inferred integer

expressions must be affine combinations of the known, free

variables. Therefore, we can transform our symbolic linear

system problem into a linear system in the unknown coeffi-

cients of these affine expressions. Once encoded in this way,

we can discharge the problem to an SMT solver.

4 Formal Core Language
In order to define our program analysis, we provide a for-

mal definition of the core of Exo, including a denotational

semantics. The core idea is that statements denote store-

transforming functions of type Σ → Σ. Using these seman-

tics we can define equivalence of Exo programs as functional

equivalence of their denotations. A scheduling transforma-

tion can then be said to be safe when it transforms between

equivalent Exo programs.

4.1 Mathematical Model of Exo Programs
The main concept in our mathematical model of Exo pro-

grams is the store, which represents the program state at

any given point during its execution. The simplest model

of a store 𝜎 ∈ Σ would be a partial function from variable

names to values. However, we must complicate this naive

model in a few ways. Rather than present the full definitions

(available in a supplemental appendix), we will focus on a

high level gloss of the ideas here.

Control values are modeled as Boolean or integer values

(in B and Z) while data values are modeled as real numbers

(in R). Names of variables are drawn from a set of identifiers

Name. Additionally, we rely on exceptional values to capture
errors 𝜖 and unknown or uninitialized data ⊥. For simplicity,

we assume that all built in functions on data (basic arithmetic

and the math library) are total, so that e.g. 0/0 is not an error.
The first complication is that we need to model buffers

and windows. Buffers can be thought of as maps from co-

ordinate tuples to data Z𝑚 → (R ⊎ {⊥, 𝜖}), where ⊥ desig-

nates uninitialized but allocated memory, whereas 𝜖 desig-

nates out-of-bounds memory. These buffers are placed in

the store Σ at special addresses ℓ ∈ Name that are disjoint
from names used in the program. Then windows can be

modeled as a pair of a buffer address ℓ and affine-indexing

function 𝜙 ∈ Z𝑛 → Z𝑚 . For instance, reading a window at

coordinates 𝑖 would translate to the lookup 𝜎 (ℓ) (𝜙 (𝑖)).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Havingmodeled buffers andwindows, we can define stores

𝜎 ∈ Σ as partial functions from Name to buffers, windows,
or control values. In order to further capture the concept of

program crashes (which should never happen for well-typed,

well-bounded and assertion-satisfying programs) we expand

the domain of stores to include the special value 𝜖 . We may

assume that all functions are strict with respect to 𝜖 , meaning

that once a program crashes it remains crashed.

4.2 Syntax, Semantics, and Well-Typed Programs
The syntax for the formal core of Exo is straightforward (Fig-

ure 3). The denotation of a statement or procedure 𝑠 is written

S J𝑠K and is a function Σ → Σ. The full definition of denota-

tions for expressions, statements and procedures are deferred

to a supplemental appendix (§A). Note again that this core

language makes no reference to user-defined instructions or

memories. This is because the core program analysis is blind

to those features—which only affect code generation. This

separation is what allows us to make the program analysis

extensible to new hardware backends.

Our focus in this paper is not on basic type-checking

(which is standard) or even bounds-checking and assertion-

checking (which are straightforward based on prior work

and repurposing our later analysis machinery). However, it

is worth re-iterating what guarantees all of these front-end

checks provide for Exo programs. First, all integer-valued

control expressions are constrained to be quasi-affine. Sec-

ond, all windowing and accessing of buffers and windows is

statically guaranteed to be in-bounds. Lastly, any procedure

call is guaranteed to satisfy the asserted pre-conditions of

the called procedure. Mutation of non-global control values

is also prohibited. The quasi-affine restriction in particular

is what allows us to translate arbitrary control expressions

into SAT queries modulo the Linear Integer Arithmetic (LIA)

theory, and thus discharge problems to an SMT solver.

4.3 Program Equivalence
Definition 4.1 (program equivalence). Let 𝑠1, 𝑠2 both be

Stmt or Proc. These two programs are equivalent, written

𝑠1 � 𝑠2 when the store-transforming functions they denote

are equivalent S J𝑠1K = S J𝑠2K on valid input stores—i.e. stores

which are not in an error state and satisfy any precondition

assertions of 𝑠1 and 𝑠2, which are equivalent.

As we discussed earlier (§2), we often want to reason

about programs that are equivalent “up-to/excluding a set of

globals L” because many transformations end up polluting

configuration state. We define a lattice of weaker equivalence

relations:

Definition 4.2 (program equivalence modulo globals). Let
𝑠1, 𝑠2 both be Stmt or Proc, and letL ⊆ Name𝑔𝑙𝑜𝑏𝑎𝑙 be a set of
globals to ignore. The two programs are equivalent “modulo

L”, written 𝑠1 �L 𝑠2 when ∀𝜎, 𝑥 ∉ L . S J𝑠1K𝜎 𝑥 = S J𝑠2K𝜎 𝑥 ,
with the same caveats about valid input stores.

𝜏𝑎 : ArgType F bool | int | R[𝑒∗]
𝜏𝑠 : SigType F (𝑥 : 𝜏𝑎) → 𝜏𝑠 | unit

𝜏 : Type F 𝜏𝑎 | R
note: we use ·∗ to mean 0 or more

𝑒 : Expr F 𝑥 variables

| 𝑜𝑝(𝑒∗) built-in operations

| 𝑒[𝑒∗] array read

| win(𝑒, 𝑤∗) window expression

𝑤 : WinCoord F 𝑒 point-access

| 𝑒..𝑒 interval-access

op ∈
{
+, -, *, /, mod, and, or, not,
==, <, <=, >, >=

}
∪ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠

𝑠 : Stmt F 𝑠;𝑠 sequencing

| if 𝑒 then 𝑠 guards

| for 𝑥 in 𝑒..𝑒 do 𝑠 sequential loops

| alloc 𝑥(𝑒∗) array allocation

| 𝑒[𝑒∗]= 𝑒 array write

| 𝑒[𝑒∗]+= 𝑒 array reduce

| 𝑥 = 𝑒 global write

| 𝑝(𝑒∗) sub-procedure call

𝑝𝑑𝑒𝑓 : Proc F
proc 𝑝 : 𝜏𝑠

assert 𝑒
do 𝑠

𝐿 : Lib F
globals (𝑥 : 𝜏)∗
𝑝𝑑𝑒𝑓 ∗

Figure 3. Abstract Syntax for Exo core language

5 Effect Analysis & Transformation of
Programs

Our analysis of Exo programs is based on an effect analysis.
An effect 𝑎 extracted from a statement 𝑠 characterizes which

functions 𝑓 : Σ → Σ the statement 𝑠 could possibly denote

S J𝑠K. This effect analysis allows us to determine when code

transformations like 𝑠1;𝑠2 ⇝ 𝑠2;𝑠1 and 𝑠1;𝑠2 ⇝ 𝑠2 are valid.

This analysis will require us to define (1) effect-expressions

and environments, (2) a global symbolic data-flow analysis,

(3) location sets as a symbolic abstraction of store locations,

and finally (4) effects as an abstraction of programs. We can

then state safety conditions for various program rewrites

using these building blocks.

5.1 Ternary Logic
When extended with ⊥, B becomes a ternary logic with the

values true (true or 𝑇), false (false or 𝐹), and unknown (⊥).
Intuitively, this ternary logic will allow us to distinguish

between statements that are definitely true, and statements

that may be true. As detailed in supplemental appendix B,

this logic can be encoded in classical logic for the purposes

of targeting SMT solvers.

We define two additional operators for collapsing back

down from ternary to classical logic. 𝐷 𝑝 (“definitely 𝑝”) is

defined by 𝐷𝑇 = 𝑇 , 𝐷⊥ = 𝐹 , and 𝐷𝐹 = 𝐹 ; 𝑀 𝑝 (“maybe 𝑝”)

is defined by𝑀𝑇 = 𝑇 ,𝑀⊥ = 𝑇 , and𝑀𝐹 = 𝐹 .

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

5.2 Effect Expressions

Effect Expressions both give us a way of expressing symbolic

values and of encoding sentences in a first-order logic, for

discharging to an SMT solver.

Definition 5.1 (Effect Expressions). We define the following

grammar of effect-expressions

𝑒𝑒 : EffExprF 𝑥 | 𝑐 | ⊥ | op(𝑒𝑒∗) | 𝑒𝑒? 𝑒𝑒 else 𝑒𝑒 | ∀𝑥 .𝑒𝑒
where every expression either has sort bool or sort int. The
operators are the same as the bool and int operators from
Figure 3. Recall that in the case of int operators, the pseudo-
affine condition means that the quotient for / andmod must

be a constant, and one side of ∗ must be a constant.

Definition 5.2 (Effect Environments).

𝛾 : EffEnv = (Name𝑔𝑙𝑜𝑏𝑎𝑙 ⊎ Name𝑙𝑜𝑐𝑎𝑙) → EffExpr

are partial functions that default to mapping 𝑥 to 𝑥 , not ⊥.
Effect environments abstract functions Σ → Σ with re-

spect to control values, not stores Σ. This is why they may

appear to be impredicative (mapping 𝑥 to 𝑥 by default). We

define substitution 𝛾 (𝑒𝑒) in the usual way. Using this, we can

define composition of two effect environments (𝛾 · 𝛾 ′)𝑥 =

𝛾 (𝛾 ′(𝑥)), which may also be resolved by substituting with 𝛾

inside the expressions bound by 𝛾 ′. This definition of substi-

tution extends naturally up to our later definitions of location

sets LocSet, and effects 𝑎.

5.3 Global Dataflow

The major complication in our program analyses is handling

mutable, global control state—which makes precise analysis

of program control logic undecidable. Our dataflow analysis

is symbolic (producing effect environments as a result) and

control-sensitive (symbolic values reflect guards wrapped

around statements). However we must make some kind of

approximation to force convergence on loops. We use a very

simple heuristic, expressed symbolically: If every loop itera-

tion does not change the value of a global variable 𝑥 , then

the loop behaves as an identity function. Otherwise, the loop

drives 𝑥 to the uncertain value ⊥. This usually suffices be-

cause configuration state that depends on the loop iteration

is usually meaningless outside of the loop.

