
Yunbo Wang*, Shanghai Jiao Tong University
Bo Liu*, The University of Texas at Austin
Jiajun Wu, Stanford University
Yuke Zhu, The University of Texas at Austin
Simon S. Du, University of Washington
Li Fei-Fei, Stanford University
Joshua B. Tenenbaum, Massachusetts Institute of Technology

*both authors contributed equally Code: https://github.com/Cranial-XIX/DualSMC

DualSMC: Tunneling Differentiable Filtering
and Planning under Continuous POMDPs
IJCAI 2020

https://github.com/Cranial-XIX/DualSMC

Planning algorithms
hard to deal with unknown dynamics and partial observations

• Monte Carlo tree search, MCTS

- Standard MCTS applies only to discrete spaces and also requires a black-box transition oracle

• Cross entropy methods, CEM & Iterative linear quadratic regulator, iLQR

- Assume the distribution over future trajectories to be Gaussian, i.e. unimodal

• Sequential Monte Carlo planning, SMCP
- Follows the framework of “control as probabilistic inference”: selecting the optimal action is equivalent

to finding the maximum posterior over actions conditioned on an optimal future
Published as a conference paper at ICLR 2019

(a) Sequential Importance Re-
sampling (SIR): when resam-
pling the trajectories at each time
step, the agent is able to focus
on the promising trajectories and
does not collapse on a single
mode.

(b) Sequential Importance Sam-
pling (SIS): if we do not perform
the resampling step the agent
spends most of its computation
on uninteresting trajectories and
was not able to explore as well.

(c) CEM: here the agent samples
all the actions at once from a
Gaussian with learned mean and
covariance. We needed to update
the parameters 50 times for the
agent to find one solution, but it
forgot the other one.

Figure 4.1: Comparison of three methods on the toy environment. The agent (•) must go to the goal
(?) while avoiding the wall (|) in the center. The proposal distribution is taken to be an isotropic
gaussian. Here we plot the planning distribution imagined at t = 0 for three different agents. A
darker shade of blue indicates a higher likelihood of the trajectory. Only the agent using Sequential
Importance Resampling was able to find good trajectories while not collapsing on a single mode.

rt = 1� ||st+1�g||2
||st�g||2 . However, there is a partial wall at the centre of the square leading to two optimal

trajectories, one choosing the path below the wall and one choosing the path above.

The proposal is an isotropic normal distribution for each planning algorithm, and since the environ-
ment’s dynamics are known, there is no need for learning: the only difference between the three
methods is how they handle planning. We also set the value function to 0 for SIR and SIS as we
do not wish to perform any learning. We used 1500 particles for each method, and updated the
parameters of CEM until convergence. Our experiment 4.1 shows how having particles can deal with
multimodality and how the resampling step can help to focus on the most promising trajectories.

4.2 CONTINUOUS CONTROL BENCHMARK

The experiments were conducted on the Open AI Gym Mujoco benchmark suite (Brockman et al.,
2016; Todorov et al., 2012). To understand how planning can increase the learning speed of RL agents
we focus on the 250000 first time steps. The Mujoco environments provide a complex benchmark
with continuous states and actions that requires exploration in order to achieve state-of-the-art
performances.

The environment model used for our planning algorithm is the same as the probabilistic neural
network used by Chua et al. (2018), it minimizes a gaussian negative log-likelihood model:

LGauss(✓) =
1
2

NX

n=1

[µ✓(sn,an)�(sn+1�sn)]
>⌃�1

✓ (sn,an)[µ✓(sn,an)�(sn+1�sn)]+log det⌃✓(sn,an),

where ⌃✓ is diagonal and the transitions (sn,an, sn+1) are obtained from the environment. We added
more details about the architecture and the hyperparameters in the appendix A.5.

We included two popular planning algorithms on Mujoco as baselines: CEM (Chua et al., 2018) and
Random Shooting (RS) (Nagabandi et al., 2017). Furthermore, we included SAC (Haarnoja et al.,
2018), a model free RL algorithm, since i) it has currently one of the highest performances on Mujoco
tasks, which make it a very strong baseline, and ii) it is a component of our algorithm, as we use it as
a proposal distribution in the planning phase.

Our results suggest that SMCP does not learn as fast as CEM and RS initially as it heavily relies
on estimating a good value function. However, SMCP quickly achieves higher performances than
CEM and RS. SMCP also learns faster than SAC because it was able to leverage information from
the model early in training.

7

Published as a conference paper at ICLR 2019

(a) Sequential Importance Re-
sampling (SIR): when resam-
pling the trajectories at each time
step, the agent is able to focus
on the promising trajectories and
does not collapse on a single
mode.

(b) Sequential Importance Sam-
pling (SIS): if we do not perform
the resampling step the agent
spends most of its computation
on uninteresting trajectories and
was not able to explore as well.

(c) CEM: here the agent samples
all the actions at once from a
Gaussian with learned mean and
covariance. We needed to update
the parameters 50 times for the
agent to find one solution, but it
forgot the other one.

Figure 4.1: Comparison of three methods on the toy environment. The agent (•) must go to the goal
(?) while avoiding the wall (|) in the center. The proposal distribution is taken to be an isotropic
gaussian. Here we plot the planning distribution imagined at t = 0 for three different agents. A
darker shade of blue indicates a higher likelihood of the trajectory. Only the agent using Sequential
Importance Resampling was able to find good trajectories while not collapsing on a single mode.

rt = 1� ||st+1�g||2
||st�g||2 . However, there is a partial wall at the centre of the square leading to two optimal

trajectories, one choosing the path below the wall and one choosing the path above.

