Resolving Over-constrained Temporal Problems with Uncertain Durations

Peng Yu
March 7, 2014
• Over-constrained temporal problems can be better resolved by relaxing the temporal constraints continuously, instead of removing them discretely.

• The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.

• Restoring controllability requires both tightening uncertain durations and relaxing constraints.

• We can efficiently enumerate relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm, first developed for diagnosis.
Ongoing Projects

- Personal Transportation System.

- Trip advisor for commuters.

- Mission advisory system for deep sea exploration.
Robotic Personal Transportation System

• A personal air taxi with an intelligent trip advisory
Key features

• Find alternative solutions that are **simple** and **preferred**.
• Provide **insights** into cause of failure and its resolution.

 – Minimize the perturbations;

 – Prioritize alternatives;

 – Explain the cause of failure;

 – Adapt incrementally to new constraints.

 “Delay your arrival by 5 minutes”.

 “OK, then how about having lunch at restaurant Y”.

 “Because of the extended travel time”.

 “if you want to shop for at least 25 minutes, you can have lunch at restaurant Y for 55 minutes”.
When There Is Uncertainty

• Uncertainty Sensitive Transit Advisor.

It is 6pm now and Brian is leaving NICTA for home.
 - He wants to be home in 40 minutes, and is only willing to take buses.
 - Right now, he is looking up Google Map for directions...
Google Map returns two options (leaving NICTA at 1800), ranked based on trip duration

Option 1:
- Take the **18:08 Bus #3** (Ride time 23 mins).
- Walking to departure stop: 8 mins.
- Walking from arrival stop to home: 3 mins.

Option 2:
- Take the **18:11 Bus #934** (Ride time 26 mins).
- Walking to departure stop: 10 minutes.
- Walking from arrival stop to home: 3 minutes.
Uncertainty Affects Our Decision

- Buses may be late or early:
 - Bus #3: 18:08 ± 2 minutes.
 - Bus #934: 18:11 ± 1 minute.

- Brian may miss the bus if he takes the Google preferred option.
Cope With the Uncertainty

- “You can catch Bus #934 and arrive home **3 minutes late**.”
- “Or, you can take Bus #3 and arrive home on time, but **taking the risk** of missing the bus, if it arrives early.”
• During an expedition cruise, the chief scientist needs assistance for planning and scheduling activities, especially when things go wrong.
 – Task sequencing and scheduling.
 – Goal relaxation and failure recovery.
 – Human resources and assets management.
A WHOI Mission

- Duration: Sep 26th – Oct 17th.
- Vessel: R/V Atlantis.
- Location: Along the coast between SF and LA.
- Objectives:
 - Find and sample methane seeps near the coast.
 - Locate and sample a 60 year-old DDT dumping site.
 - Recover and replace incubators on the seafloor.
A 3-day Plan From the Cruise

From: "David Valentine" <scil@atlantis.whoi.edu>
Subject: Plan of the day 9/28+
Date: Sat, September 28, 2013 6:37 am
To: pod@atlantis.whoi.edu

Draft Cruise Plan 9/28-9/30

<table>
<thead>
<tr>
<th>9/27/13</th>
<th>Sentry Dive at Partington Canyon</th>
<th>6hrs</th>
<th>Target start time 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/13</td>
<td>Depart Partington Canyon</td>
<td></td>
<td>Estimated Departure Time 0230</td>
</tr>
<tr>
<td></td>
<td>Transit to Paull’s Pingo</td>
<td>27 hrs</td>
<td>ETA 0530 hrs (9/29/13)</td>
</tr>
<tr>
<td></td>
<td>Science Meeting 10AM!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multibeam pass of SBB-2H Pockmark</td>
<td></td>
<td>Line Z to Z’</td>
</tr>
<tr>
<td></td>
<td>Multibeam pass in Southern SB Channel and D to D’</td>
<td></td>
<td>Lines A to A’, B to B’, C to C’</td>
</tr>
<tr>
<td></td>
<td>Multibeam pass of SW Mounds area</td>
<td></td>
<td>Lines E to E’ and F to F’</td>
</tr>
<tr>
<td>9/29/13</td>
<td>Arrive at Paull’s Pingo</td>
<td></td>
<td>ETA 0530 hrs</td>
</tr>
<tr>
<td></td>
<td>Jason Operations at Paull’s Pingo</td>
<td>15 hrs</td>
<td>Deploy by 0730; 2 Elevator</td>
</tr>
<tr>
<td></td>
<td>Deployments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit to SW mounds</td>
<td>1.5 hrs</td>
<td>Arrive SW Mounds ~2400</td>
</tr>
<tr>
<td>9/30/13 and beyond</td>
<td>Sentry deployment at SW Mounds</td>
<td>16 hrs</td>
<td>Deploy at 0000</td>
</tr>
<tr>
<td></td>
<td>Jason Deployment at SW Mounds</td>
<td>24 hrs</td>
<td>Multiple Elevators</td>
</tr>
</tbody>
</table>
Everything can Go Wrong

- [Day 1] Jason failed after 30 min into its first dive, entered an uncontrollable spin and broke its optic fiber tether.