We define global dataflow analysis ValG : Stmt → EffEnv
precisely in supplemental appendix C, along with lifting of

expressions to effect expressions Lift : Expr → EffExpr.

5.4 Location Sets

Definition 5.3 (Location Set).

L : LocSet F ∅ | {𝑥, 𝑒𝑒∗} | L ∪ L | ⋃𝑥 L
| L ∩ L | L − L | filter(𝑒𝑒,L)

Location sets symbolically abstract sets of global and heap

locations in the store.

These sets support a set membership predicate (_ ∈ _) :
(Name × EffExpr𝑛) → LocSet → EffExpr and an is-empty

predicate (_ = ∅) : LocSet → EffExpr, both in the expected

way (see supplemental appendix D for details)

Note that because effect expressions are a ternary logic,

these location sets express upper and lower bounds on a set

of locations: points definitely not in the set, points definitely

in the set, and a penumbra of points ambiguously in the

set. We collapse these sets down to “classical sets” using the

aforementioned operators: 𝐷L meaning points definitely

in the set, and 𝑀L meaning points that might be in the

set. Thus 𝑥 ∈ 𝐷L means 𝐷 (𝑥 ∈ 𝐿𝑠) and 𝑥 ∉ 𝑀L means

𝐷 (𝑥 ∉ L).

5.5 Effects
Definition 5.4 (Effects).

𝑎 : Effect F 𝑎;𝑎 | ∅ | Guard(𝑒𝑒, 𝑎) | Loop(𝑥, 𝑎)
| GlobalRead(𝑥) | GlobalWrite(𝑥)
| Read(𝑥, 𝑒𝑒∗) | Write(𝑥, 𝑒𝑒∗)
| Reduce(𝑥, 𝑒𝑒∗) | Alloc(𝑥)

This definition allows us to define the obvious transla-

tion of expressions (Eff 𝑒 : Expr → Effect) and statements

(Eff : Stmt → Effect) into effects (see supplemental appen-

dix E). Effects then allow us to define read, write, and reduce

location sets.

To start, we define the set of buffers allocated by and

visible to subsequent statements/effects:

A : Effect → LocSet
A Alloc(𝑥) = {𝑥}
A (𝑎1;𝑎2) = A(𝑎1) ∪ A(𝑎2)
A _ = ∅

Definition 5.5 (Locations of an Effect). Let RdG,WrG, RdH,
WrH, and R+H, be functions Effect → LocSet. To avoid re-

dundancy, define common cases for all such functions F :

F : Effect → LocSet
F Guard(𝑒𝑒, 𝑎) = filter(𝑒𝑒, F 𝑎)
F Loop(𝑥, 𝑎) =

⋃
𝑥 F 𝑎′

Sequencing is defined differently for read and write sets:

RdG (𝑎1;𝑎2) = RdG (𝑎1) ∪ (RdG (𝑎′2) −WrG (𝑎1) − A(𝑎1))
WrG (𝑎1;𝑎2) = WrG (𝑎1) ∪ (WrG (𝑎′2) − A(𝑎1))
RdH (𝑎1;𝑎2) = RdH (𝑎1) ∪ (RdH (𝑎′2) −WrH (𝑎1) − A(𝑎1))
WrH (𝑎1;𝑎2) = WrH (𝑎1) ∪ (WrH (𝑎′2) − A(𝑎1))
R+H (𝑎1;𝑎2) = R+H (𝑎1) ∪ (R+H (𝑎′2) − A(𝑎1))
Each function detects its corresponding leaf-node:

RdG GlobalRead(𝑥) = {𝑥}
WrG GlobalWrite(𝑥) = {𝑥}
RdH Read(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}
WrH Write(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}
R+H Reduce(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}
F _ = ∅

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

From these five primitive sets we can define six other

useful sets:

Rd 𝑎 = RdG 𝑎 ∪ RdH 𝑎
Wr 𝑎 = WrG 𝑎 ∪WrH 𝑎
R+ 𝑎 = R+H 𝑎 −WrH 𝑎
All 𝑎 = Rd 𝑎 ∪Wr 𝑎 ∪ R+H 𝑎
Mod 𝑎 = Wr 𝑎 ∪ R+H 𝑎
RW 𝑎 = Rd 𝑎 ∪Wr 𝑎

5.6 Effects as Abstraction
The different objects we have talked about so far each ab-

stract some part of the program. For instance, the dataflow

analysis of a statement ValG J𝑠K is an abstraction of its deno-

tation S J𝑠K with respect to global values. Similarly, the effect

extracted from an expression Eff 𝑒 J𝑒K abstracts its denota-
tion E J𝑒K, and the effect extracted from a statement Eff J𝑠K
abstracts its denotation S J𝑠K. But what do we mean by this?

The effect abstraction 𝑎 for a statement 𝑠 with denotation

𝑓 guarantees a few properties. First, it provides an analogue

of the “frame axiom” from separation logic. If a location

𝑥 lies outside of 𝑀Mod(𝑎), then it is unmodified: 𝑓 𝜎𝑥 =

𝜎𝑥 . Second, if a location is in the write set 𝑥 ∈ 𝐷Wr(𝑎),
then the post-hoc value at that location 𝑓 𝜎𝑥 is determined

solely by the values at read locations 𝑦 ∈ 𝑀Rd(𝑎). Third,
if a location is reduced to 𝑥 ∈ 𝐷R+(𝑎), then the difference

between the initial and final value at that location 𝑓 𝜎𝑥 − 𝜎𝑥
is determined solely by values at read locations 𝑦 ∈ 𝑀Rd(𝑎).
Finally, so long as the values at read locations 𝑦 ∈ 𝑀Rd(𝑎)
are determined, then one of the three previous cases applies

to every store location, even if we can’t be certain which

set(s) the location is in.

Even more simply in the case of expression abstraction,

the effect 𝑎 of an expression 𝑒 with denotation 𝑓 : Σ → Val
guarantees one property: The value 𝑓 𝜎 is solely determined

by the values at read locations 𝑦 ∈ 𝑀Rd(𝑎).

5.7 Basic Program Rewrites
The preceding analysis objects allow us to turn program

equivalence checks into SMT queries.

Reorder statements. The rewrite 𝑠1;𝑠2 ⇝ 𝑠2;𝑠1 is safe
when Commutes Eff J𝑠1K Eff J𝑠2K holds. Commutativity of

statements is defined as non-interference of effects. A special

exception must be made for locations that are reduced.

Definition 5.6 (Commutativity).

Commutes 𝑎1 𝑎2 =

𝐷

(
Wr(𝑎1) ∩ All(𝑎2) = ∅ ∧ Wr(𝑎2) ∩ All(𝑎1) = ∅
R+(𝑎1) ∩ Rd(𝑎2) = ∅ ∧ R+(𝑎2) ∩ Rd(𝑎1) = ∅

)
Shadow statement. The rewrite 𝑠1;𝑠2 ⇝ 𝑠2 is safe when

Shadows Eff J𝑠1K Eff J𝑠2K holds. Whereas commutativity re-

quires reasoning about what definitely doesn’t intersect (and

hence what memory might be touched), shadowing requires

reasoning positively about what definitely is overwritten—

which is why a one-sided approximation sets is insufficient.

Definition 5.7 (Shadowing).

Shadows 𝑎1 𝑎2 =
∀𝑥 ∈ 𝑀Mod(𝑎1) =⇒ (𝑥 ∉ 𝑀Rd(𝑎2) ∧ 𝑥 ∈ 𝐷Wr(𝑎2))

New config write. The rewrite 𝑠 ⇝ 𝑠;𝑥𝑔=𝑒 is always safe,
but only results in code that is equivalent modulo {𝑥𝑔}. As
we will soon see (§6.2), performing this rewrite in a context

requires satisfying additional conditions, but in isolation it

is very simple.

5.8 Loop Rewrites
When working with rewrites of loops, it is convenient to

abbreviate notation for an iteration variable being in bounds.

If the variable 𝑥 occurs in for 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do , then let

Bd(𝑥) = Lift J𝑒𝑙𝑜K ≤ 𝑥 < Lift J𝑒ℎ𝑖K in the following.

Loop reordering. One of the most basic non-trivial loop

transformations is loop-reordering. When can we rewrite

for 𝑥 do for 𝑦 do 𝑠 into for 𝑦 do for 𝑥 do 𝑠? This transfor-
mation is valid when the loop bounds commute with the

body, and when any loop iterations that are moved past each

other commute. To formulate these conditions, let 𝑎𝑥 be the

effect of the 𝑥-loop’s bound-expressions and 𝑎𝑦 similarly for

the 𝑦-loop. Let 𝑥 ′, 𝑦 ′ be copies of these iteration variables s.t.

𝑠 ′ = [𝑥 ↦→ 𝑥 ′] [𝑦 ↦→ 𝑦 ′]𝑠 . Let 𝑎 = Eff J𝑠K and 𝑎′ = Eff J𝑠 ′K.
Then the reordering condition may be precisely stated as(

∀𝑥,𝑦. 𝑀Bd(𝑥,𝑦) =⇒ Commutes((𝑎𝑥;𝑎𝑦), 𝑎)
)

∧
(
∀𝑥,𝑦, 𝑥 ′, 𝑦 ′. 𝑀 (Bd(𝑥,𝑦, 𝑥 ′, 𝑦 ′) ∧ 𝑥 < 𝑥 ′ ∧ 𝑦 ′ < 𝑦)

=⇒ Commutes(𝑎, 𝑎′)

)
Loop fusion & fission. Another basic loop transforma-

tion is to fuse two loops together, or in reverse to fission

one loop in two. When can we rewrite for 𝑥 do 𝑠1;𝑠2 into
(for 𝑥 do 𝑠1);for 𝑥 do 𝑠2? This is possible when the loop

bound commutes with the first statement, and when the

statements that get reordered commute with each other.

Letting 𝑎𝑥 be the effect of the loop bounds, 𝑎1 = Eff J𝑠1K,
𝑠 ′
2
= [𝑥 ↦→ 𝑥 ′]𝑠2 and 𝑎′

2
= Eff

q
𝑠 ′
2

y
we can state fission

conditions precisely as

(∀𝑥 . 𝑀Bd(𝑥) =⇒ Commutes(𝑎𝑥 , 𝑎1)) ∧(
∀𝑥, 𝑥 ′. 𝑀 (Bd(𝑥, 𝑥 ′) ∧ 𝑥 ′ < 𝑥) =⇒ Commutes(𝑎1, 𝑎′2)

)
Loop removal. In order for the rewrite for 𝑥 do 𝑠 ⇝ 𝑠

to be safe, the variable 𝑥 must not be free in 𝑠 , 𝑠 must be

idempotent, and the loop must run for at least one iteration.