The proposal is an isotropic normal distribution for each planning algorithm, and since the environ-
ment’s dynamics are known, there is no need for learning: the only difference between the three
methods is how they handle planning. We also set the value function to 0 for SIR and SIS as we
do not wish to perform any learning. We used 1500 particles for each method, and updated the
parameters of CEM until convergence. Our experiment 4.1 shows how having particles can deal with
multimodality and how the resampling step can help to focus on the most promising trajectories.

4.2 CONTINUOUS CONTROL BENCHMARK

The experiments were conducted on the Open AI Gym Mujoco benchmark suite (Brockman et al.,
2016; Todorov et al., 2012). To understand how planning can increase the learning speed of RL agents
we focus on the 250000 first time steps. The Mujoco environments provide a complex benchmark
with continuous states and actions that requires exploration in order to achieve state-of-the-art
performances.

The environment model used for our planning algorithm is the same as the probabilistic neural
network used by Chua et al. (2018), it minimizes a gaussian negative log-likelihood model:

LGauss(✓) =
1
2

NX

n=1

[µ✓(sn,an)�(sn+1�sn)]
>⌃�1

✓ (sn,an)[µ✓(sn,an)�(sn+1�sn)]+log det⌃✓(sn,an),

where ⌃✓ is diagonal and the transitions (sn,an, sn+1) are obtained from the environment. We added
more details about the architecture and the hyperparameters in the appendix A.5.

We included two popular planning algorithms on Mujoco as baselines: CEM (Chua et al., 2018) and
Random Shooting (RS) (Nagabandi et al., 2017). Furthermore, we included SAC (Haarnoja et al.,
2018), a model free RL algorithm, since i) it has currently one of the highest performances on Mujoco
tasks, which make it a very strong baseline, and ii) it is a component of our algorithm, as we use it as
a proposal distribution in the planning phase.

Our results suggest that SMCP does not learn as fast as CEM and RS initially as it heavily relies
on estimating a good value function. However, SMCP quickly achieves higher performances than
CEM and RS. SMCP also learns faster than SAC because it was able to leverage information from
the model early in training.

7

From [Piche et al. 2019]

CEM: here the agent samples all
the actions at once from a
Gaussian with learned mean and
covariance. It found one solution,
but forgot the other one.

SMCP: the agent is able to focus
on the promising trajectories and
does not collapse on a single
mode. But, how to deal with
partial observations?

A toy POMDPs problem
that previous methods cannot solve

• Planning under uncertainty with
continuous actions

• A straightforward solution:
✦ State estimation: Particle filter net [Karkus et al. 2018]

✦ Planning: SMCP [Piche et al. 2019]

• What’s wrong with the filtering part?  
The regressed true state can be meaningless (at the
center of the two floors).

• What’s wrong with the planning part?
The planner does not learn to help the filter (Based on
the regressed state, it might go either left or right).

state = (0.95, 0.3)
obs = (0.95, 1.05, 0.3, 0.2)t=0

t=0

state = (0.95, 0.8)
obs = (0.95, 1.05, 0.3, 0.2)

2nd Floor

1st Floor

Trajectories W � W �

Goal (unobservable)
Planning trajectory

Robot’s initial states (unobservable)
Resampled particle states

True states (unobservable)
Proposed particle states Mean belief state

Trajectories W �� t=36

DualSMC Network
Our approach

• Two sequential Monte Carlo processes - Interlinked via belief states
✦ Adversarial particle filtering - better capture the multi-modality of the belief

✦ DualSMC planning - control based on perceived uncertainty (so can learn to reduce it)

• Modules
- Proposer (P) to generate plausible states

- Transition model (T) to simulate dynamics

- Observation model (Z) to update Bayesian beliefs

- Policy network

- Critic network

Adversarial particle filtering

Transition Model Observation Model

Particle Proposer

observation

resample

sample top-M
(M=3)

Filtering

• Proposer and observation model are opposite yet dependent on each other

Planning explicitly on belief states

Transition Model Observation Model

Particle Proposer

observation

resample

sample top-M
(M=3)

make
N-copies

(N=3)

reweight by optionally
resample

repeat till

output the
that corresponds
to the max

Filtering

Planning

advantage

Figure 1: A schematic drawing of the modules in DualSMC. Here we choose M = 3 and N = 3 for illustration

all particles according to a transition model and then update
corresponding weights according to an observation model:

s(k)t+1 ∼ T (·|s(k)t , at) and w(k)
t+1 ∝ Z(ot+1|s(k)t+1)w

(k)
t . (2)

In practice, when the true dynamics T and Z are not known
a priori, they can be approximated by the parameterized func-
tions Tψ(·) and Zθ(·). Similar to [Jonschkowski et al., 2018],
our differentiable particle filter contains three neural mod-
ules (Figure 1): the proposer Pφ(ot, εP), the transition model
Tψ(s

(k)
t−1, at−1, εT), and the observation model Zθ(ot, s

(k)
t),

where φ,ψ, θ are parameters. εP and εT are the Gaussian
noises for stochastic models. To avoid the particle degeneracy
problem [Doucet and Johansen, 2009], we perform Sequen-
tial Importance Resampling (SIR) together with the proposer
model. Specifically, after the Bayesian update at time t, we
sample K ′ old particles {s(k)old }K

′

k=1 with replacement based on
the updated weight and combine them with (K −K ′) newly
proposed particles {s(k)new}Kk=K′+1, and assign uniform weights
for all particles. Depending on the task, we keepK ′ constant
or make (K −K ′) follow an exponential decay.
The major difference between our filtering approach and

[Jonschkowski et al., 2018] comes in by noticing that Pφ
and Zθ are naturally opposite to yet dependent on each other.
Following this intuition, instead of regressing the output of the
proposer to the true state, we propose the adversarial proposing
strategy. In particular, we train Zθ to differentiate the true
state from all particle states and train Pφ to fool Zθ. Formally,
denote preal(o≤t), preal(s|o≤t) as the real distributions over
observations and the real posterior over s, Zθ and Pφ play the
following two-player minimax game with function F (Zθ, Pφ):

min
φ

max
θ

F (Zθ, Pφ) = Eo1:t∼preal(o≤t)

[

Es∼preal(s|o≤t)
logZθ(ot, s) +

E
s′∼s(k)

old
log(1− Zθ(ot, s

′)) +

EεP∼N (0,I) log(1− Zθ(ot, Pφ(ot, εP)))
]
.