- [Day 1] The new camera installed on Sentry did not work well in low light situations. It had been replaced during its second dive.
• [Day 2] Jason entered an uncontrollable spin and broke its optic fiber tether again during its second dive. It turned out that there is a bug in its newly updated code.

• [Day 3] Sentry’s mass spectrometer failed during its second dive. They sent Rich to Pittsburg to get it fixed.

... ...

• [Day 7] Sentry aborted its mission 1 hour after launch. Atlantis aborted its mapping routes and went back to recover Sentry. The failure was caused by a burned wire.
Our Deliverable

- A mission advisory system that assists the chief scientists of expeditions on the following tasks:
 - Scheduling Activities with Uncertainty.
 - Failure and Downtime Recovery Scheduling.
 - Assets Managements.
Contents

• Relaxations of Conditional Temporal Problems;

• Continuous Relaxation and Conflict Resolution;

• Restoring Controllability with Uncertainty Durations;

• Best-first Enumeration through Conflict-directed Relaxation;

• Experiments.
Problem Formulation

• Model: (Over-constrained) Controllable Conditional Temporal Problems with Uncertainty.
 – All choices are controllable.
 – Allowing temporal constraints to be relaxed.
 – Allowing uncertain durations to be tightened.

• A solution is a pair with:
 – A complete set of decisions.
 – A set of continuous relaxations for temporal constraints.
 – A set of continuous tightening for uncertain durations.
 such that the set of activated durations and constraints is consistent/controllable.
Define User Preferences

- Preference functions are defined over decisions and constraint relaxations.
 - Each decision is mapped to a positive reward by function f_p.
 - Each constraint relaxation/duration tightening is mapped to a positive cost by function f_e.

Table

<table>
<thead>
<tr>
<th>Store</th>
<th>A</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>100</td>
</tr>
<tr>
<td>Lunch</td>
<td>X</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>30</td>
</tr>
</tbody>
</table>

Assignment: \(\{\text{Store} = B, \text{Lunch} = Y\}\)

Reward: \(100 + 80 = 180\)

Relaxation: \(\text{Reservation} [0,180] \rightarrow [0,200]\)

Cost: \(f_e(200 - 180) = 40\)
Contents

• Relaxations of Conditional Temporal Problems;

• **Continuous Relaxation** and Conflict Resolution;

• Restoring Controllability with Uncertainty Durations;

• Best-first Enumeration through Conflict-directed Relaxation;

• Experiments.
(Minimal) Discrete Relaxation

- Resolve over-constrained temporal problem C by **removing** constraints.
 - Resolved: $M \subseteq C$ such that $C \backslash M$ is consistent.
 - Minimal: $\forall c \in M (C \backslash M) \cup \{c\}$ is inconsistent.

Remove arrival:

- Remove lunch:

 OR
Continuous Relaxation

- Relax a constraint partially by *continuously* modifying its temporal bounds:
 - A continuous relaxation, CR_i, weakens a temporal constraint:
 $[LB, UB] \rightarrow [LB', UB']$ where $LB' \leq LB$ and $UB' \geq UB$.
 - Continuous relaxations only apply to *relaxable* constraints.

"Shorten lunch to 25 minutes and delay arrival by 5 minutes"
Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.
1. Learn Discrete Conflicts

- A discrete conflict is an inconsistent set of temporal constraints.

Choosing Store=B and Lunch=Y produces:

Discrete Conflict:

- Store = B;
- Home → B ≥ 35;
- Drive B → Y ≥ 25;
- Y → Home ≥ 40;
- Lunch = Y;
- Shop at B ≥ 35;
- Lunch at Y ≥ 75;
- Arrive Home ≤ 180.
2. Weaken to Continuous Conflicts

- A continuous conflict is an equation formed from the discrete conflict.
- It specifies the deviation needed to resolve the conflict.

Discrete Conflict:

- \text{HometoB} \geq 35;
- \text{ShopatB} \geq 35;
- \text{BtoY} \geq 25;
- \text{LunchatY} \geq 75;
- \text{YtoHome} \geq 40;
- \text{ArriveHome} \leq 180.