If 𝑎 = Eff J𝑠K, then these conditions are precisely

(∃𝑥 . 𝐷Bd(𝑥)) ∧ Shadows(𝑎, 𝑎)

6 Contextual Analyses
In order to make our program rewriting primitives useful,

we must be able to modify some fragment of a procedure in

a context. In this section, we define one-holed statement con-

texts, define how to process them, and extend equivalences

between statements to account for context.

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

6.1 Contexts & Derived Quantities
Definition 6.1 (Contexts).

𝐶 : Ctxt F • | 𝐶;𝑠 | 𝑠;𝐶 | for 𝑥 in 𝑒..𝑒 do 𝐶
| if 𝑒 then 𝐶

The expression 𝐶 [𝑠] means a statement resulting from sub-

stituting the hole (•) in context𝐶 with statement 𝑠 . Similarly,

we can have a Proc context: proc 𝑝 : 𝜏𝑠 assert 𝑒 do 𝐶 .

We define three derived quantities from a context/state-

ment pair 𝐶/𝑠: (1) CtrlPred J𝐶K 𝑠 : EffExpr, a predicate ex-

pressing under what conditions the statement 𝑠 will execute;

(2) PreValG J𝐶K 𝑠 : EffEnv, capturing the dataflow values

right before executing 𝑠 ; and (3) PostEff J𝐶K 𝑠 : Effect, telling
us the effect of context code that executes after 𝑠 . (See sup-
plemental appendix F for details.)

6.2 Context Extension
Using these tools we can get from an argument of the form

𝑠1 � 𝑠2 back up to an argument of the form 𝐶 [𝑠1] � 𝐶 [𝑠2].
Thus, we can reach into the body of some procedure and

perform a local rewrite, while maintaining equivalence of

the overall procedure.

Consider a context 𝐶 with statements 𝑠1 and 𝑠2, as well as

a set of global names L to consider equivalence “up to.”

Let 𝑝 = CtrlPred 𝐶 𝑠1
𝛾 = PreValG 𝐶 𝑠1
𝑎 = PostEff 𝐶 𝑠1

L ′ = 𝑀 (L −WrG 𝑎)
𝑠 ′
1
, 𝑠 ′

2
= 𝛾 (𝑠1), 𝛾 (𝑠2)

If (𝑀𝑝 =⇒ 𝑠 ′
1
�L 𝑠 ′2) ∧ 𝐷 (RdG 𝑎 ∩ L = ∅)

Then 𝐶 [𝑠1] �L′ 𝐶 [𝑠2]

7 Case Studies
7.1 Gemmini
Using Exo, we developed highly-optimized schedules for

Gemmini [16], a DNN accelerator, which significantly out-

performed DNN kernel implementations that had been hand-

written by Gemmini’s designers.

We targeted Gemmini’s default architectural instantiation,

which include a 16x16 systolic array that performs block

matrix multiplications, a 256KB scratchpad for quantized

inputs and weights, and a 64KB accumulator for partial sums.

Gemmini’s instruction set architecture (ISA) includes low-

level instructions to move strided matrices to and from the

scratchpad, as well as instructions to calculate dot products

and perform non-linear activations on this data.

Gemmini also ships with a hand-written C library for com-

monDNN kernels. This library wraps calls to Gemmini’s low-

level ISA in statically-scheduled, hand-tuned loops. However,

Gemmini can also be built with hardware loop unrollers that

dynamically schedule these kernels to maximize overlap be-

tween data loads, data stores, and matrix multiply operations.

512 x 512 x 512

12544 x 256 x 64

12544 x 64 x 256

3136 x 512 x 128

3136 x 128 x 512

784 x 1024 x 256
0

20

40

60

80

100

%
Ut

ili
za

tio
n

18% 14%
20% 16% 19% 18%

79%

49%
40%

62% 67% 62%

95%

72%

99%
90% 87%

98%
Old-lib Exo-lib Hardware

(a) matmul utilization (as a percentage of peak FLOPS). X axis

labels are the size of matrices in 𝑁 x𝑀 x 𝐾 .

56 x 64 x 64 28 x 128 x 128 14 x 256 x 256
0

20

40

60

80

100

%
Ut

ili
za

tio
n

25% 27% 25%

71% 72% 78%

95% 91% 94%

Old-lib Exo-lib Hardware

(b) conv utilization (as a percentage of peak FLOPS). X axis labels

are the shape of convolution in output dimension x output channel
x input channel.

Figure 4. Performance of Exo-generated code on the Gem-

mini DNN accelerator. Exo-generated code achieves much

higher performance than the DNN kernels hand-written by

the designers of Gemmini (Old-lib). Gemmini’s dynamically-

scheduled hardware loop unrollers (Hardware) outperform

Exo by using additional hardware resources, but therefore

require additional chip area and power consumption.

The hardware implementations typically run much faster

than the software implementations at the cost of hardware

complexity, area, power consumption, and reduced sched-

uling flexibility. The hardware kernels also have fixed loop

orders and dataflows, while the software can adapt these to

different tensor shapes.

We implemented kernels for matrix multiply (matmul)

and convolutional (conv) layers in Exo and compared their

performance against Gemmini’s handwritten C library and

hardware loop unrollers. The results are shown in Figures 4a

and 4b, respectively. The tensor shapes in both are selected

from those in a ResNet-50 DNN with a batch size of 4.

On average, Exo-generated code outperforms Gemmini’s

handwritten C library by 3.5× on the matmul sizes listed

above, and achieves 67% of the performance of the hardware

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

loop unrollers. For the convolutions listed, it runs 2.9× faster

than the handwritten library, and is competitive with the

hardware loop unroller, achieving 79% of its performance.

Note that the hardware loop unrollers use optional hard-

ware resources (increasing area and power consumption)

which are not available to Exo or the handwritten C library.

However, we expect that changing Gemmini’s ISA to support

coarser-granularity instructions and better schedules may

be able to close this performance gap in the future, provid-

ing software-programmable performance comparable to the

inflexible hardware loop-unrollers.

Finally, Exo enabled faster co-design of Gemmini’s hard-

ware-software interface. When we started targeting Gem-

mini, its low-level hardware configuration instructions had

many side effects which made optimizations difficult to rea-

son about, limiting the performance we could achieve. We

worked with the Gemmini hardware designers to disaggre-

gate these configuration instructions into more orthogonal

components; e.g. instructions which configured Gemmini’s

memory units would no longer have any side effects on the

arithmetic units. 46 lines in Gemmini’s handwritten C li-

brary had to be updated after this change, compared to only

5 in Exo’s implementation. Exo made it easier for program-

mers to target fluid and changing hardware targets, which

is common when developing new accelerators.

7.2 x86
As an acid test of the language design, we optimized matrix-

matrix multiplication (sgemm) for x86, where we can com-

pare against state-of-the-art libraries that run near theoreti-

cal peak compute throughput. We chose to target single-core

x86 with AVX512 extensions.
1

Recall that the computation is given by𝐶 += 𝐴 ·𝐵 where𝐶

is𝑀×𝑁 ,𝐴 is𝑀×𝐾 , and 𝐵 is𝐾×𝑁 . Our Exo implementation

decomposes the problem as follows: at the deepest level

of blocking, a register-blocked micro-kernel accumulates

the inner dimension into a 6 × 64 panel of 𝐶 , the output

matrix. The level above the micro-kernel handles edge cases

by dispatching to specialized versions of the micro-kernel

for each edge case. Along the bottom, five distinct kernels

are needed as they are always 64 elements wide and never

0 or 6 tall; similarly, four distinct kernels are needed along

the right. The variable tail on the right edge is handled by

masked loads. Finally, one level above this handles staging

memory and blocking.

Every one of these routines was produced by scheduling

and specializing a single, naive implementation of sgemm

consisting of three nested loops. Unification and equivalent-

call replacement were crucial for avoiding any sort of error-

prone, manual optimization.

1
Although multi-core implementations are valuable, single-core workloads

are representative of practice (ML inference in interactive web services

is often run batch-parallel on single-core kernels), and the baselines are

highly-optimized.

0 250 500 750 1000 1250 1500 1750 2000

Dimension (𝑀 = 𝑁 = 𝐾)

0.00

22.93

45.87

68.80

91.73

114.67

137.60

G
F
L
O
P
/
s

exo

MKL

OpenBLAS

0%

17%

33%

50%

67%

83%

100%

%
o
f
p
e
a
k

(a) sgemm performance on square matrices. We approximately

match other systems on square matrices.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Aspect ratio (𝑀/𝑁)

0.00

22.93

45.87

68.80

91.73

114.67

137.60

G
F
L
O
P
/
s

exo

MKL

OpenBLAS

0%

17%

33%

50%

67%

83%

100%

%
o
f
p
e
a
k

(b) sgemm performance with fixed workload and variable output

aspect ratio. 𝐾 = 512 and𝑀 × 𝑁 = 512
2
, with the ratio of𝑀 to 𝑁

varying. We match OpenBLAS performance across aspect ratios.

Figure 5. sgemm performance compared to state-of-the-art

libraries on x86. Benchmarks were run on one core of an

Intel i7-1185G7 running at 4.3GHz.

The performance results are shown in Figure 5. All bench-

markswere run on an Intel i7-1185G7 at 4.3 GHz, a Tiger Lake

CPU with AVX-512 instructions and peak single-precision

floating-point performance of 137.60 GFLOPs. We tested

our sgemm against the hand-optimized implementations

in Intel’s MKL and the open-source OpenBLAS in two ex-

periments. First (Fig. 5a), we tested square matrices , so

𝑀 = 𝑁 = 𝐾 . Each implementation performs quite closely

(within measurement noise), between 80-95% of theoretical

peak FLOPS across the parameter range.