(3)

During training, instead of using trajectories sampled from a
random or heuristic policy [Jonschkowski et al., 2018; Karkus

Algorithm 1 Overall DualSMC algorithm

1: {s(k)1 ∼ Priori(s1)}Kk=1, {w
(k)
0 = 1}Kk=1

2: for t = 1 : L do
3: // At each filtering and control step
4: {w(k)

t ∝ w(k)
t−1 · Zθ(s

(k)
t , ot)}Kk=1

5: belt =
∑

k w
(k)
t s(k)t

6: {s̃(m)
t , w̃(m)

t }Mm=1 = Top-M({s(k)t , w(k)
t }Kk=1),w.r.t.{w

(k)
t }k

7: at = DualSMC-P(belt, {s̃(m)
t , w̃(m)

t }Mm=1;πρ, Qω)
8: ot+1, rt ∼ penv(at)
9: if resample then
10: {s(k)t }K

′
k=1 ∼ Multinomial({s(k)t }Kk=1),w.r.t.{w

(k)
t }k

11: {s(k)t ∼ Pφ(ot)}Kk=K′+1, {w
(k)
t = 1}Kk=1

12: end if
13: {s(k)t+1 ∼ Tψ(s

(k)
t , at)}Kk=1

14: Add (st, st+1, at, rt, ot, belt, {s̃(m)
t , w̃(m)

t }Mm=1) to a buffer
15: Sample a batch from the buffer and update (ρ,ω, θ,ψ,φ)
16: end for

et al., 2018], we train the filter in an on-policy way so that it
can take advantage of the gradually more powerful planner.

4.2 DualSMC Planning on Explicit Belief States
A straightforward solution to POMDP planning is to train
the planning module separately from the filtering module. At
inference time, plans are made independently based on each
particle state. We thus name this planning algorithm the
Particle-Independent SMC Planning (PI-SMCP) and use it as
a baseline method. More details on PI-SMCP can be found
in Appendix A. Although PI-SMCP is unbiased, it does not
perform well in practice because it cannot generate policies
based on dynamically varying state uncertainties.

We thus propose the DualSMC algorithm to explicitly con-
sider the belief distribution by planning directly on an ap-
proximated belief representation, i.e., a combination of the
top candidates from the filter (for computation efficiency) as
well as the weighted mean estimate. We show the modules in
DualSMC and how they relate to each other in Figure 1.

The overall algorithmic framework of DualSMC is shown in
Alg 1. At time step t, when a new observation comes, we first
use the observation model Zθ to update the particle weights

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4192

• Plan conditioned on the top candidates of the belief particles

Floor positioning
A toy POMDPs problem that previous methods cannot solve

ɠ Proposed particles by adversarial PF
were closer to the plausible true state

ɡ The SMCP robot went rightwards, being
unaware of its position until reaching the wall

ɠ Proposed particles by regressive PF
were close to the mean of the particles

ɡ The SMCP robot made very chaotic
decisions upon the filtered belief state

Particle distribution & planning trajectoryMoving trajectory Explaination Legend

Goal

Planning trajectory

Initial states

Resampled particles

True states

Proposed particles

Unobserved

The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states

Regressive PF + SMCP W �

Adversarial PF + SMCP t=32

DualSMC t=0 t=16

Figure 3: Qualitative results in the floor positioning domain, including the robot’s actual moving trajectories and its planning trajectories

Method Success # Steps

DVRL [Igl et al., 2018] 38.3% 162.0

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1
Regressive PF (!2, top-1) + SMCP 25.0% 107.9
Regressive PF (density, top-3) + PI-SMCP 25.0% 107.9

Adversarial PF (top-1) + SMCP 95.0% 73.3
Adversarial PF (top-3) + PI-SMCP 82.7% 86.9

DualSMC with regressive PF (!2) 45.1% 114.9
DualSMC with regressive PF (density) 58.3% 107.0
DualSMC w/o proposer 78.6% 62.1
DualSMC with adversarial PF 99.4% 26.9

Table 2: The success rate and the average number of steps of 1,000
tests in the floor positioning domain (PF is short for particle filter)

• Action: It is defined as a = (∆sx,∆sy)with a maximum
magnitude of 0.05.

• Observation: It is defined as the robot’s horizontal dis-
tances to the nearest left/right walls, and the vertical
distances to ceiling/ground ot = (dx−, dx+, dy−, dy+)t.
In the case of Figure 2, it starts with an observation of
(0.95, 1.05, 0.3, 0.2), whatever floor it is on.

• Goal: The robot starts from a random position and is
headed to different regions according to different floors.
If it is on the first floor, the target area is around (2, 0.25)
orange semicircle area); If the robot is on the second
floor, the target area is around (0, 0.75). Only at training
time, a reward of 100 is given at the end of each episode
if the robot reaches the correct target area.