Continuous Conflict:

- \text{ArriveHome} - \text{HometoB} - \text{ShopatB} - \text{BtoY} - \text{LunchatY} - \text{YtoHome} = -30
3. Map to Constituent Continuous Relaxations

- Relaxations specified by linear inequalities:

\[\Delta_{ShopatB} + \Delta_{LunchatY} + \Delta_{ArriveHome} \geq 30 \]
Discrete vs. Continuous Relaxations

- Resolve a conflict by relaxing constraints **completely** or **partially**.

Conflict:

- Store = B, Lunch = Y;
- Home → B ≥ 35; Shop at B ≥ 35;
- Drive B → Y ≥ 25; Lunch at Y ≥ 75;
- Y → Home ≥ 40; Arrive Home ≤ 180.

Discrete Resolutions
- Remove Shop at B ≥ 35;
- Remove Lunch at Y ≥ 75;
- Remove Arrive Home ≤ 180

Continuous Resolutions
- Lunch at Y ≥ 45;
- Arrive Home ≤ 210;
- Shop at B ≥ 25 and Lunch at Y ≥ 55;
-
- and many more
• Relaxations of Conditional Temporal Problems;

• Continuous Relaxation and Conflict Resolution;

• Restoring Controllability with Uncertainty Durations;

• Best-first Enumeration through Conflict-Directed Relaxation;

• Experiments.
Learn Conflicts From Uncontrollable Problems

• Learning conflicts from controllability checking algorithms is difficult.

 – For consistency checking, there is a one-to-one mapping between the distance edges and the bounds of constraints.

 – No such mapping exists for controllability checking (strong and dynamic) due to the reduction procedures, making it difficult to extract conflicts from the reduced graph.

• Key: during the reduction, record the ‘contribution’ of each constraint and duration in the temporal problem.
A Strong Controllability Example

1. S1: A: [5, 10] → E1
 D: ≥4
 S2: B: [1, 2] → E2

2. S1: 10: AU → E1
 -5: AL
 S2: -4: DL → E2
 0: CL

3. S1: 10: AU → E1
 -5: AL
 S2: -4: DL → E2
 -2: CL, BU

4. S1: 10: AU → E1
 -5: AL
 S2: 3: CL, BU, AL → E2
 2: BU
 -1: BL
Resolving Uncontrollable Conflicts

- Constraint for resolving continuous conflict (negative value -1):

\[\Delta D_L + \Delta C_L + \Delta B_U + \Delta A_L \geq 1 \]

where:
- \(\Delta C_L, \Delta D_L \) are relaxations for C and D.
- \(\Delta A_L, \Delta B_U \) are tightening for A and B.

and

\[\Delta A_L \leq 5; \Delta B_U \leq 1. \]
Learn Dynamically Uncontrollable Conflict

- **Record supporting** constraints and durations during the iterative reduction procedure, and extract conflicts using the them.

```plaintext
1 \[DG \leftarrow \text{GETNORMALDISTANCEGRAPH}(T);\]
2 \text{for } i \text{ to } K \text{ do}
3 \quad NCycle \leftarrow \text{ALLMAXCONSISTENT}(DG);
4 \quad \text{if } NCycle == \text{null then}
5 \quad \quad \text{for } E \text{ in LOWERCASEEDGES}(DG) \text{ do}
6 \quad \quad \quad moatPaths \leftarrow \text{PROPAGATE}(E);
7 \quad \quad \quad \text{for } Path \text{ in moatPaths do}
8 \quad \quad \quad \quad E' \leftarrow \text{REDUCE}(E, Path);
9 \quad \quad \quad \quad \text{SUPPORTS}(E') \leftarrow \text{SUPPORTS}(E, Path);
10 \quad \quad \quad \quad \text{ADDTOGRAPH}(E', DG)
11 \quad \quad \end{forPath}
12 \quad \text{end}
13 \text{else}
14 \quad \text{return GETSUPPORTS(NCycle);}
15 \text{end}
16 \text{end}
17 NCycle \leftarrow \text{ALLMAXCONSISTENT}(DG);
18 \text{return GETSUPPORTS(NCycle);}
```

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-Directed Relaxation;
- Experiments.
Generalize CDA* to Continuous Relaxations

• Conflict-Directed A* (Williams and Ragno, 2004) can be applied to discrete relaxation problems:
 – Efficiently prunes search space using learned conflicts.
 – Enumerates minimal discrete relaxations in best-first order.

• To solve a relaxation problem:
 – Frame an equivalent constraint optimization problem.
 A. Discrete relaxation: add binary variables.
 B. Continuous relaxation/tightening: add non negative continuous variables.
 – The objective function represents the preference.
• BCDR generalizes the conflict resolution procedure in CDA* to include constituent continuous relaxations.
Conflict-Directed A*

• Key Ideas:
 – Split on conflict;
 – Best-first enumeration.