Second (Fig. 5b), we tested our sgemm on a fixed workload,

but with a variable aspect ratio for 𝐶 . Specifically, we fix the

inner dimension 𝐾 = 512 and the product𝑀𝑁 = 512
2
, then

we sweep across the ratio𝑀/𝑁 keeping the total FLOP count

identical across experiments. Here, Exo matches OpenBLAS

almost exactly, but MKL pulls ahead of both implementations

when the aspect ratio is very far from square. MKL includes

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Impl. N W H IC OC % of peak

Exo 5 82 102 128 128 40.50%

Halide 5 82 102 128 128 40.59%

oneDNN 5 82 102 128 128 40.55%

Figure 6. Summary of x86 conv performance results. Single-

threaded performance of various implementations with no

padding and unit stride. A ReLU activation is applied. Bench-

marks were run on an Intel i7-1185G7 running at 4.3GHz on

a single core. The size was chosen to match the previously-

published hand-scheduled Halide implementation. All three

specialize or JIT to tune their code to specific sizes.

more specialized kernels for these extreme aspect ratios,

which would be natural to do with further scheduling in Exo,

as well.

For a final experiment, we tried to replicate the convolu-

tional layer performance of a highly-tuned implementation

provided by the Halide project. State of the art convolutions

specialize or JIT-compile code templates to particular input,

output, and kernel sizes. In Halide’s case, it specialized to

a batch size of 5, a kernel size of 3 × 3, an output size of

80 × 100, and 128 channels for both input and output. There

is no padding and unit stride is used. We configured Intel’s

oneDNN convolution to use these parameters and scheduled

a basic description of convolution in Exo to these parameters,

too. The results are shown in Figure 6. Our conv performs

almost identically to the optimized baselines.

Overall, we believe these results show that Exo can be

used to achieve performance competitive with state-of-the-

art, highly hand-tuned libraries on x86.

7.3 Code Size
Figure 7 summarizes some statistics regarding the size of

Exo programs relative to hand-written C baselines.

On x86, our SGEMM schedule instantiates many special-

ized micro-kernels for handling loop tail cases at higher

levels. Unlike Gemmini, it does not have SGEMM-specific

hardware to utilize that might reduce the scheduling burden.

Even so, the basic algorithm is expressed in 11 statements

(the function signature, three loops, an accumulation state-

ment, and a handful of size assertions) and 162 scheduling

directives. The generated C code totals 831 source lines of

code This already constitutes a nearly 5x code size reduction,

but a comparison to OpenBLAS (an established open-source

implementation) is even more favorable: at least 1690 source

lines of code
2
make up that implementation. MKL is more

complex, still.

Although the x86 conv implementation is “only” half the

size of the equivalent generated C, it is much more flexible

2
Summing the source line counts of the files mentioned in kernel/-
x86_64/KERNEL.SKYLAKEX for non-transposed SGEMM gives a very loose

lower bound

App. Platform C (gen) C (ref) Alg. Sched.

matmul Gemmini 462 313 23 43

conv Gemmini 8317 450 26 44

sgemm x86 846 >1,690 11 162

conv x86 102 >5,400 23 39

Figure 7. Source code sizes for matrix multiplication and

convolutional layer on Gemmini and x86. Gemmini imple-

ments a fixed-point matrix multiply neural network layer

(with fused ReLU activation), while x86 implements the BLAS

SGEMMkernel. Both implement a standard 2D convolutional

layer with ReLU activation. The Exo sources are counted in

lines of code for the algorithm and number of directives for

the schedule. This is compared to the size of both the Exo-

generated C and state-of-the-art reference implementations

(Gemmini standard library, OpenBLAS, and oneDNN, respec-

tively) in source lines of code.

since other specialized versions can be quickly instantiated

by meta-programming the schedule in Python. The size of

the most comparable open-source implementation, Intel’s

oneDNN, is difficult to measure; just one file in the imple-

mentation measures well over 5000 source lines of code
3
. The

size of the Halide code and schedule was nearly identical to

ours: 64 relevant lines, compared to 62.

The story is similar for our Gemmini kernels. Both the

matmul and conv Exo implementations are an order of mag-

nitude smaller than the original, handwritten C implementa-

tions. The large generated code sizes reflect the high degree

of loop unrolling in the generated schedules. A real appli-

cation would likely either resort to the C preprocessor to

manage this complexity, or not attempt the transformation

at all (or as aggressively) beyond whatever the C compiler

might choose to do automatically.

8 Related Work
User-Schedulable Languages Exo builds on the idea of

programmer-visible scheduling languages, popularized in

part by Halide and TVM, and used in many recent languages

and systems [5, 8, 18, 21, 24, 28, 29, 34, 35, 41]. The ex-

plicit control over compiler transformations offered by user-

schedulable languages was foreshadowed earlier in many

script- or pragma-based compiler tools in HPC [7, 10, 11, 20,

39], and the definition of parametric optimization spaces in

SPIRAL [15], all of which have been applied to matrix-matrix

multiply and related kernels. The polyhedral loop optimiza-

tion community has simultaneously explored similar ideas

in its own context [3, 4, 32, 36, 37, 40].

Exo builds on attempts to formalize guarantees of safety

and equivalence under scheduling in Halide [30]. In sharp

contrast to Halide, Exo adopts the approach of implementing

scheduling via algebraic rewrites within a core language.

3src/cpu/x64/jit_avx512_common_conv_kernel.cpp

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

While prior systems which follow this approach work mostly

on restricted functional languages, where equivalence before

and after rewrites is straightforward (and often not formally

checked) [19, 25, 31], Exo rewrites imperative code, and relies
on effect analyses which reduce to SMT for verification.

Instruction Selection Exo’s instruction/procedure mapping

mechanism is related to the classic problem of instruction

selection [2]. Traditional instruction selection applies local

pattern matching rules to replace small IR fragments with

equivalent instructions, but this struggles to effectively ex-

ploit accelerator instructions which correspond to large, com-

plex program fragments. Recent work applies more powerful

search techniques to target more complex SIMD instructions

using program synthesis [27] and equality saturation [33].

Exo allows substitution of much larger program fragments

with arbitrary equivalent procedures, under explicit pro-

grammer control, and allows these substitutions to be in-

terleaved with further scheduling transformations rather

than confined to the compiler backend. TVM provides a re-

lated “tensorization” directive for replacing loop fragments

with instructions asserted as equivalent [8], but it lacks the

combination of automation and checking provided by Exo’s

unification procedure.

Program Analysis Our framework for verifying equiva-

lence and safety of Exo programs builds on several threads

from type systems and dependence analysis. Dependently-

typed arrays, especially as adapted in the formalization of

Halide, inform our treatment of memory safety [22, 23, 30,

38]. Dependence analysis, especially on static control pro-

grams, forms a common basis for reasoning about the safety

of loop transformations [12, 14]. When combined with rea-

soning about affine indexing, this is the basis of polyhedral

compilation [13]. In contrast, our approach builds on effect

types, as proposed by Gifford and Lucassen [17]. While these

approaches are distinct, the earliest foundations of depen-

dencies for program parallelization define conditions on read

and write sets closely related to our effect analyses [6].

Despite this difference, Exo can be seen as a polyhedral

compiler, in the sense that it is built on linear integer arith-

metic and static control programs. However, the program

analysis used in Exo goes beyond what is normally called

“polyhedral analysis” in two respects: mutable control state

(for which we must rely on an approximating symbolic

dataflow analysis §5.3), and justifying code deletion/insertion

(§5.7, §6.2). Both of these phenomena are necessary to sup-

port scheduling of hardware accelerators that make use of

configuration state. They also forced us to adopt ternary logic

at the base of our program analysis in order to safely prop-

agate the dataflow approximations. If configuration state

were eliminated, Exo would more closely resemble tradi-

tional polyhedral compilers focused purely on reordering

statement instances.

9 Limitations & Future Work
Multi-Core Semantics Although the instruction replace-

ment directive (§3.4) enables users to access fine-grained

intra-instruction or SIMD parallelism, Exo does not currently

model multi-core parallelism. Naïvely, we could introduce

a parallel for-loop with OpenMP-like semantics. Our effect

analysis is powerful enough to conservatively check that

different loop iterations touch strictly disjoint regions of

memory. However, there is no single platform independent

approach to threading—which clashes with our design goal

of externalizing hardware backends. A more ambitious solu-

tion would find some way to externalize both the semantics

and primitives associated with different kinds of threading.

(e.g. pthreads, CUDA, MPI, etc.)

Alternatively, the .replace() directive applied to a no-

op instruction can serve an escape hatch to, for example,

inject OpenMP pragmas around a given loop. We tested this

on our conv implementation and observed that our new

implementation still matches Halide, while both pull ahead

of oneDNN by 25% (flops) on 8 or more threads.

Automatic Scheduling We have not yet written any au-

toschedulers [1, 9, 26, 42] for Exo, but plan to. We expect Exo

autoscheduling to differ from prior systems in two essential

ways. First, because hardware targets are externalized, id-

iosyncratic, and frequently proprietary, we do not expect any

one single autoscheduling strategy to work across all accel-

erators. Second, because Exo schedules are composable (as

successive rewrites) rather than monolithic, Exo autosched-

ulers can also be developed compositionally. This opens up

the possibility of developing libraries of re-usable mid-level

scheduling operators built from semi-automated combina-

tions of primitive scheduling operators. With time, whole

suites of optimization passes could be written—entirely ex-

ternal to the Exo compiler.

Acknowledgments
We would like to thank the first Exo users, especially Grace

Dinh, Abhijit Davare, and Kevin Qian, for providing feed-

back. We would also like to thank the PLDI reviewers for

their suggestions. This work was partially supported by the

Applications Driving Architectures (ADA) center, one of six

centers of JUMP, a Semiconductor Research Corporation pro-

gram co-sponsored by DARPA. It was also funded in part

by the U.S. Government under the DARPA RTML program

(contract FA8650-20-2-7006) and NSF awards CCF-1723445

& CCF-1846502. The views and conclusions contained in

this document are those of the authors and should not be

interpreted as representing the official policies, either ex-

pressed or implied, of the U.S. Government. Yuka Ikarashi

was supported by a Funai Overseas Scholarship, Masason

Foundation fellowship, and Great Educators fellowship.

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-

Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fata-

halian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learning to

optimize Halide with tree search and random programs. ACM Trans.
Graph. 38, 4 (2019), 121:1–121:12. https://doi.org/10.1145/3306346.
3322967

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools (2 ed.). Pearson Education.