Starting from a gray area, the robot is very uncertain about
its y-axis position. In the case of Figure 2, the estimated state
can be (0.95, 0.3) or (0.95, 0.8). Only when the robot goes
across a dashed blue line, from the gray area to the bright one,
does it become certain about its y-axis position.

step
20 40 60 80 100

R
M

S
E

0

0.1

0.2

0.3
Reg PF + SMCP
Adv PF + SMCP
DualSMC w/o proposer
DualSMC with Adv PF

(a) Different POMDP planners
step

10 20 30 40 50 60

R
M

S
E

0

0.1

0.2

0.3
PF w/o proposer
Regressive PF
Adversarial PF

(b) Different particle filters
Figure 4: The state filtering error with respect to the number of steps
which the robot has taken in the floor positioning domain

(a) Partial observation (b) Full observation
Figure 5: The DualSMC planner generates different polices based on
the uncertainty of the perceived belief state

Learned policies. The first two rows in Figure 3 show the
planning results by applying the SMCP algorithm [Piche et
al., 2018] to the top-1 estimated particle state. Training the
proposer with the mean squared loss is equivalent to regressing
the proposed particles to the mean values of the multi-modal
state distributions under partial observations. Thus, in the first
example, the robot cannot make reasonable decisions due to
incorrect estimation of plausible states. The second row in
Figure 3 shows the moving and planning trajectories by using
an adversarial particle filter (PF), which leads the proposed
particle states closer to plausible states. The robot learns an
interesting policy (along a path marked by red dots): it always
goes rightwards at first, being unaware of its position until it
reaches the wall, and then bouncing back at the wall. How-
ever, this policy is suboptimal, as it does not fully consider

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4194

Floor positioning
A toy POMDPs problem that previous methods cannot solve

ɠ Proposed particles by adversarial PF
were closer to the plausible true state

ɡ The SMCP robot went rightwards, being
unaware of its position until reaching the wall

ɠ Proposed particles by regressive PF
were close to the mean of the particles

ɡ The SMCP robot made very chaotic
decisions upon the filtered belief state

Particle distribution & planning trajectoryMoving trajectory Explaination Legend

Goal

Planning trajectory

Initial states

Resampled particles

True states

Proposed particles

Unobserved

The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states

Regressive PF + SMCP W �

Adversarial PF + SMCP t=32

DualSMC t=0 t=16

Figure 3: Qualitative results in the floor positioning domain, including the robot’s actual moving trajectories and its planning trajectories

Method Success # Steps

DVRL [Igl et al., 2018] 38.3% 162.0

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1
Regressive PF (!2, top-1) + SMCP 25.0% 107.9
Regressive PF (density, top-3) + PI-SMCP 25.0% 107.9

Adversarial PF (top-1) + SMCP 95.0% 73.3
Adversarial PF (top-3) + PI-SMCP 82.7% 86.9

DualSMC with regressive PF (!2) 45.1% 114.9
DualSMC with regressive PF (density) 58.3% 107.0
DualSMC w/o proposer 78.6% 62.1
DualSMC with adversarial PF 99.4% 26.9

Table 2: The success rate and the average number of steps of 1,000
tests in the floor positioning domain (PF is short for particle filter)

• Action: It is defined as a = (∆sx,∆sy)with a maximum
magnitude of 0.05.

• Observation: It is defined as the robot’s horizontal dis-
tances to the nearest left/right walls, and the vertical
distances to ceiling/ground ot = (dx−, dx+, dy−, dy+)t.
In the case of Figure 2, it starts with an observation of
(0.95, 1.05, 0.3, 0.2), whatever floor it is on.

• Goal: The robot starts from a random position and is
headed to different regions according to different floors.
If it is on the first floor, the target area is around (2, 0.25)
orange semicircle area); If the robot is on the second
floor, the target area is around (0, 0.75). Only at training
time, a reward of 100 is given at the end of each episode
if the robot reaches the correct target area.

Starting from a gray area, the robot is very uncertain about
its y-axis position. In the case of Figure 2, the estimated state
can be (0.95, 0.3) or (0.95, 0.8). Only when the robot goes
across a dashed blue line, from the gray area to the bright one,
does it become certain about its y-axis position.

step
20 40 60 80 100

R
M

S
E

0

0.1

0.2

0.3
Reg PF + SMCP
Adv PF + SMCP
DualSMC w/o proposer
DualSMC with Adv PF

(a) Different POMDP planners
step

10 20 30 40 50 60

R
M

S
E

0

0.1

0.2

0.3
PF w/o proposer
Regressive PF
Adversarial PF

(b) Different particle filters
Figure 4: The state filtering error with respect to the number of steps
which the robot has taken in the floor positioning domain

(a) Partial observation (b) Full observation
Figure 5: The DualSMC planner generates different polices based on
the uncertainty of the perceived belief state

Learned policies. The first two rows in Figure 3 show the
planning results by applying the SMCP algorithm [Piche et
al., 2018] to the top-1 estimated particle state. Training the
proposer with the mean squared loss is equivalent to regressing
the proposed particles to the mean values of the multi-modal
state distributions under partial observations. Thus, in the first
example, the robot cannot make reasonable decisions due to
incorrect estimation of plausible states. The second row in
Figure 3 shows the moving and planning trajectories by using
an adversarial particle filter (PF), which leads the proposed
particle states closer to plausible states. The robot learns an
interesting policy (along a path marked by red dots): it always
goes rightwards at first, being unaware of its position until it
reaches the wall, and then bouncing back at the wall. How-
ever, this policy is suboptimal, as it does not fully consider

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4194

Does adversarial training improve
the previous particle filter nets?

