

Resolving Over-constrained Temporal Problems with Uncertain Durations

Peng Yu March 7, 2014

Take Away Messages

- Over-constrained temporal problems can be better resolved by relaxing the temporal constraints continuously, instead of removing them discretely.
- The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.
- Restoring controllability requires both tightening uncertain durations and relaxing constraints.
- We can efficiently enumerate relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm, first developed for diagnosis.

Ongoing Projects

• Personal Transportation System.

• Trip advisor for commuters.

• Mission advisory system for deep sea exploration.

Robotic Personal Transportation System

• A personal air taxi with an intelligent trip advisory

Key features

- Find alternative solutions that are **simple** and **preferred**.
- Provide **insights** into cause of failure and its resolution.
 - Minimize the perturbations;
 - Prioritize alternatives;

"Delay your arrival by 5 minutes".

"OK, then how about having lunch at restaurant Y".

- Explain the cause of failure;
- Adapt incrementally to new constraints.

"Because of the extended travel time".

"if you want to shop for at least 25 minutes, you can have lunch at restaurant Y for 55 minutes".

When There Is Uncertainty

- Uncertainty Sensitive Transit Advisor.
- It is **6pm** now and Brian is leaving NICTA for home.
- He wants to be home in 40 minutes, and is only willing to take buses.
- Right now, he is looking up Google Map for directions...

Which Bus To Take

- Google Map returns two options (leaving NICTA at 1800), ranked based on trip duration
- Option I:
 - Take the 18:08 Bus #3 (Ride time 23 mins).
 - Walking to departure stop: 8 mins.
 - Walking from arrival stop to home: 3 mins.
- Option 2:
 - Take the 18:11 Bus #934 (Ride time 26 mins).
 - Walking to departure stop: 10 minutes.
 - Walking from arrival stop to home: 3 minutes.

Uncertainty Affects Our Decision

- Buses may be late or early:
 - Bus #3: 18:08 ± 2 minutes.
 - Bus #934: 18:11 ± 1 minute.
- Brian may miss the bus if he takes the Google preferred option.

Cope With the Uncertainty

- "You can catch Bus #934 and arrive home **3 minutes late**."
- "Or, you can take Bus #3 and arrive home on time, but **taking the risk** of missing the bus, if it arrives early."

Mission Advisor for Woods Hole Oceanographic Inst.

- During an expedition cruise, the chief scientist needs assistance for planning and scheduling activities, especially when things go wrong.
 - Task sequencing and scheduling.
 - Goal relaxation and failure recovery.
 - Human resources and assets management.

AWHOI Mission

- Duration: Sep 26th Oct 17th.
- Vessel: R/V Atlantis.
- Location: Along the coast between SF and LA.
- Objectives:
 - Find and sample methane seeps near the coast.
 - Locate and sample a 60 year-old DDT dumping site.
 - Recover and replace incubators on the seafloor.

A 3-day Plan From the Cruise

From:	"David Valentine" <scil@atlantis.whoi.edu></scil@atlantis.whoi.edu>
Subject:	Plan of the day 9/28+
Date:	Sat, September 28, 2013 6:37 am
To:	pod@atlantis.whoi.edu

Draft Cruise Plan 9/28-9/30

9/27/13		
Sentry Dive at Partington Canyon	6hrs	Target start time 2000
9/28/13		
Depart Partington Canyon		Estimated Departure Time 023
Transit to Paull's Pingo	27 hrs	ETA 0530 hrs (9/29/13)
Science Meeting 10AM!		
Multibeam pass of SBB-2H Pockmark		Line Z to Z'
Multibeam pass in Southern SB Channel		Lines A to A', B to B', C to C'
and D to D'		
Multibeam pass of SW Mounds area		Lines E to E' and F to F'
9/29/13		
Arrive at Paull's Pingo		ETA 0530 hrs
Jason Operations at Paull's Pingo	15 hrs	Deploy by 0730; 2 Elevator
Deployments		
Transit to SW mounds	1.5 hrs	Arrive SW Mounds ~2400
9/30/13 and beyond		
Sentry deployment at SW Mounds	16 hrs	Deploy at 0000
Jason Deployment at SW Mounds	24 hrs	Multiple Elevators

Everything can Go Wrong

- [Day I] Jason failed after 30 min into its first dive, entered an uncontrollable spin and broke its optic fiber tether.
- [Day I] The new camera installed on Sentry did not work well in low light situations. It had been replaced during its second dive.