[3] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,

Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-

tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven van Haastregt,

Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev.

2015. PENCIL: A Platform-Neutral Compute Intermediate Language

for Accelerator Programming. In PACT. IEEE Computer Society, San

Francisco, CA, USA, 138–149. https://doi.org/10.1109/PACT.2015.17
[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del

Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral

Compiler for Expressing Fast and Portable Code. In IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, CGO
2019 (Washington, DC, USA). IEEE, Piscataway, NJ, USA, 193–205.

https://doi.org/10.1109/CGO.2019.8661197
[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.

Legion: expressing locality and independence with logical regions. In

SC Conference on High Performance Computing Networking, Storage
and Analysis, SC ’12 (Salt Lake City, UT, USA). IEEE, Piscataway, NJ,
USA, 66. https://doi.org/10.1109/SC.2012.71

[6] A. J. Bernstein. 1966. Analysis of Programs for Parallel Processing.

IEEE Transactions on Electronic Computers EC-15, 5 (1966), 757–763.
https://doi.org/10.1109/PGEC.1966.264565

[7] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A frame-
work for composing high-level loop transformations. Technical Report.
University of Southern California.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-end Optimizing Compiler for Deep Learning. In

Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Associa-

tion, Berkeley, CA, USA, 579–594. http://dl.acm.org/citation.cfm?id=
3291168.3291211

[9] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry

Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.

Learning to Optimize Tensor Programs. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada. 3393–3404. http://papers.nips.cc/paper/7599-learning-to-
optimize-tensor-programs

[10] Sébastien Donadio, James C. Brodman, Thomas Roeder, Kamen Yotov,

Denis Barthou, Albert Cohen, María Jesús Garzarán, David A. Padua,

and Keshav Pingali. 2005. A Language for the Compact Representation

of Multiple Program Versions. In Languages and Compilers for Parallel
Computing, 18th International Workshop, LCPC 2005. Springer Berlin
Heidelberg, Berlin, Heidelberg, 136–151. https://doi.org/10.1007/978-
3-540-69330-7_10

[11] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon

Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren,

Alex Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia:

Programming the Memory Hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (Tampa, Florida) (SC ’06).
Association for Computing Machinery, New York, NY, USA, 83–es.

https://doi.org/10.1145/1188455.1188543

[12] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

Int. J. Parallel Program. 20, 1 (1991), 23–53. https://doi.org/10.1007/
BF01407931

[13] Paul Feautrier and Christian Lengauer. 2011. The Polyhedron Model.

In Encyclopedia of Parallel Computing, David Padua (Ed.). Springer,

1581–1592. https://doi.org/10.1007/978-0-387-09766-4_502
[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (jul 1987), 319–349. https://doi.org/10.1145/
24039.24041

[15] Franz Franchetti, Tze Meng Low, Doru-Thom Popovici,

Richard Michael Veras, Daniele G. Spampinato, Jeremy R. Johnson,

Markus Püschel, James C. Hoe, and José M. F. Moura. 2018. SPIRAL:

Extreme Performance Portability. Proc. IEEE 106, 11 (2018), 1935–1968.

https://doi.org/10.1109/JPROC.2018.2873289
[16] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,

Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard

Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Sto-

ica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, and

Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-

Learning Architecture Evaluation via Full-Stack Integration. In Pro-
ceedings of the 58th Annual Design Automation Conference (DAC). 769–
774. https://doi.org/10.1109/DAC18074.2021.9586216

[17] David K. Gifford and John M. Lucassen. 1986. Integrating Functional

and Imperative Programming. In Proceedings of the 1986 ACM Confer-
ence on LISP and Functional Programming (Cambridge, Massachusetts,

USA) (LFP ’86). Association for Computing Machinery, New York, NY,

USA, 28–38. https://doi.org/10.1145/319838.319848
[18] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav

Bodik, and Vinod Grover. 2020. Fireiron: A Scheduling Language for

High-Performance Linear Algebra on GPUs. arXiv:2003.06324 [cs.PL]

[19] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch,

and Michel Steuwer. 2020. A Language for Describing Optimization

Strategies. arXiv:2002.02268 [cs.PL]

[20] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. 2009.

Annotation-based empirical performance tuning using Orio. In 23rd
IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009 (Rome, Italy). IEEE, Piscataway,

NJ, USA, 1–11. https://doi.org/10.1109/IPDPS.2009.5161004
[21] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,

and Frédo Durand. 2019. Taichi: a language for high-performance

computation on spatially sparse data structures. ACM Trans. Graph.
38, 6 (2019), 201:1–201:16. https://doi.org/10.1145/3355089.3356506

[22] C. Barry Jay and Milan Sekanina. 1997. Shape Checking of Array

Programs. In Computing: the Australasian Theory Symposium. Sydney,

Australia.

[23] C. B. Jay and P. A. Steckler. 1998. The functional imperative: Shape!.

In Programming Languages and Systems, Chris Hankin (Ed.). Springer,

Berlin, Heidelberg, 139–153. https://doi.org/10.1007/BFb0053568
[24] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA (oct 2017), 1–29.

https://doi.org/10.1145/3133901
[25] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan

Ragan-Kelley. 2022. Verified Tensor-Program Optimization Via High-

level Scheduling Rewrites. Proc. ACM Program. Lang. 6, POPL, Article
55 (jan 2022), 28 pages. https://doi.org/10.1145/3498717

[26] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-

Kelley, and Kayvon Fatahalian. 2016. Automatically scheduling halide

image processing pipelines. ACM Trans. Graph. 35, 4 (2016), 83:1–83:11.
https://doi.org/10.1145/2897824.2925952

[27] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An

Wang, Abhinav Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J.

Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. 2019.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/PGEC.1966.264565
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1145/319838.319848
https://arxiv.org/abs/2003.06324
https://arxiv.org/abs/2002.02268
https://doi.org/10.1109/IPDPS.2009.5161004
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1007/BFb0053568
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3498717
https://doi.org/10.1145/2897824.2925952

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Swizzle Inventor: Data Movement Synthesis for GPU Kernels. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery,

New York, NY, USA, 65–78. https://doi.org/10.1145/3297858.3304059
[28] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,

Saman P. Amarasinghe, and Frédo Durand. 2012. Decoupling al-

gorithms from schedules for easy optimization of image process-

ing pipelines. ACM Trans. Graph. 31, 4 (2012), 32:1–32:12. https:
//doi.org/10.1145/2185520.2185528

[29] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly

Barnes, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe, and Frédo

Durand. 2018. Halide: decoupling algorithms from schedules for high-

performance image processing. Commun. ACM 61, 1 (2018), 106–115.

https://doi.org/10.1145/3150211
[30] Alex Reinking, Gilbert Bernstein, and Jonathan Ragan-Kelley. 2020.

Formal Semantics for the Halide Language. Master’s thesis. EECS

Department, University of California, Berkeley. http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html

[31] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. LIFT:

A functional data-parallel IR for high-performance GPU code genera-

tion. In 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 74–85. https://doi.org/10.1109/CGO.2017.
7863730

[32] Adilla Susungi, Norman A. Rink, Albert Cohen, Jeronimo Castrillon,

and Claude Tadonki. 2018. Meta-Programming for Cross-Domain Ten-

sor Optimizations. In Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experiences
(Boston,MA, USA) (GPCE 2018). Association for ComputingMachinery,

New York, NY, USA, 79–92. https://doi.org/10.1145/3278122.3278131
[33] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt,

and Adrian Sampson. 2021. Vectorization for Digital Signal Proces-

sors via Equality Saturation. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Virtual, USA) (ASPLOS 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 874–886.

https://doi.org/10.1145/3445814.3446707
[34] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, An-

drew Adams, and Albert Cohen. 2018. Tensor Comprehensions:

Framework-Agnostic High-Performance Machine Learning Abstrac-

tions. arXiv:1802.04730 [cs.PL]

[35] Anand Venkat, Tharindu Rusira, Raj Barik, Mary Hall, and Leonard

Truong. 2019. SWIRL: High-performance many-core CPU code

generation for deep neural networks. The International Journal of
High Performance Computing Applications 33, 6 (2019), 1275–1289.

https://doi.org/10.1177/1094342019866247
[36] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhe-

dral Model. In Mathematical Software – ICMS 2010, Komei Fukuda,

Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.).

Springer, Berlin, Heidelberg, 299–302. https://doi.org/10.1007/978-3-
642-15582-6_49

[37] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.

2014. Schedule Trees. In Proceedings of the 4th International Workshop
on Polyhedral Compilation Techniques, Sanjay Rajopadhye and Sven

Verdoolaege (Eds.). INRIA, Vienna, Austria, 1–9.

[38] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical

Programming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (San Antonio, Texas,

USA) (POPL ’99). Association for Computing Machinery, New York,

NY, USA, 214–227. https://doi.org/10.1145/292540.292560
[39] Qing Yi, Keith Seymour, Haihang You, Richard W. Vuduc, and Daniel J.

Quinlan. 2007. POET: Parameterized Optimizations for Empirical

Tuning. In 21st International Parallel and Distributed Processing Sym-
posium (IPDPS 2007) (Rome, Italy). IEEE, Piscataway, NJ, USA, 1–8.

https://doi.org/10.1109/IPDPS.2007.370637
[40] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and

Sanjay Rajopadhye. 2013. AlphaZ: A System for Design Space Explo-

ration in the Polyhedral Model. In Languages and Compilers for Parallel
Computing, Hironori Kasahara and Keiji Kimura (Eds.). Springer, Berlin,

Heidelberg, 17–31. https://doi.org/10.1007/978-3-642-37658-0_2
[41] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman P. Amarasinghe. 2018. GraphIt: a high-

performance graph DSL. PACMPL 2, OOPSLA (2018), 121:1–121:30.

https://doi.org/10.1145/3276491
[42] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

et al. 2020. Ansor: Generating High-Performance Tensor Programs

for Deep Learning. In Proceedings of the 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’20). Article 49,
17 pages. https://doi.org/10.5555/3488766.3488815

https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/3150211
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3445814.3446707
https://arxiv.org/abs/1802.04730
https://doi.org/10.1177/1094342019866247
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/292540.292560
https://doi.org/10.1109/IPDPS.2007.370637
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1145/3276491
https://doi.org/10.5555/3488766.3488815

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

A Definitions for the core language
A.1 Mathematical Model of Exo programs
We present a simple denotational-style semantics. Our goal is to describe the set of stores/states, and store-transforming

functions, which statements and procedures denote.

