DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs **IJCAI 2020**

Yunbo Wang*, Shanghai Jiao Tong University **Bo Liu***, *The University of Texas at Austin* **Jiajun Wu**, Stanford University Yuke Zhu, The University of Texas at Austin Simon S. Du, University of Washington Li Fei-Fei, Stanford University **Joshua B. Tenenbaum**, *Massachusetts Institute of Technology*

*both authors contributed equally

Code: https://github.com/Cranial-XIX/DualSMC

Planning algorithms hard to deal with unknown dynamics and partial observations

- Monte Carlo tree search, MCTS
- Cross entropy methods, CEM & Iterative linear quadratic regulator, iLQR - Assume the distribution over future trajectories to be Gaussian, i.e. unimodal

Sequential Monte Carlo planning, SMCP

to finding the maximum posterior over actions conditioned on an optimal future

CEM: here the agent samples all the actions at once from a Gaussian with learned mean and covariance. It found one solution, but forgot the other one.

- Standard MCTS applies only to discrete spaces and also requires a black-box transition oracle

- Follows the framework of "control as probabilistic inference": selecting the optimal action is equivalent

SMCP: the agent is able to focus on the promising trajectories and does not collapse on a single mode. But, how to deal with partial observations?

From [Piche et al. 2019]

A toy POMDPs problem that previous methods cannot solve

- Planning under uncertainty with continuous actions
- A straightforward solution:
- State estimation: Particle filter net [Karkus et al. 2018] Planning: SMCP [Piche et al. 2019]
- What's wrong with the filtering part? The regressed true state can be meaningless (at the center of the two floors).
- What's wrong with the planning part? The planner does not learn to help the filter (Based on the regressed state, it might go either left or right).

DualSMC Network Our approach

Two sequential Monte Carlo processes - Interlinked via belief states

Adversarial particle filtering - better capture the multi-modality of the belief

Modules

- Proposer (**P**) to generate plausible states
- Transition model (**T**) to simulate dynamics
- Observation model (Z) to update Bayesian beliefs
- Policy network
- Critic network

- DualSMC planning control based on perceived uncertainty (so can learn to reduce it)

Adversarial particle filtering

$$\operatorname{bel}(s_{t+1}) = \eta \int \operatorname{bel}(s_t)$$

Г

$$\min_{\phi} \max_{\theta} F(Z_{\theta}, P_{\phi}) = \mathbb{E}_{o_{1:t}} \left[\underbrace{\mathbb{E}_{s} \log Z_{\theta}(o_{t}, s)}_{\text{true states}} + \underbrace{\mathbb{E}_{s' \sim s_{\text{old}}} \log(1 - Z_{\theta}(o_{t}, s'))}_{\text{transitioned states}} + \underbrace{\mathbb{E}_{\epsilon_{P}} \log(1 - Z_{\theta}(o_{t}, P_{\phi}(o_{t}, \epsilon_{P})))}_{\text{proposed new states}} \right]$$

 $_{t})\mathcal{Z}(o_{t+1}|s_{t+1})\mathcal{T}(s_{t+1}|s_{t},a_{t})ds_{t}$

Proposer and observation model are opposite yet dependent on each other

transitioned states

proposed new states

Planning explicitly on belief states

Plan conditioned on the top candidates of the belief particles

Floor positioning A toy POMDPs problem that previous methods cannot solve

Mov

How does DualSMC adapt to different uncertainties?

The robot planned to <i>move upwards</i> to reduce uncertainty	Goal Unobserved
It became increasingly convinced to be in the <i>left half of the world</i>	TrapInitial state
The uncertainty <i>drastically dropped</i> when it saw a decal on the wall	 Current state Moving trajectory
The robot kept the <i>converged belief</i> when it returned to the area with noisy observation	Area with full observationParticles
The robot reached the target area	 Planning trajectory

Method	Success	# Steps
PlaNet [Hafner <i>et al.</i> , 2019]	30%	34.24
DVRL [Igl <i>et al.</i> , 2018]	42%	98.48
LSTM + SMCP [Piche <i>et al.</i> , 2018]	59%	85.40
Adversarial PF (top-1) + SMCP	58%	56.11
Adversarial PF (top-3) + PI-SMCP	64%	64.37
DualSMC with regressive PF (ℓ_2)	92%	66.88
DualSMC with regressive PF (density)	98%	70.95
DualSMC with adversarial PF	98%	67.49

Table 3: The average result of 100 tests for 3D light-dark navigation

n y DeepMind Lab

Modified Reacher A continuous control task v

 $o = (\cos(\theta_1), \cos(\theta_2), \sin(\theta_1), \sin(\theta_2), \omega_1, \omega_2, r)$ $r = ||(r_x, r_y, r_z)||_2 + \epsilon_r$

Conclusions & limitations

DualSMC is a solution to continuous POMDPs

- ✓ First, it learns plausible belief states for high-dimensional POMDPs with an adversarial particle filter.
- \checkmark Second, it plans future actions by considering the distributions of the learned belief states.
- \checkmark The filter and the planner are inter-dependent and jointly trained.
- Output: New York, an imperfect model of the environment dynamics will make accumulated errors for prediction over long sequences, which is an open problem for all model-based planning methods. But since DualSMC shares the transition model between filtering and planning, it may have a more severe impact.

Code: <u>https://github.com/Cranial-XIX/DualSMC</u>

Thanks