ɠ Proposed particles by adversarial PF
were closer to the plausible true state

ɡ The SMCP robot went rightwards, being
unaware of its position until reaching the wall

ɠ Proposed particles by regressive PF
were close to the mean of the particles

ɡ The SMCP robot made very chaotic
decisions upon the filtered belief state

Particle distribution & planning trajectoryMoving trajectory Explaination Legend

Goal

Planning trajectory

Initial states

Resampled particles

True states

Proposed particles

Unobserved

The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states

Regressive PF + SMCP W �

Adversarial PF + SMCP t=32

DualSMC t=0 t=16

Figure 3: Qualitative results in the floor positioning domain, including the robot’s actual moving trajectories and its planning trajectories

Method Success # Steps

DVRL [Igl et al., 2018] 38.3% 162.0

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1
Regressive PF (!2, top-1) + SMCP 25.0% 107.9
Regressive PF (density, top-3) + PI-SMCP 25.0% 107.9

Adversarial PF (top-1) + SMCP 95.0% 73.3
Adversarial PF (top-3) + PI-SMCP 82.7% 86.9

DualSMC with regressive PF (!2) 45.1% 114.9
DualSMC with regressive PF (density) 58.3% 107.0
DualSMC w/o proposer 78.6% 62.1
DualSMC with adversarial PF 99.4% 26.9

Table 2: The success rate and the average number of steps of 1,000
tests in the floor positioning domain (PF is short for particle filter)

• Action: It is defined as a = (∆sx,∆sy)with a maximum
magnitude of 0.05.

• Observation: It is defined as the robot’s horizontal dis-
tances to the nearest left/right walls, and the vertical
distances to ceiling/ground ot = (dx−, dx+, dy−, dy+)t.
In the case of Figure 2, it starts with an observation of
(0.95, 1.05, 0.3, 0.2), whatever floor it is on.

• Goal: The robot starts from a random position and is
headed to different regions according to different floors.
If it is on the first floor, the target area is around (2, 0.25)
orange semicircle area); If the robot is on the second
floor, the target area is around (0, 0.75). Only at training
time, a reward of 100 is given at the end of each episode
if the robot reaches the correct target area.

Starting from a gray area, the robot is very uncertain about
its y-axis position. In the case of Figure 2, the estimated state
can be (0.95, 0.3) or (0.95, 0.8). Only when the robot goes
across a dashed blue line, from the gray area to the bright one,
does it become certain about its y-axis position.

step
20 40 60 80 100

R
M

S
E

0

0.1

0.2

0.3
Reg PF + SMCP
Adv PF + SMCP
DualSMC w/o proposer
DualSMC with Adv PF

(a) Different POMDP planners
step

10 20 30 40 50 60

R
M

S
E

0

0.1

0.2

0.3
PF w/o proposer
Regressive PF
Adversarial PF

(b) Different particle filters
Figure 4: The state filtering error with respect to the number of steps
which the robot has taken in the floor positioning domain

(a) Partial observation (b) Full observation
Figure 5: The DualSMC planner generates different polices based on
the uncertainty of the perceived belief state

Learned policies. The first two rows in Figure 3 show the
planning results by applying the SMCP algorithm [Piche et
al., 2018] to the top-1 estimated particle state. Training the
proposer with the mean squared loss is equivalent to regressing
the proposed particles to the mean values of the multi-modal
state distributions under partial observations. Thus, in the first
example, the robot cannot make reasonable decisions due to
incorrect estimation of plausible states. The second row in
Figure 3 shows the moving and planning trajectories by using
an adversarial particle filter (PF), which leads the proposed
particle states closer to plausible states. The robot learns an
interesting policy (along a path marked by red dots): it always
goes rightwards at first, being unaware of its position until it
reaches the wall, and then bouncing back at the wall. How-
ever, this policy is suboptimal, as it does not fully consider

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4194

Floor positioning
A toy POMDPs problem that previous methods cannot solve

How does DualSMC adapt to different uncertainties?

ɠ Proposed particles by adversarial PF
were closer to the plausible true state

ɡ The SMCP robot went rightwards, being
unaware of its position until reaching the wall

ɠ Proposed particles by regressive PF
were close to the mean of the particles

ɡ The SMCP robot made very chaotic
decisions upon the filtered belief state

Particle distribution & planning trajectoryMoving trajectory Explaination Legend

Goal

Planning trajectory

Initial states

Resampled particles

True states

Proposed particles

Unobserved

The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states

Regressive PF + SMCP W �

Adversarial PF + SMCP t=32

DualSMC t=0 t=16

Figure 3: Qualitative results in the floor positioning domain, including the robot’s actual moving trajectories and its planning trajectories

Method Success # Steps

DVRL [Igl et al., 2018] 38.3% 162.0

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1
Regressive PF (!2, top-1) + SMCP 25.0% 107.9
Regressive PF (density, top-3) + PI-SMCP 25.0% 107.9

Adversarial PF (top-1) + SMCP 95.0% 73.3
Adversarial PF (top-3) + PI-SMCP 82.7% 86.9

DualSMC with regressive PF (!2) 45.1% 114.9
DualSMC with regressive PF (density) 58.3% 107.0
DualSMC w/o proposer 78.6% 62.1
DualSMC with adversarial PF 99.4% 26.9

Table 2: The success rate and the average number of steps of 1,000
tests in the floor positioning domain (PF is short for particle filter)

• Action: It is defined as a = (∆sx,∆sy)with a maximum
magnitude of 0.05.