Definition A.1 (names). Our namespace Name is partitioned into three parts: 𝑑𝑎𝑡𝑎, 𝑙𝑜𝑐𝑎𝑙 , and 𝑔𝑙𝑜𝑏𝑎𝑙 .

We refer to booleans B and integers Z as control values, and “real numbers”
4 R as data values.

Definition A.2 (exceptional values). We use three kinds of exceptional values: unknown (⊥), memory error (𝜖𝑚), and type

error (𝜖𝜏), with unknowns for each basic type (⊥B, ⊥Z, ⊥R). We use an information order s.t. 𝜖𝜏 ⊑ 𝜖𝑚 ⊑ ⊥R, 𝜖𝜏 ⊑ ⊥, and values
are otherwise un-ordered. A well-typed program ought not produce 𝜖𝜏 , and a well-bounded program ought not produce 𝜖𝑚 .

Definition A.3 (buffers). The heap part of the store holds buffers, defined over all possible dimensionalities as partial functions

Buf =
⋃∞
𝑚=0 (Z𝑚 → (R ⊎ {⊥, 𝜖𝑚})). These partial functions will default to 𝜖𝑚 as the least informative value. Thus, reading

un-allocated memory results in a memory error.

Definition A.4 (windows). In Exo, memory is accessed through “windows,” which are slices of multi-dimensional arrays. An 𝑛-

dimensional window identifies a buffer in the heap and potential indexing transformation:Win𝑛 = Name𝑑𝑎𝑡𝑎×
⋃∞
𝑚=𝑛 (Z𝑛 → Z𝑚).

The functions 𝜙 ∈ Z𝑛 → Z𝑚 must be defined as injective translations in the following sense: 𝜙𝑖 (𝑥) = 𝑥 𝑗 + 𝑐 or 𝜙𝑖 (𝑥) = 𝑐 , and 𝜙
is injective (no two output coordinates depend on the same input coordinate).

Definition A.5 (values). The set of control values is Val𝑐 = B ⊎ Z ⊎ {⊥}. The set of argument values further includes windows
Val𝑎 = Val𝑐 ⊎

⋃∞
𝑛=0 Win𝑛 . Finally, the set of all values includes scalars and errors as well Val = Val𝑎 ⊎ R ⊎ {𝜖𝜏 , 𝜖𝑚} The

information ordering on exceptional values is extended s.t. all non-exceptional values 𝑥 are pairwise unordered, and ⊥ ⊑ 𝑥
with respect to each domain. This ordering forms a meet(⊓) semi-lattice.

Definition A.6 (functions on values). Given a function 𝑓 : 𝐷1 × 𝐷2 → Val where 𝐷𝑖 ⊆ Val, the extension of 𝑓 to all values

𝑓 ′ : Val×Val → Val is 𝑓 ′(𝑥,𝑦) = 𝑓 (𝑥,𝑦) when (𝑥,𝑦) ∈ 𝐷1 ×𝐷2, 𝑓
′(𝑥,𝑦) = 𝑥 ⊓𝑦 otherwise. Thus, exceptional values pre-empt

each other, and applying a function to values of the wrong type produces a type error. In this way, functions are monotonic

w.r.t. the information order. Arbitrary 𝑛-ary functions are extended similarly.

DefinitionA.7 (stores). A store (aka. state) is either an error value or a tuple of partial functions: Σ = {𝜖𝜏 , 𝜖𝑚}⊎
(
Σ𝑑𝑎𝑡𝑎 × Σ𝑙𝑜𝑐𝑎𝑙 × Σ𝑔𝑙𝑜𝑏𝑎𝑙

)
where

Σ𝑑𝑎𝑡𝑎 = Name𝑑𝑎𝑡𝑎 → Buf
Σ𝑙𝑜𝑐𝑎𝑙 = Name𝑙𝑜𝑐𝑎𝑙 → Val𝑎
Σ𝑔𝑙𝑜𝑏𝑎𝑙 = Name𝑔𝑙𝑜𝑏𝑎𝑙 → Val𝑐

and the default value in these partial functions is 𝜖𝜏 . The information ordering is extended to stores as well. We write 𝜎 (𝑥)
instead of 𝜎𝑙𝑜𝑐𝑎𝑙 (𝑥) when the meaning is clear from context.

Definition A.8 (heap vs. stack). When calling sub-procedures we need to restrict the store to only the non-local parts. For

𝜎 ∈ Σ, let heap(𝜎) = (𝜎𝑑𝑎𝑡𝑎, ∅, 𝜎𝑔𝑙𝑜𝑏𝑎𝑙) for non-error stores. When returning from a procedure call, we overwrite the local heap

and globals with the results of running the sub-procedure: 𝜎 [heap ↦→ 𝜎 ′] = (𝜎 ′
𝑑𝑎𝑡𝑎

, 𝜎𝑙𝑜𝑐𝑎𝑙 , 𝜎
′
𝑔𝑙𝑜𝑏𝑎𝑙

).

Definition A.9 (functions on stores). Given a function 𝑓 : (Σ − {𝜖𝜏 , 𝜖𝑚}) → Σ, we lift it to a function Σ → Σ by propagating

error values, as expected. Thus, store functions are monotonic.

A.2 Syntax and Semantics of Exo programs
The syntax and denotations for Exo programs are given in figures 3, 8, 9, and 10.

B Encoding Ternary Logic
Recall our language of effect-expressions

𝑒𝑒 : EffExprF 𝑥 | 𝑐 | ⊥ | op(𝑒𝑒∗) | 𝑒𝑒? 𝑒𝑒 else 𝑒𝑒 | ∀𝑥 .𝑒𝑒
with op ∈ {+,−, ∗, /,mod,∧,∨,¬,=, <, >, ≤, ≥}
4
As we discussed in the example (§2) our semantics is insensitive to questions of how the data values are approximated in finite precision—one may safely

replace R in this paper with rationals Q without any loss of meaning.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

E : Expr → Σ → Val
E J𝑥K𝜎 = 𝜎 (𝑥)

E Jop(𝑒1, . . . , 𝑒𝑘)K𝜎 = ôp (E J𝑒1K𝜎, . . . , E J𝑒𝑘K𝜎)
E J𝑒0[𝑒1, . . . , 𝑒𝑛]K𝜎 = 𝜎 (ℓ, 𝜑 (𝑒′

1
, . . . , 𝑒′𝑛))

E Jwin(𝑒0, 𝑤1, . . . , 𝑤𝑚)K𝜎 = (ℓ, 𝜑 ◦ 𝜙𝑤𝑖𝑛 (𝑤′
1
, . . . , 𝑤′

𝑚))
E J𝑒𝑙𝑜..𝑒ℎ𝑖K𝜎 = (E J𝑒𝑙𝑜K𝜎, E J𝑒ℎ𝑖K𝜎)

where ℓ, 𝜑 = E J𝑒0K𝜎
𝑒′
𝑖
= E J𝑒𝑖K𝜎 𝑤′

𝑖
= E J𝑤𝑖K𝜎

𝜙𝑤𝑖𝑛 () = ()
𝜙𝑤𝑖𝑛 (𝑖,𝑢2, . . .) = 𝑝 (𝑖) ◦ 𝜙𝑤𝑖𝑛 (𝑢2, . . .)

𝜙𝑤𝑖𝑛 ((𝑖𝑙𝑜 , 𝑖ℎ𝑖),𝑢2, . . .) = 𝜆𝑥.𝑐𝑜𝑛𝑠 (𝑥 + 𝑖𝑙𝑜) ◦ 𝜙𝑤𝑖𝑛 (𝑢2, . . .)
𝑐𝑜𝑛𝑠 (𝑖, (𝑦1, . . . , 𝑦𝑛)) = (𝑖, 𝑦1, . . . , 𝑦𝑛)

Figure 8. Expression Denotations

S : Stmt → Σ → Σ

S J𝑠1;𝑠2K𝜎 = (S J𝑠2K ◦ S J𝑠1K) 𝜎

S Jif 𝑒 then 𝑠K𝜎 =

{
S J𝑠K𝜎, if E J𝑒K𝜎 = true
𝜎, otherwise

S Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do 𝑠K𝜎 = 𝜙𝑚−1 ◦ · · · ◦ 𝜙𝑛
where 𝑛,𝑚 = E J𝑒𝑙𝑜K𝜎, E J𝑒ℎ𝑖K𝜎

𝜙𝑘 = 𝜆𝜎′.S J𝑠K (𝜎′ [𝑖 ↦→ 𝑘])

S Jalloc 𝑥(𝑒1, . . . , 𝑒𝑘)K𝜎 = 𝜎

[
ℓ ↦→ buf (®𝑒′)
𝑥 ↦→ (ℓ, 𝑖𝑑)

]
where ℓ is a fresh name

𝑒′
𝑖
= E J𝑒𝑖K𝜎

S J𝑥 = 𝑒K𝜎 = 𝜎 [𝑥 ↦→ E J𝑒K𝜎]
S J𝑒0[𝑒1, . . . , 𝑒𝑘]= 𝑒𝑟ℎ𝑠K𝜎 = 𝜎

[
(ℓ, 𝚤) ↦→ 𝑒′

𝑟ℎ𝑠

]
S J𝑒0[𝑒1, . . . , 𝑒𝑘]+= 𝑒𝑟ℎ𝑠K𝜎 = 𝜎

[
(ℓ, 𝚤) ⊕↦→ 𝑒′

𝑟ℎ𝑠

]
where ℓ, 𝜑 = E J𝑒0K𝜎

𝚤 = 𝜑 (𝑒′
1
, . . . , 𝑒′

𝑘
)

S J𝑝(𝑒1, . . . , 𝑒𝑛)K𝜎 = 𝜎 [heap ↦→ 𝜎′]
where 𝜎′ = call(𝑝, ®𝑒′, 𝜎)

for proc 𝑝 : (𝑥1 : 𝜏1) → · · · (𝑥𝑛 : 𝜏𝑛) → () assert 𝑒 do 𝑠 ,
arg𝑖 (𝑝) = 𝑥𝑖

call(𝑝, ®𝑒′, 𝜎) = P J𝑝K
(
heap(𝜎) [arg𝑖 (𝑝) ↦→ 𝑒′

𝑖
]
)

buf (®𝑒′) = [®𝑢 ↦→ ⊥ | 0 ≤ 𝑢𝑖 < 𝑒′𝑖]

Figure 9. Statement Denotations

P : Proc → Σ → Σ

P

u

v
proc 𝑝 : 𝜏𝑠

assert 𝑒
do 𝑠

}

~𝜎 =

{
𝜖𝑚, if E J𝑒K𝜎 ≠ true
S J𝑠K𝜎, otherwise

Figure 10. Procedure Denotations

We may encode this language for standard SMT solvers as follows. Represent a value in Z ∪ {⊥} by a value in Z × B and a

value in B ∪ {⊥} by a value in B × B, s.t. the meaning of the encoding is defined by Val(𝑥, true) = 𝑥 and Val(𝑥, false) = ⊥.
Accordingly, we can pull back the definitions of the various operators as follows.