Home → B ≥ 35; Shop at B ≥ 35; Drive B → Y ≥ 25; Lunch at Y ≥ 75; Y → Home ≥ 40; Arrive Home ≤ 180.

Expand on Conflict

not ShopatB not LunchatY not ArriveHome
CDA* with Constituent Continuous Relaxation

- Split a conflict using its constituent continuous relaxations.

Home \rightarrow B ≥ 35; Shop at B ≥ 35; Drive B \rightarrow Y ≥ 25; Lunch at Y ≥ 75; Y \rightarrow Home ≥ 40; Arrive Home ≤ 180.

Expand on Conflict

$$\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \geq 30$$

$$\min(f(\Delta_{Shop \ at \ B}) + f(\Delta_{Lunch \ at \ Y}) + f(\Delta_{Arrive \ Home}))$$

s.t. $\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \geq 30$
Continuous Relaxations for Multiple Conflicts

• For two or more continuous relaxations on the same branch, the utility is determined by the grounded solution that respects both inequalities.

\[
\min (f(\Delta_{\text{Shop at B}}) + f(\Delta_{\text{Lunch at Y}}) + f(\Delta_{\text{Arrive Home}}) + f(\Delta_{\text{Drive to B}}) + f(\Delta_{\text{Drive B to Y}}) + f(\Delta_{\text{Travel Time}}))
\]

\[
\text{s.t.}
\Delta_{\text{Shop at B}} + \Delta_{\text{Lunch at Y}} + \Delta_{\text{Arrive Home}} \geq 30
\]

and

\[
\Delta_{\text{Drive to B}} + \Delta_{\text{Drive B to Y}} + \Delta_{\text{Travel}} \geq 10
\]
Incorporating User Responses

- BCDR incrementally adapts to new requirements.
- These requirements are recorded as new conflicts.

No, I do not want to extend my reservation time.

No, I want to spend at least 25 minutes on shopping.

Required Continuous Relaxations

\[\Delta_{Arrive\ Home} \leq 0; \]

\[\Delta_{Shop\ at\ B} \leq 10; \]
New Requirements as Conflicts

- Expand search tree using user response conflicts.

\[
\Delta_{ShopatB} + \Delta_{LunchatY} + \Delta_{ArriveHome} \geq 30
\]

\[
\min (f(\Delta_{ShopatB}) + f(\Delta_{LunchatY}) + f(\Delta_{ArriveHome}))
\]

s.t.
\[
\Delta_{ShopatB} + \Delta_{LunchatY} + \Delta_{ArriveHome} \geq 30;
\]
\[
\Delta_{ArriveHome} \leq 0;
\]
\[
\Delta_{ShopatB} \leq 10.
\]
If a node has an unresolved conflict, we expand it using both constituent \textbf{continuous} relaxation and \textbf{decisions} that deactivates its constraints.

\begin{itemize}
 \item \textbf{Store}=B; \textbf{Lunch}=Y;
 \item Home \rightarrow B \geq 35;
 \item Shop at B \geq 35;
 \item Drive B \rightarrow Y \geq 25;
 \item Lunch at Y \geq 75;
 \item Y \rightarrow Home \geq 40;
 \item Arrive Home \leq 180.
\end{itemize}

$\Delta_{\text{Shop at B}} + \Delta_{\text{Lunch at X}} + \Delta_{\text{Arrive Home}} \geq 30$
Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.
Experiment Setup

- We simulated a car-sharing network in Boston using randomly generated car locations and destinations.

- Test cases are characterized by:
 - Number of reservations per car.
 - Number of cars in the network.
 - Number of activities per reservation.
 - Number of alternative options per activity.

- Time change may affect neighboring reservations.
Empirical Results - Runtime

- We compare the performance of three algorithms:
 - BCDR (consistency).
 - CDRU-SC (strong controllability).
 - CDRU-DC (dynamic controllability).
Solution Utility and Conflicts Detected

Utility Difference

Conflicts Detected
Contributions

• Over-constrained temporal problems can be resolved by relaxing the temporal constraints continuously.

• The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.

• The framework naturally extends to resolving uncontrollable problems with uncertain durations.

• We can efficiently enumerate discrete and continuous relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm.
Temporal Constraint Problems:
- Restore temporal **consistency**.
- Restore temporal **controllability** for uncertain durations.
- Resolve **chance constrained** problems with probabilistic durations.

VRP-TWs:
- Resolve over-constrained VRP-TWs through temporal and resource relaxations.

Temporal Planning Problems:
- Find **semantically** similar alternatives for goal and domain relaxations.
- Relax goals and domain specifications for resolving over-constrained planning problems.