• Observation: It is defined as the robot’s horizontal dis-
tances to the nearest left/right walls, and the vertical
distances to ceiling/ground ot = (dx−, dx+, dy−, dy+)t.
In the case of Figure 2, it starts with an observation of
(0.95, 1.05, 0.3, 0.2), whatever floor it is on.

• Goal: The robot starts from a random position and is
headed to different regions according to different floors.
If it is on the first floor, the target area is around (2, 0.25)
orange semicircle area); If the robot is on the second
floor, the target area is around (0, 0.75). Only at training
time, a reward of 100 is given at the end of each episode
if the robot reaches the correct target area.

Starting from a gray area, the robot is very uncertain about
its y-axis position. In the case of Figure 2, the estimated state
can be (0.95, 0.3) or (0.95, 0.8). Only when the robot goes
across a dashed blue line, from the gray area to the bright one,
does it become certain about its y-axis position.

step
20 40 60 80 100

R
M

S
E

0

0.1

0.2

0.3
Reg PF + SMCP
Adv PF + SMCP
DualSMC w/o proposer
DualSMC with Adv PF

(a) Different POMDP planners
step

10 20 30 40 50 60

R
M

S
E

0

0.1

0.2

0.3
PF w/o proposer
Regressive PF
Adversarial PF

(b) Different particle filters
Figure 4: The state filtering error with respect to the number of steps
which the robot has taken in the floor positioning domain

(a) Partial observation (b) Full observation
Figure 5: The DualSMC planner generates different polices based on
the uncertainty of the perceived belief state

Learned policies. The first two rows in Figure 3 show the
planning results by applying the SMCP algorithm [Piche et
al., 2018] to the top-1 estimated particle state. Training the
proposer with the mean squared loss is equivalent to regressing
the proposed particles to the mean values of the multi-modal
state distributions under partial observations. Thus, in the first
example, the robot cannot make reasonable decisions due to
incorrect estimation of plausible states. The second row in
Figure 3 shows the moving and planning trajectories by using
an adversarial particle filter (PF), which leads the proposed
particle states closer to plausible states. The robot learns an
interesting policy (along a path marked by red dots): it always
goes rightwards at first, being unaware of its position until it
reaches the wall, and then bouncing back at the wall. How-
ever, this policy is suboptimal, as it does not fully consider

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4194

state = (0.95, 0.3)
obs = (0.95, 1.05, 0.3, 0.2)t=0

t=0

state = (0.95, 0.8)
obs = (0.95, 1.05, 0.3, 0.2)

2nd Floor

1st Floor

3D light-dark navigation
A visually rich domain simulated by DeepMind Lab

ObservationTime Particle distribution & planning trajectory

t=0

t=13

t=31

t=54

t=70

The robot planned to move upwards
to reduce uncertainty

It became increasingly convinced
to be in the left half of the world

The uncertainty drastically dropped
when it saw a decal on the wall

The robot kept the converged belief
when it returned to the area with
noisy observation

The robot reached the target area

Explanation Legend

Goal

Area with full observation

Initial state

Current state

Planning trajectory

Particles

Unobserved

Moving trajectory

Trap

Figure 6: A demonstration trajectory from DualSMC with an adversarial filter on the 3D light-dark navigation task

the uncertainty of the belief state. In contrast, DualSMC has
learned to reduce uncertainty by making short detours at first,
as shown by the last row in Figure 3. We have three findings.
First, the robot learns to localize itself quickly and then ap-
proach the target area in fewer steps. Second, the adversarial
PF works well: once the robot steps across the dashed blue line,
the belief states quickly converge to the actual values, and the
observation model maintains its confidence in the converged
belief even when the robot moves back to the middle areas.
Third, DualSMC generates probabilistic planning trajectories
of moving up/down with different advantage values.

Quantitative comparisons. From Table 2, the final Du-
alSMC model takes 26.9 steps to reach the target area,
whilst the baseline model “Adversarial PF + SMCP” uses
as many as 73.3 steps on average. Besides, we can see that
the adversarial PF significantly outperforms other differen-
tiable state estimation approaches, such as (1) the existing
DPFs that perform density estimation [Jonschkowski et al.,
2018], and (2) the deterministic LSTM model that was pre-
viously used as a strong baseline in [Karkus et al., 2018;
Jonschkowski et al., 2018]. Also note that DualSMC models
with regressive proposers are even worse than one without any
proposer, which suggests that an inappropriate proposer may
cause a negative effect on solving continuous POMDPs.

Does the adversarial training improve the DPF? Given
partial observations, an ideal filter should derive a complete
distribution of possible states instead of point estimation. Fig-
ure 4(a) compares the average RMSE between the true states
and the filtered states by different models. The adversarial
PF performs best, while the PF with the regressive proposer
performs even worse than that without a proposer. A natural
question arises: as the filtering error is also related to different
moving trajectories of different models, can we eliminate this
interference? For Figure 4(b), we train different filters without
a planner. All filters follow the same expert trajectories, and
the adversarial PF still achieves the best performance.

How does DualSMC adapt to different uncertainties? In
a fully observable scenario, we suppress the filtering part
of DualSMC and assume DualSMC plans upon a converged
belief on the true state (sx, sy). That is to say, we take the
true state to as the top-M particles (line 7 in Alg 1) before the

Method Success # Steps

PlaNet [Hafner et al., 2019] 30% 34.24
DVRL [Igl et al., 2018] 42% 98.48

LSTM + SMCP [Piche et al., 2018] 59% 85.40
Adversarial PF (top-1) + SMCP 58% 56.11
Adversarial PF (top-3) + PI-SMCP 64% 64.37

DualSMC with regressive PF (!2) 92% 66.88
DualSMC with regressive PF (density) 98% 70.95
DualSMC with adversarial PF 98% 67.49

Table 3: The average result of 100 tests for 3D light-dark navigation

planning part. The robot changes its plan from taking a detour
shown in Figure 5(a) to walking toward the target area directly
shown in Figure 5(b). It performs equally well to the standard
SMCP, with a 100.0% success rate and an averaged 21.3 steps
(v.s. 20.7 steps by SMCP). We may conclude that DualSMC
provides policies based on the distribution of filtered particles.
We may also conclude that DualSMC trained under POMDPs
generalizes well to similar tasks with less uncertainty.