For op ∈ {+,−, ∗, /,mod,=, <, >, ≤, ≥} with inputs of int sort, the rule is simple and illustrated by +:

(𝑥1, 𝑑1) + (𝑥2, 𝑑2) ↦→ (𝑥1 + 𝑥2, 𝑑1 ∧ 𝑑2)

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

For operators on inputs of bool sort, we may take advantage of Boolean short-circuiting to produce known values even when

some input is unknown. Such definitions are key to extracting useful information from the ternary logic. These operators are

(𝑥1, 𝑑1) ∧ (𝑥2, 𝑑2) ↦→ ©­«𝑥1 ∧ 𝑥2,
(𝑑1 ∧ 𝑑2)∨
(¬𝑥1 ∧ 𝑑1)∨
(¬𝑥2 ∧ 𝑑2)

ª®¬
(𝑥1, 𝑑1) ∨ (𝑥2, 𝑑2) ↦→ ©­«𝑥1 ∨ 𝑥2,

(𝑑1 ∧ 𝑑2)∨
(𝑥1 ∧ 𝑑1)∨
(𝑥2 ∧ 𝑑2)

ª®¬
¬(𝑥, 𝑑) ↦→ (¬𝑥, 𝑑)

∀𝑥1 .(𝑥2, 𝑑2) ↦→
(
(∀𝑥1.𝑥2),

(∀𝑥1.𝑑2)∨
(∃𝑥1.(¬𝑥2 ∧ 𝑑2))

)
(𝑥1, 𝑑1)? (𝑥2, 𝑑2) else (𝑥3, 𝑑3) ↦→

(𝑥1? 𝑥2 else 𝑥3, 𝑑1 ∧ (𝑥1? 𝑑2 else 𝑑3))

C Global Dataflow Definitions
We specify a lifting from expressions to EffExpr in a reasonably obvious way

Definition C.1 (lifting effect-expressions).

Lift : Expr → EffExpr

Lift J𝑥K =

{
(𝑥, 𝑖𝑑), if 𝑥 : R[. . .]
𝑥, otherwise

Lift Jop(𝑒1, . . . , 𝑒𝑛)K =
let 𝑒𝑒𝑖 = Lift J𝑒𝑖K

in op(𝑒𝑒1, . . . , 𝑒𝑒𝑛)
Lift J𝑒0 [𝑒1, . . . , 𝑒𝑛]K = ⊥

Lift Jwin(𝑒0,𝑤1, . . . ,𝑤𝑛)K =


let 𝑥, 𝜑 = Lift J𝑒0K

𝑤 ′
𝑖 = Lift J𝑤𝑖K
𝜑 ′ = 𝜑 ◦ 𝜙𝑤𝑖𝑛
in (𝑥, 𝜑 ′(𝑤 ′

1
, . . . ,𝑤 ′

𝑛))
Global dataflow analysis is defined precisely as follows:

Definition C.2 (Global Values).

ValG : Stmt → EffEnv
ValG J𝑠1;𝑠2K = (ValG 𝑠1) · (ValG 𝑠2)
ValG Jif 𝑒 then 𝑠K = [𝑥 ↦→ 𝑣if | 𝑥 ∈ 𝐺]

where 𝑣if = (Lift J𝑒K? 𝐺 𝑥 else 𝑥)
ValG Jfor 𝑖 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do 𝑠K

= [𝑥 ↦→ (fix 𝑥)? 𝑥 else ⊥ | 𝑥 ∈ 𝐺]
where 𝐺 = ValG J𝑠K

𝑏𝑑𝑖 = Lift J𝑒𝑙𝑜K ≤ 𝑖 < Lift J𝑒ℎ𝑖K
𝐹𝑖,𝑥 = (𝑏𝑑𝑖 =⇒ 𝐺 𝑥 = 𝑥)
fix 𝑥 = ∀𝑖 : int. 𝐹𝑖,𝑥

ValG J𝑥 = 𝑒K = [𝑥 ↦→ Lift J𝑒K]
ValG _ = ∅

D Location Set Membership
∈: Name × EffExpr𝑛 → LocSet → EffExpr

𝑥𝑠 ∈ ∅ = false
𝑥𝑠 ∈ {𝑦, 𝑒𝑒1, . . . , 𝑒𝑒𝑛} = 𝑥 = 𝑦 ∧∧𝑛

𝑖=0 𝑒𝑒
′
𝑖 = 𝑒𝑒𝑖

where 𝑥𝑠 = (𝑥, 𝑒𝑒 ′
1
, . . . , 𝑒𝑒 ′𝑛)

𝑥𝑠 ∈ L1 ∪ L2 = (𝑥𝑠 ∈ L1) ∨ (𝑥𝑠 ∈ L2)
𝑥𝑠 ∈ ⋃

𝑥 L = ∃𝑥 (𝑥𝑠 ∈ L)
𝑥𝑠 ∈ L1 ∩ L2 = (𝑥𝑠 ∈ L1) ∧ (𝑥𝑠 ∈ L2)
𝑥𝑠 ∈ L1 − L2 = (𝑥𝑠 ∈ L1) ∧ (𝑥𝑠 ∉ L2)

𝑥𝑠 ∈ filter(𝑒𝑒,L) = 𝑒𝑒 ∧ (𝑥𝑠 ∈ L)
(_ = ∅) : LocSet → EffExpr
(L = ∅) = ∀𝑥𝑠.(𝑥𝑠 ∉ L)

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

E Effect Extraction
Definition E.1 (Effect of an Expression). In the following, we sometimes combine effects using ∪ in place of ; to indicate that

since we are strictly combining read-effects, the order of composition is irrelevant.

Eff 𝑒 J𝑥K =

{
GlobalRead(𝑥), if 𝑥 ∈ Name𝑔𝑙𝑜𝑏
∅, otherwise

Eff 𝑒 Jop(𝑒1, . . . , 𝑒𝑛)K =
⋃𝑛
𝑖=1 Eff 𝑒 J𝑒𝑖K

Eff 𝑒 J𝑒0 [𝑒1, . . . , 𝑒𝑛]K =


let 𝑥, 𝜑 = Lift J𝑒0K

𝑒𝑒𝑖 = Lift J𝑒𝑖K
𝑎′ =

⋃𝑛
𝑖=0 Eff 𝑒 J𝑒𝑖K

𝜑𝑒𝑒 = 𝜑 (𝑒𝑒1, . . . , 𝑒𝑒𝑛)
in 𝑎′ ∪ 𝑅𝑒𝑎𝑑 (𝑥, 𝜑𝑒𝑒)

Eff 𝑒 Jwin(𝑒0,𝑤1, . . . ,𝑤𝑛)K = Eff 𝑒 J𝑒0K ∪
⋃𝑛
𝑖=1 Eff 𝑒 J𝑤𝑖K

Definition E.2 (Effect of a Statement).

Eff J𝑠1;𝑠2K
= Eff J𝑠1K ;ValG J𝑠1K (Eff J𝑠2K)

Eff Jif 𝑒 then 𝑠K
= Eff 𝑒 J𝑒K ;Guard(Lift J𝑒K , Eff J𝑠K)

Eff Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖𝑠 do K

=

[
(Eff 𝑒 J𝑒𝑙𝑜K ∪ Eff 𝑒 J𝑒ℎ𝑖K);
Loop(𝑥,Guard(𝑏𝑑𝑠,𝐺 (Eff J𝑠K)))

where 𝑏𝑑𝑠 = Lift J𝑒𝑙𝑜K ≤ 𝑥 < Lift J𝑒ℎ𝑖K
𝐺 = ValG Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖𝑠 do K

Eff Jalloc 𝑥(𝑒1, . . . , 𝑒𝑛)K
=
⋃𝑛
𝑖=1 Eff 𝑒 J𝑒𝑖K

Eff J𝑒0[𝑒1, . . . , 𝑒𝑛]= 𝑒𝑟 K

=


let 𝑥, 𝜑 = Lift J𝑒0K

𝑒𝑒𝑖 = Lift J𝑒𝑖K
in

(
Eff 𝑒 J𝑒𝑟 K ∪

⋃𝑛
𝑖=0 Eff 𝑒 J𝑒𝑖K

)
;

Write(𝑥, 𝜑 (𝑒𝑒1, . . . , 𝑒𝑒𝑛))
Eff J𝑒0[𝑒1, . . . , 𝑒𝑛]+= 𝑒𝑟 K

=


let 𝑥, 𝜑 = Lift J𝑒0K

𝑒𝑒𝑖 = Lift J𝑒𝑖K
in

(
Eff 𝑒 J𝑒𝑟 K ∪

⋃𝑛
𝑖=0 Eff 𝑒 J𝑒𝑖K

)
;

Reduce(𝑥, 𝜑 (𝑒𝑒1, . . . , 𝑒𝑒𝑛))
Eff J𝑥 = 𝑒K

= Eff 𝑒 J𝑒K ;GlobalWrite(𝑥)

F Context Analysis

Definition F.1 (Control Predicate).