Everything can Go Wrong

- [Day 2] Jason entered an uncontrollable spin and broke its optic fiber tether again during its second dive. It turned out that there is a bug in its newly updated code.
- [Day 3] Sentry's mass spectrometer failed during its second dive. They sent Rich to Pittsburg to get it fixed.

 [Day 7] Sentry aborted its mission I hour after launch. Atlantis aborted its mapping routes and went back to recover Sentry. The failure was caused by a burned wire.

Our Deliverable

- A mission advisory system that assists the chief scientists of expeditions on the following tasks:
 - Scheduling Activities with Uncertainty.
 - Failure and Downtime Recovery Scheduling.
 - Assets Managements.

SHIP	TransHC13c [225.0,255.0]			TransPartington [108.0, 192.0]	
OTHER-1	20000	SHIP IDLE [D.O.Infinity]	00:42:00	03 20.00,03.5	400
СТР	4400	CTD at HC13c [108.0,132.0] 22:30:00 [22:30:00	0012:0000042:00		
OTHER-3	CTD IDLE [0.0,Infinity]	22:30:00 22:30:00			
USBL				03:54:0	▶ 003:54:00
MULTIBEAM					
AUV					
ROV					
		09/26 23:00:00		09/27 03:00:00	

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.

Problem Formulation

- Model: (Over-constrained) Controllable Conditional Temporal Problems with Uncertainty.
 - All choices are **controllable**.
 - Allowing temporal constraints to be **relaxed**.
 - Allowing uncertain durations to be **tightened**.
- A solution is a pair with:
 - A complete set of **decisions**.
 - A set of continuous **relaxations** for temporal constraints.
 - A set of continuous **tightening** for uncertain durations.
 such that the set of activated durations and constraints is consistent/controllable.

- Preference functions are defined over decisions and constraint relaxations.
 - Each decision is mapped to a positive reward by function f_p .
 - Each constraint relaxation/duration tightening is mapped to a positive cost by function f_e .

Store	А	40
	В	100
Lunch	Х	70
	Y	80
	Z	30

Assignment :{Store = B, Lunch = Y} Reward: 100 + 80 = 180

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.

(Minimal) Discrete Relaxation

- Resolve over-constrained temporal problem C by removing constraints.
 - Resolved: $M \subseteq C$ such that $C \setminus M$ is consistent.
 - Minimal: $\forall c \in M (C \setminus M) \cup \{c\}$ is inconsistent.

Continuous Relaxation

- Relax a constraint partially by continuously modifying its temporal bounds:
 - A continuous relaxations, CR_i , weakens a temporal constraint: [LB, UB] \rightarrow [LB', UB'] where $LB' \leq LB$ and $UB' \geq UB$.
 - Continuous relaxations only apply to **relaxable** constraints.

"Shorten lunch to 25 minutes and delay arrival by 5 minutes"

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.

I. Learn Discrete Conflicts

• A discrete conflict is an inconsistent set of temporal constraints.

Choosing Store=B and Lunch=Y produces:

2. Weaken to Continuous Conflicts

- A continuous conflict is an equation formed from the discrete conflict.
- It specifies the deviation needed to resolve the conflict.

Discrete Conflict:

Continuous Conflict:

ArriveHome - HometoB - ShopatB-BtoY - LunchatY - YtoHome = -30

3. Map to Constituent Continuous Relaxations

• Relaxations specified by linear inequalities:

ArriveHome – *HometoB* – *ShopatB* –*BtoY* – *LunchatY* – *YtoHome* = –**30**

 $\Delta_{ShopatB} + \Delta_{LunchatY} + \Delta_{ArriveHome} \geq 30$

Discrete vs. Continuous Relaxations

• Resolve a conflict by relaxing constraints **completely** or **partially**.

Conflict:Store = B, Lunch = Y;
Home $\rightarrow B \ge 35$; Shop at $B \ge 35$;
Drive $B \rightarrow Y \ge 25$; Lunch at $Y \ge 75$;
 $Y \rightarrow$ Home ≥ 40 ; Arrive Home ≤ 180 .

Discrete Resolutions

Remove Shop at $B \ge 35$; Remove Lunch at $Y \ge 75$; Remove Arrive Home ≤ 180 Continuous Resolutions

Lunch at $Y \ge 45$; Arrive Home ≤ 210 ; Shop at $B \ge 25$ and Lunch at $Y \ge 55$;

and many more

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-Directed Relaxation;
- Experiments.