5.2 3D Light-Dark Navigation
We extend the 2D light-dark navigation domain [Platt Jr et al.,
2010] to a visually rich environment simulated by DeepMind
Lab [Beattie et al., 2016]. At the beginning of each episode,
the robot is placed randomly and uniformly on one of the four
platforms at the bottom (see Figure 6). The robot’s goal is
to navigate toward the central cave (marked in orange) while
avoiding any of the four traps (marked by crosses). The maze
is divided into upper and lower parts. Within the lower part,
the robot travels in darkness, receives noisy visual input of a
limited range (up to a fixed depth), and therefore suffers from
high state uncertainty. When the robot gets to the upper part
(the blue area), it has a clear view of the entire maze. We place
decals as visual hints on the top walls of the maze to help the
robot figure out its position. However, it has to be very close
to the upper walls to see clearly what these decals are. The
robot receives a positive reward of 100 when it reaches the
goal and a negative reward of −100 when in a trap. At each
time step, the robot’s observation includes a 64 × 64 RGB
image, its current velocity, and its orientation. We force it to
move forward and only control its continuous orientation.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4195

ObservationTime Particle distribution & planning trajectory

t=0

t=13

t=31

t=54

t=70

The robot planned to move upwards
to reduce uncertainty

It became increasingly convinced
to be in the left half of the world

The uncertainty drastically dropped
when it saw a decal on the wall

The robot kept the converged belief
when it returned to the area with
noisy observation

The robot reached the target area

Explanation Legend

Goal

Area with full observation

Initial state

Current state

Planning trajectory

Particles

Unobserved

Moving trajectory

Trap

Modified Reacher
A continuous control task with partial observations

t=16 t=48

Goal

Proposed
particles

Resampled
particles

t=2 t=8

Figure 7: The modified Reacher environment and examples of the
posterior belief over states given by an adversarial particle filter

()

Adv

Adv

()

Figure 8: Training curves of DualSMC and baseline methods for the
modified Reacher environment (averaged over 5 seeds)

By considering the uncertainty, DualSMC methods out-
perform other baselines in success rate (see Table 3). An
excessively large number of steps indicates that the robot is
easy to get lost while too few steps means that it is easy to
fall into a trap. From Figure 6, DualSMC is the only one that
learned to go up and figure out its position first before going
directly towards the goal.

5.3 Modified Reacher
We further validate our model on a continuous control task
with partial observation, i.e., a modified Reacher environ-
ment from OpenAI Gym [Brockman et al., 2016]. The
original observation of Reacher is a 11-D vector including
(cos θ1, cos θ2, sin θ1 sin θ2, gx, gy,ω1,ω2, rx, ry, rz), where
the first 4 dimensions are cos/sin values of the two joint angles
θ1, θ2, gx, gy the goal position, ω1,ω2 the angular velocities
and rx, ry, rz the relative distance from the end-effector to
the goal. We remove gx, gy, rx, ry, rz from the original obser-
vation and include a single scalar r = ||(rx, ry, rz)||2 + εr,
where εr ∼ N (0, 0.01) is a small noise (r is usually on the
scale of 0.1). The observation is therefore a 7-D vector. The
robot has to simultaneously locate the goal and reach it.
We provide a visualization of one sample run under Du-

alSMC with the adversarial filter in Figure 7. As expected,
initially the proposed particles roughly are in a half-cycle and
as time goes on, the particles gradually concentrate around
the true goal. Since the final performance of various methods
is similar after long enough time of training, we provide the
training curve of these methods in Figure 8, and truncate the
results up to 5,000 episodes since no obvious change in perfor-
mance is observed from thereon. As we can see, the DualSMC
methods not only achieve similar asymptotic performance as
the SMCP method with full observation but also learn faster
to solve the task than baseline methods.

6 Conclusion
In this paper, we provided an end-to-end neural network named
DualSMC to solve continuous POMDPs, which has three
advantages. First, it learns plausible belief states for high-
dimensional POMDPs with an adversarial particle filter. For
simplicity, we use the naı̈ve adversarial training method from
the original GANs [Goodfellow et al., 2014]. One may poten-
tially improve DualSMC with modern techniques to stabilize
training and lessen mode collapse. Second, DualSMC plans
future actions by considering the distributions of the learned
belief states. The filter module and the planning module are
jointly trained and facilitate each other. Third, DualSMC
combines the richness of neural networks as well as the in-
terpretability of classical sequential Monte Carlo methods.
We empirically validated the effectiveness of DualSMC on
different tasks including visual navigation and control.

Acknowledgments
This work is in part supported by ONR MURI N00014-16-1-
2007.

A Particle-Independent SMC Planning
As shown in Alg 3, it takes the top-M particle states (for
computation efficiency) and plans N future trajectories in-
dependently based on each particle state. At the end of the
planning horizonH , it samples a trajectory fromM ×N plan-
ning trajectories. Although PI-SMCP is unbiased, it does not
perform well in practice because it cannot generate policies
based on dynamically varying state uncertainties.