CtrlPred : Ctxt → Stmt → EffExpr
CtrlPred J•K 𝑠 = true
CtrlPred J𝐶;𝑠2K 𝑠 = CtrlPred J𝐶K 𝑠
CtrlPred J𝑠1;𝐶K 𝑠 = ValG J𝑠1K (CtrlPred J𝐶K 𝑠)
CtrlPred Jif 𝑒 then 𝐶K 𝑠 = Lift J𝑒K ∧ CtrlPred J𝐶K 𝑠
CtrlPred Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do 𝐶K 𝑠

= 𝑏𝑑𝑠 ∧𝐺 (CtrlPred J𝐶K 𝑠)
where 𝑠𝑏 = [𝑥 ↦→ 𝑥 ′] (𝐶 [𝑠])

𝐺 = ValG Jfor 𝑥 ′ in 𝑒𝑙𝑜..𝑥 do 𝑠𝑏K
𝑏𝑑𝑠 = Lift J𝑒𝑙𝑜K ≤ 𝑥 < Lift J𝑒ℎ𝑖K

CtrlPred Jproc 𝑝 : 𝜏𝑠 assert 𝑒 do 𝐶K 𝑠
= Lift J𝑒K ∧ CtrlPred J𝐶K 𝑠

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Definition F.2 (Pre-statement Global Values).

PreValG : Ctxt → Stmt → EffEnv
PreValG J•K 𝑠 = ∅
PreValG J𝐶;𝑠2K 𝑠 = PreValG J𝐶K 𝑠
PreValG J𝑠1;𝐶K 𝑠 = (ValG J𝑠1K) · (PreValG J𝐶K 𝑠)
PreValG Jif 𝑒 then 𝐶K 𝑠 = PreValG J𝐶K 𝑠
PreValG Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do 𝐶K 𝑠

= 𝐺 · (PreValG J𝐶K 𝑠)
where 𝑠𝑏 = [𝑥 ↦→ 𝑥 ′] (𝐶 [𝑠])

𝐺 = ValG Jfor 𝑥 ′ in 𝑒𝑙𝑜..𝑥 do 𝑠𝑏K

Definition F.3 (Post-statement Effect).

PostEff : Ctxt → Stmt → Effect
PostEff J•K 𝑠 = ∅
PostEff J𝐶;𝑠2K 𝑠 = (PostEff J𝐶K 𝑠);ValG 𝐶 [𝑠] (𝑎2)

where 𝑎2 = Eff J𝑠2K
PostEff J𝑠1;𝐶K 𝑠 = ValG J𝑠1K (PostEff J𝐶K 𝑠)
PostEff Jif 𝑒 then 𝐶K 𝑠 = Guard(Lift J𝑒K , PostEff J𝐶K 𝑠)
PostEff Jfor 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do 𝐶K 𝑠

= (𝛾 ·𝐺) (𝑎1;𝐺𝑥 (𝑎2))
where 𝑠𝑏 = [𝑥 ↦→ 𝑥 ′] (𝐶 [𝑠])

𝛾 = [𝑥𝑙𝑜 ↦→ Lift J𝑒𝑙𝑜K] [𝑥ℎ𝑖 ↦→ Lift J𝑒ℎ𝑖K]
𝐺 = ValG Jfor 𝑥 ′ in 𝑥𝑙𝑜..𝑥 do 𝑠𝑏K
𝑎1 = Guard(𝑥𝑙𝑜 ≤ 𝑥 ′ < 𝑥ℎ𝑖 , PostEff J𝐶K 𝑠)
𝐺𝑥 = ValG Jif 𝑥𝑙𝑜 ≤ 𝑥 < 𝑥ℎ𝑖 then 𝑠𝑏K
𝑎2 = Eff Jfor 𝑥 ′ in 𝑥 + 1..𝑥ℎ𝑖 do 𝑠𝑏K

Note that all three of these rules expose the loop iteration variable as a free-variable in the resulting object. This represents

the “current loop iteration”. If a property can be shown for all values of this free-variable, then we can recover the property by

induction.

G Gemmini User Library
This section includes a user library defined for Gemmini accelerators. It consists of full definitions of Gemmini scratchpad

(GEMM_SCRATCH), Gemmini accumulator

(GEMM_ACCUM), Gemmini load instruction (ld_i8), and Gemmini load configuration and a config load instruction (ConfigLoad). A

complete list of Gemmini user library functionality can be found in Exo’s GitHub repository (https://github.com/exo-lang/exo).

G.1 User-defined Gemmini scratchpad memory
class GEMM_SCRATCH(Memory):

@classmethod
def global_(cls):

here = os.path.dirname(os.path.abspath(__file__))
return _configure_file(Path(_here_) / 'gemm_malloc.c',

heap_size=100000,
dim=16)

@classmethod
def alloc(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:
return f"{prim_type} {new_name};"

size_str = shape[0]
for s in shape[1:]:

size_str = f"{s} * {size_str}"
if not _is_const_size(shape[-1], 16):

raise MemGenError(f"{srcinfo}: "
"Cannot allocate GEMMINI Scratchpad Memory "
"unless innermost dimension is exactly 16. "
f"got {shape[-1]}")

return (f"{prim_type} *{new_name} = "
f"({prim_type}*) ((uint64_t)gemm_malloc ({size_str} * sizeof({prim_type})));")

https://github.com/exo-lang/exo

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

@classmethod
def free(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:
return ""

return f"gemm_free((uint64_t)({new_name}));"

@classmethod
def window(cls, basetyp, baseptr, indices, strides, srcinfo):

assume that strides[-1] == 1
and that strides[-2] == 16 (if there is a strides[-2])
assert len(indices) == len(strides) and len(strides) >= 2
prim_type = basetyp.basetype().ctype()
offset = " + ".join(

[f"({i}) * ({s})" for i, s in zip(indices, strides)])
return (f"*({prim_type}*)((uint64_t)("

f"((uint32_t)((uint64_t){baseptr})) + "
f"({offset})/16))")

G.2 User-defined Gemmini accumulator memory
class GEMM_ACCUM(Memory):

@classmethod
def global_(cls):

here = os.path.dirname(os.path.abspath(__file__))
return _configure_file(Path(_here_) / 'gemm_acc_malloc.c',

heap_size=100000,
dim=16)

@classmethod
def alloc(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:
return f"{prim_type} {new_name};"

size_str = shape[0]
for s in shape[1:]:

size_str = f"{s} * {size_str}"
if not _is_const_size(shape[-1], 16):

raise MemGenError(f"{srcinfo}: "
"Cannot allocate GEMMINI Accumulator Memory "
"unless innermost dimension is exactly 16. "
f"got {shape[-1]}")

return (f"{prim_type} *{new_name} = "
f"({prim_type}*) ((uint32_t)gemm_acc_malloc ({size_str} * sizeof({prim_type})));")

@classmethod
def free(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:
return ""

return f"gemm_acc_free((uint32_t)({new_name}));"

@classmethod
def window(cls, basetyp, baseptr, indices, strides, srcinfo):

assume that strides[-1] == 1
and that strides[-2] == 16 (if there is a strides[-2])
assert len(indices) == len(strides) and len(strides) >= 2
prim_type = basetyp.basetype().ctype()
offset = " + ".join([f"({i}) * ({s})"

for i, s in zip(indices, strides)])
return (f"*({prim_type}*)((uint64_t)("

f"((uint32_t)((uint64_t){baseptr})) + "
f"({offset})/16))")

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13–17, 2022, San Diego, CA, USA

G.3 User-defined Gemmini load instruction
_gemm_ld_i8 = ("gemmini_extended3_config_ld({src}.strides[0]*1, "+

"1.0f, 0, 0);\n"+
"gemmini_extended_mvin(&{src_data}, "+

"((uint64_t) &{dst_data}), {m}, {n});")
@instr(_gemm_ld_i8)
def ld_i8(

n : size,
m : size,
src : [i8][n, m] @ DRAM,
dst : [i8][n, 16] @ GEMM_SCRATCH,

):
assert n <= 16
assert m <= 16
assert stride(src, 1) == 1
assert stride(dst, 0) == 16
assert stride(dst, 1) == 1

for i in seq(0, n):
for j in seq(0, m):

dst[i,j] = src[i,j]

G.4 User-defined Gemmini load configuration
@config decorates a Python class which is parsed and compiled as an Exo configuration object. Below is a configuration object

for Gemmini load which has a stride parameter.

@config
class ConfigLoad:

src_stride : stride

Below is the instruction procedure with Gemmini instruction string for setting the load configuration defined above. This

instruction sets ConfigLoad.src_stride to the stride argument, thus changing the hardware parameter state.

_gemm_config_ld_i8 = ("gemmini_extended3_config_ld({src_stride}, "+
"1.0f, 0, 0);\n")

@instr(_gemm_config_ld_i8)
def config_ld_i8(

src_stride : stride
):

ConfigLoad.src_stride = src_stride

	Abstract
	1 Introduction
	2 Example
	2.1 Exo Procedures, Compilation, and Scheduling
	2.2 Memories
	2.3 Instructions
	2.4 Configuration State

	3 The Exo Language and System
	3.1 The Exo Language
	3.2 Hardware Targets as Libraries
	3.3 Scheduling via Rewrites
	3.4 Code Replacement & Instruction Selection

	4 Formal Core Language
	4.1 Mathematical Model of Exo Programs
	4.2 Syntax, Semantics, and Well-Typed Programs
	4.3 Program Equivalence

	5 Effect Analysis & Transformation of Programs
	5.1 Ternary Logic
	5.2 Effect Expressions
	5.3 Global Dataflow
	5.4 Location Sets
	5.5 Effects
	5.6 Effects as Abstraction
	5.7 Basic Program Rewrites
	5.8 Loop Rewrites

	6 Contextual Analyses
	6.1 Contexts & Derived Quantities
	6.2 Context Extension

	7 Case Studies
	7.1 Gemmini
	7.2 x86
	7.3 Code Size

	8 Related Work
	9 Limitations & Future Work
	References
	A Definitions for the core language
	A.1 Mathematical Model of Exo programs
	A.2 Syntax and Semantics of Exo programs

	B Encoding Ternary Logic
	C Global Dataflow Definitions
	D Location Set Membership
	E Effect Extraction
	F Context Analysis
	G Gemmini User Library
	G.1 User-defined Gemmini scratchpad memory
	G.2 User-defined Gemmini accumulator memory
	G.3 User-defined Gemmini load instruction
	G.4 User-defined Gemmini load configuration