Learn Conflicts From Uncontrollable Problems

- Learning conflicts from controllability checking algorithms is difficult.
 - For consistency checking, there is a **one-to-one mapping** between the distance edges and the bounds of constraints.
 - No such mapping exists for controllability checking (strong and dynamic) due to the reduction procedures, making it difficult to extract conflicts from the reduced graph.
- Key: during the reduction, **record the 'contribution'** of each constraint and duration in the temporal problem.

A Strong Controllability Example

Resolving Uncontrollable Conflicts

 Constraint for resolving continuous conflict (negative value - I):

$$\Delta D_L + \Delta C_L + \Delta B_U + \Delta A_L \ge 1$$
 where:

- ΔC_L , ΔD_L are relaxations for C and D.
- ΔA_L , ΔB_U are tightening for A and B.

and

 $\Delta A_L \leq 5; \Delta B_U \leq 1.$

Learn Dynamically Uncontrollable Conflict

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-Directed Relaxation;
- Experiments.

Generalize CDA* to Continuous Relaxations

- Conflict-Directed A* (Williams and Ragno, 2004) can be applied to discrete relaxation problems:
 - Efficiently prunes search space using learned conflicts.
 - Enumerates minimal discrete relaxations in best-first order.
- To solve a relaxation problem:
 - Frame an equivalent constraint optimization problem.
 - A. Discrete relaxation: add binary variables.
 - B. Continuous relaxation/tightening: add non negative continuous variables.
 - The objective function represents the preference.

Best-first Conflict Directed Relaxation

 BCDR generalizes the conflict resolution procedure in CDA* to include constituent continuous relaxations.

Conflict-Directed A*

- Key Ideas:
 - Split on conflict;
 - Best-first enumeration.

CDA* with Constituent Continuous Relaxation

• Split a conflict using its constituent continuous relaxations.

$$\min(f(\Delta_{Shop \ at \ B}) + f(\Delta_{Lunch \ at \ Y}) + f(\Delta_{Arrive \ Home}))$$

s.t. $\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \ge 30$

Continuous Relaxations for Multiple Conflicts

 For two or more continuous relaxations on the same branch, the utility is determined by the grounded solution that respects both inequalities.

 $\min(f(\Delta_{Shop \ at \ B}) + f(\Delta_{Lunch \ at \ Y}) \\ + f(\Delta_{Arrive \ Home}) + f(\Delta_{Drive \ to \ B}) \\ + f(\Delta_{Drive \ B \ to \ Y}) + f(\Delta_{Travel \ Time}))$

s.t. $\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \ge 30$

and

$$\Delta_{Drive \ to \ B} + \Delta_{Drive \ B \ to \ Y} + \Delta_{Travel} \ge 10$$

Incorporating User Responses

- BCDR incrementally adapts to new requirements.
- These requirements are recorded as new conflicts.

No, I **do not** want to extend my reservation time.

No, I want to spend at least 25 minutes on shopping.

Required Continuous Relaxations

 $\Delta_{Arrive Home} \leq 0;$

 $\Delta_{Shop\ at\ B} \leq 10;$

New Requirements as Conflicts

• Expand search tree using user response conflicts.

Split on Conflicts for Conditional Problems

 If a node has an unresolved conflict, we expand it using both constituent continuous relaxation and decisions that deactivates its constraints.

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Restoring Controllability with Uncertainty Durations;
- Best-first Enumeration through Conflict-directed Relaxation;
- Experiments.

Experiment Setup

- We simulated a car-sharing network in Boston using randomly generated car locations and destinations.
- Test cases are characterized by:
 - Number of reservations per car.
 - Number of cars in the network.
 - Number of activities per reservation.
 - Number of alternative options per activity.
- Time change may affect neighboring reservations.

Empirical Results - Runtime

- We compare the performance of three algorithms:
 - BCDR (consistency).
 - CDRU-SC (strong controllability).
 - CDRU-DC (dynamic controllability).

Solution Utility and Conflicts Detected

Contributions

- Over-constrained temporal problems can be resolved by relaxing the temporal constraints continuously.
- The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.
- The framework naturally extends to resolving uncontrollable problems with uncertain durations.
- We can efficiently enumerate discrete and continuous relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm.

Temporal Constraint Problems:	VRP-TWs:	Temporal Planning Problems:
 Restore temporal consistency. Restore temporal controllability for uncertain durations. Resolve chance constrained problems 	- Resolve over- constrained VRP- TWs through temporal and resource relaxations.	 Find semantically similar alternatives for goal and domain relaxations. Relax goals and domain specifications for resolving over-
with probabilistic durations.		constrained planning problems.