B A Simpler Formulation of SMC Planning
At time t, we set Qω(ŝ

(m)(n)
i−1 , a(n)i−1) and r

(m)(n)
i−1 in Eq. (4) to

0. We emphasize that our formulation is much simpler than the
original SMCP [Piche et al., 2018]. Because it only requires a
learned Q function and more importantly, it prevents us from
estimating the expectation of the value function V . To prove
this, we depict the Hidden Markov Model of our planning
algorithm for ease of notation. Figure 9 is borrowed from
[Piche et al., 2018]. Ot is a convenience binary variable here
for the sake of modeling, denoting the “optimality” (optimal
policy) of a pair (st, at) at time t [Levine, 2018]. Then we
present the derivation of line 8 Alg 2 as follows. Comparing
with [Piche et al., 2018], our update of the planning particle
weights depends only on the learned Q and πρ.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4196

t=16 t=48

Goal

Proposed
particles

Resampled
particles

t=2 t=8

Figure 7: The modified Reacher environment and examples of the
posterior belief over states given by an adversarial particle filter

()

Adv

Adv

()

Figure 8: Training curves of DualSMC and baseline methods for the
modified Reacher environment (averaged over 5 seeds)

By considering the uncertainty, DualSMC methods out-
perform other baselines in success rate (see Table 3). An
excessively large number of steps indicates that the robot is
easy to get lost while too few steps means that it is easy to
fall into a trap. From Figure 6, DualSMC is the only one that
learned to go up and figure out its position first before going
directly towards the goal.

5.3 Modified Reacher
We further validate our model on a continuous control task
with partial observation, i.e., a modified Reacher environ-
ment from OpenAI Gym [Brockman et al., 2016]. The
original observation of Reacher is a 11-D vector including
(cos θ1, cos θ2, sin θ1 sin θ2, gx, gy,ω1,ω2, rx, ry, rz), where
the first 4 dimensions are cos/sin values of the two joint angles
θ1, θ2, gx, gy the goal position, ω1,ω2 the angular velocities
and rx, ry, rz the relative distance from the end-effector to
the goal. We remove gx, gy, rx, ry, rz from the original obser-
vation and include a single scalar r = ||(rx, ry, rz)||2 + εr,
where εr ∼ N (0, 0.01) is a small noise (r is usually on the
scale of 0.1). The observation is therefore a 7-D vector. The
robot has to simultaneously locate the goal and reach it.
We provide a visualization of one sample run under Du-

alSMC with the adversarial filter in Figure 7. As expected,
initially the proposed particles roughly are in a half-cycle and
as time goes on, the particles gradually concentrate around
the true goal. Since the final performance of various methods
is similar after long enough time of training, we provide the
training curve of these methods in Figure 8, and truncate the
results up to 5,000 episodes since no obvious change in perfor-
mance is observed from thereon. As we can see, the DualSMC
methods not only achieve similar asymptotic performance as
the SMCP method with full observation but also learn faster
to solve the task than baseline methods.

6 Conclusion
In this paper, we provided an end-to-end neural network named
DualSMC to solve continuous POMDPs, which has three
advantages. First, it learns plausible belief states for high-
dimensional POMDPs with an adversarial particle filter. For
simplicity, we use the naı̈ve adversarial training method from
the original GANs [Goodfellow et al., 2014]. One may poten-
tially improve DualSMC with modern techniques to stabilize
training and lessen mode collapse. Second, DualSMC plans
future actions by considering the distributions of the learned
belief states. The filter module and the planning module are
jointly trained and facilitate each other. Third, DualSMC
combines the richness of neural networks as well as the in-
terpretability of classical sequential Monte Carlo methods.
We empirically validated the effectiveness of DualSMC on
different tasks including visual navigation and control.

Acknowledgments
This work is in part supported by ONR MURI N00014-16-1-
2007.

A Particle-Independent SMC Planning
As shown in Alg 3, it takes the top-M particle states (for
computation efficiency) and plans N future trajectories in-
dependently based on each particle state. At the end of the
planning horizonH , it samples a trajectory fromM ×N plan-
ning trajectories. Although PI-SMCP is unbiased, it does not
perform well in practice because it cannot generate policies
based on dynamically varying state uncertainties.

B A Simpler Formulation of SMC Planning
At time t, we set Qω(ŝ

(m)(n)
i−1 , a(n)i−1) and r

(m)(n)
i−1 in Eq. (4) to

0. We emphasize that our formulation is much simpler than the
original SMCP [Piche et al., 2018]. Because it only requires a
learned Q function and more importantly, it prevents us from
estimating the expectation of the value function V . To prove
this, we depict the Hidden Markov Model of our planning
algorithm for ease of notation. Figure 9 is borrowed from
[Piche et al., 2018]. Ot is a convenience binary variable here
for the sake of modeling, denoting the “optimality” (optimal
policy) of a pair (st, at) at time t [Levine, 2018]. Then we
present the derivation of line 8 Alg 2 as follows. Comparing
with [Piche et al., 2018], our update of the planning particle
weights depends only on the learned Q and πρ.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4196

Conclusions & limitations

DualSMC is a solution to continuous POMDPs
✓ First, it learns plausible belief states for high-dimensional POMDPs with an adversarial particle filter.

✓ Second, it plans future actions by considering the distributions of the learned belief states.

✓ The filter and the planner are inter-dependent and jointly trained.

๏ However, an imperfect model of the environment dynamics will make accumulated errors for prediction
over long sequences, which is an open problem for all model-based planning methods. But since
DualSMC shares the transition model between filtering and planning, it may have a more severe impact.

Thanks

 Code: https://github.com/Cranial-XIX/DualSMC

https://github.com/Cranial-XIX/DualSMC

