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Planning algorithms

hard to deal with unknown dynamics and partial observations

« Monte Carlo tree search, MCTS

- Standard MCTS applies only to discrete spaces and also requires a black-box transition oracle

* Cross entropy methods, CEM & lterative linear quadratic regulator, iLQR
- Assume the distribution over future trajectories to be Gaussian, i.e. unimodal

 Sequential Monte Carlo planning, SMCP

- Follows the framework of “control as probabilistic inference”: selecting the optimal action is equivalent
to finding the maximum posterior over actions conditioned on an optimal future

CEM: here the agent samples all
the actions at once from a
Gaussian with learned mean and
covariance. It found one solution,
but forgot the other one.

SMCP: the agent is able to focus
on the promising trajectories and
does not collapse on a single
mode. But, how to deal with
partial observations?

From [Piche et al. 2019]



A tOy POMDPs prOblem s g E
- "} state = (0.95, 0.8) !M” 2nd Floor .

that previous methods cannot solve  fox-w©s5 1050502 L ;
s S —— :

+ Planning under uncertainty with B ey e e
O'2= obs=o= (0.95, 1.05, 0.3, 0.2) T e ¢

Continuous aCtionS =' """""""" =““““““““1 ————————— !0—‘—.-.—.—‘3"-“-.— ----- -=

(. | o o o o
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

e A straightforward solution:

4 State estimation: Particle filter net [Karkus et al. 2018]
* Plann|ng SMCP [PlChe et al 201 9 Goal (unobservable) ® Robot’s initial states (unobservable) ® True states (unobservable)

% Resampled particle states % Proposed particle states  ® Mean belief state == Planning trajectory

 What’s wrong with the filtering part?

The regressed true state can be meaningless (at the

center of the two floors).

 What’s wrong with the planning part?

The planner does not learn to help the filter (Based on
the regressed state, it might go either left or right).

Trajectories



DualSMC Network

Our approach

 Two sequential Monte Carlo processes - Interlinked via belief states
4 Adversarial particle filtering - better capture the multi-modality of the belief

4 DualSMC planning - control based on perceived uncertainty (so can learn to reduce it)

 Modules

- Proposer (P) to generate plausible states

- Transition model (T) to simulate dynamics

- Observation model (£) to update Bayesian beliefs
- Policy network

- Critic network



Adversarial particle filtering
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Planning explicitly on belief states

observation Filtering
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Floor positioning

A toy POMDPs problem that previous methods cannot solve

Moving trajectory Particle distribution & planning trajectory Explaination
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(D Proposed patrticles by regressive PF
were close to the mean of the particles

(2 The SMCP robot made very chaotic
decisions upon the filtered belief state

(D Proposed particles by adversarial PF
were closer to the plausible true state

(2 The SMCP robot went rightwards, being
unaware of its position until reaching the wall

Legend

Goal Unobserved
® |nitial states

® True states

® Proposed particles
¥ Resampled particles

== Planning trajectory
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4
The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states




Floor positioning

A toy POMDPs problem that previous methods cannot solve

Mothod Success  # Steps Does adversarial training improve

DVRL [Igl et al., 2018] 383%  162.0 the previous particle filter nets?

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1

Regressive PF ({5, top-1) + SMCP 25.0% 107.9 0.3 03—

Regressive PF (density, top-3) + PI-SMCP  25.0% 107.9 :gg\ZE'EA g §I>I\//||0(C3;P|:r)oposer ZEZQYQQQL%F’SEW

Adpversarial PF (top-1) + SMCP 95.0% 73.3 CL}J) 0.2/ ) |==DualSMC with Adv PF " 0.2t \\ [—Adversarial PF |

Adversarial PF (top-3) + PI-SMCP 82.7%  86.9 : T -

DualSMC with regressive PF (£5) 45.1%  114.9 | |

DualSMC with regressive PF (density) 38.3% 107.0 0 B —— ) T —

DualSMC w/o proposer 78.6% 62.1 20 4Ostep60 80 100 1020 S?;gp 4050 60

DualSMC with adversarial PE 99-4% 269 (a) Different POMDP planners (b) Different particle filters
Table 2: The success rate and the average number of steps ot 1,000 Figure 4: The state filtering error with respect to the number of steps

tests in the floor positioning domain (PF is short for particle filter) which the robot has taken in the floor positioning domain



Floor positioning

A toy POMDPs problem that previous methods cannot solve

How does DualSMC adapt to different uncertainties?
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(a) Partial observation (b) Full observation



3D light-dark navigation

A visually rich domain simulated by DeepMind Lab

Method

Success

# Steps

PlaNet [Hafner et al., 2019] 30%
DVRL [Igl et al., 2018] 42%

34.24
98.48

LSTM + SMCP [Piche et al., 2018] 59%
Adversarial PF (top-1) + SMCP 58%
Adversarial PF (top-3) + PI-SMCP 64 %

85.40
56.11
64.37

Dual
Dual

SMC wit
SMC wit]

Dua

n regressive PF (£2) 92%
1 regressive PF (density) 98%

SMC wit

n adversarial PF 98 %

66.88
70.95
67.49

Table 3: The average result of 100 tests for 3D light-dark navigation

Time

t=0

t=13

t=31

t=54

t=70

Observation

Particle distribution & planning trajectory

Explanation

The robot planned to move upwards
to reduce uncertainty

It became increasingly convinced
to be in the left half of the world

The uncertainty drastically dropped
when it saw a decal on the wall

The robot kept the converged belief

when it returned to the area with
noisy observation

The robot reached the target area

Legend

Goal Unobserved
% Trap
® |nitial state
® Current state

== Moving trajectory

I Area with full observation
® Particles

== Planning trajectory




Modified Reacher

A continuous control task with partial observations
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Conclusions & limitations

DualSMC is a solution to continuous POMDPs

v’ First, it learns plausible belief states for high-dimensional POMDPs with an adversarial particle filter.
v Second, it plans future actions by considering the distributions of the learned belief states.

v The filter and the planner are inter-dependent and jointly trained.

@® However, an imperfect model of the environment dynamics will make accumulated errors for prediction
over long sequences, which is an open problem for all model-based planning methods. But since
DualSMC shares the transition model between filtering and planning, it may have a more severe impact.



Code: https://github.com/Cranial-XIX/DualSMC
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