
Resolving Uncontrollable Conditional Temporal Problems
using Continuous Relaxations

Peng Yu and Cheng Fang and Brian Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139
{yupeng,cfang,williams}@mit.edu

Abstract

Uncertainty is commonly encountered in temporal
scheduling and planning problems, and can often lead
to over-constrained situations. Previous relaxation al-
gorithms for over-constrained temporal problems only
work with requirement constraints, whose outcomes can
be controlled by the agents. When applied to uncontrol-
lable durations, these algorithms may only satisfy a sub-
set of the random outcomes and hence their relaxations
may fail during execution. In this paper, we present a
new relaxation algorithm, Conflict-Directed Relaxation
with Uncertainty (CDRU), which generates relaxations
that restore the controllability of conditional temporal
problems with uncontrollable durations. CDRU extends
the Best-first Conflict-Directed Relaxation (BCDR) al-
gorithm to uncontrollable temporal problems. It gener-
alizes the conflict-learning process to extract conflicts
from strong and dynamic controllability checking algo-
rithms, and resolves the conflicts by both relaxing con-
straints and tightening uncontrollable durations. Empir-
ical test results on a range of trip scheduling problems
show that CDRU is efficient in resolving large scale un-
controllable problems: computing strongly controllable
relaxations takes the same order of magnitude in time
compared to consistent relaxations that do not account
for uncontrollable durations. While computing dynam-
ically controllable relaxations takes two orders of mag-
nitude more time, it provides significant improvements
in solution quality when compared to strongly control-
lable relaxations.

Introduction
Every day, as individuals we miss meetings and deadlines,
because we try to do too much, and do not estimate time ac-
curately. These situations can lead to anywhere from a major
annoyance, such as missing a conference deadline, to a ma-
jor catastrophe. These situations can be better handled with
decision aids that help individuals to estimate how much
time is required in order to compensate for uncertainty, and
by providing advice on which goals should be dropped, to
achieve a manageable set of goals.

Such over-subscribed situations have often been modeled
by over-constrained temporal problems. A temporal prob-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem is over-constrained if no schedule (Dechter et al. 1991),
or execution strategy (Vidal and Fargier 1999) for problems
with uncertain durations, can be found that satisfies all its
constraints. To solve an over-constrained temporal problem,
one has to identify its conflicting constraints and resolve
them by relaxing one or more constraints, such that the con-
sistency or controllability of the problem can be restored.

Several methods have been developed to solve over-
constrained temporal problems. In (Beaumont et al. 2001),
partial constraint satisfaction techniques were applied to find
a subset of satisfiable constraints. Later, (Moffitt and Pollack
2005; Peintner et al. 2005) extended the resolution capabil-
ity to temporal problems with disjunctions and preferences.
In (Yu and Williams 2013), a conflict-directed approach was
introduced to resolve conditional temporal problems by con-
tinuously relaxing constraints, instead of suspending them
completely. However, all prior work focused on temporal
problems with only controllable durations. When applied to
problems with uncertain durations, their relaxations may fail
since they only satisfy a subset of the possible times for the
uncontrollable durations.

In this paper, we present our approach for resolving
over-constrained conditional temporal problems with uncer-
tain durations, the Conflict-Directed Relaxation with Uncer-
tainty algorithm (CDRU), to address this issue. CDRU enu-
merates preferred continuous relaxations that restore con-
trollability using a conflict-directed approach. It learns the
cause of failure by generalizing the conflict-learning tech-
nique in (Williams and Ragno 2002; Yu and Williams 2013)
to include strong and dynamic controllability checking and
conflict extraction algorithms. CDRU then resolves the con-
flicts by relaxing constraints and tightening uncontrollable
durations.

The CDRU algorithm has been incorporated in a mis-
sion plan advisory system and demonstrated for assisting
oceanographers to schedule activities in deep-sea explo-
ration expeditions. Its applications also include managing
trip plans for users of car-sharing networks. In the following
sections, we will use an example from this domain to illus-
trate the concepts and techniques in the CDRU algorithm.

Motivating Example
To motivate the need for resolving over-constrained tempo-
ral problems with uncontrollable durations, and to demon-

strate the capabilities of the CDRU algorithm, we describe
an example in the domain of commute trip planning. Plan-
ning a daily commute trip may become difficult for a person
when there are multiple time constraints, such as deadlines
or reservations. The person has to compare different options
and adjust the durations of their activities carefully to meet
all scheduling constraints. The problem gets even more com-
plex if there is a large uncertainty in the duration of an activ-
ity: checking all possible outcomes of the uncertain duration
is usually beyond a person’s capability.

Consider the following example on John’s weekend trip
for grocery shopping and lunch. He is planning to leave
home at 10am and return before 1pm. John reserved a Zip-
car, an hourly-based car-sharing service (Zipcar 2013), for
his trip. There are two grocery stores (A and B) and two
restaurants (X and Y) nearby. John has a preference over the
stores and restaurants. In addition, the preferred stay at each
location varies, and the reservation times John can get at
two restaurants are different. Finally, driving times between
these locations are different too, and there are uncertainties
in the estimation of driving durations.

We introduce the Controllable Conditional Temporal
Problem with Uncertainty (CCTPU) formalism to model
John’s trip. It is an extension to the CCTP formulation in
(Yu and Williams 2013) with the addition of uncertain du-
rations. The solution to such a problem can be viewed as
a strategy for John’s trip that includes: which store to visit,
which restaurant to dine at, and how much time to spend at
each of them. A CCTPU contains two types of components:
decision variables and temporal constraints. We define two
variables for the decisions that John needs to make: Store
and Lunch. There are two values in the domain of variable
Store: A (100) and B (200). Each domain value represents
a decision of going to one grocery store, and is associated
with a positive reward value that represents John’s prefer-
ence toward it. The other variable, Lunch, has two domain
values: X (200) and Y (100).

Table 1: Events in John’s trip
Trip starts: ST Restaurant X arrive/leave: XA,XL

Trip ends: RT Restaurant Y arrive/leave: YA,YL

Store A arrive/leave: AA,AL Store B arrive/leave: BA,BL

Next, we define events in John’s trip, which are desig-
nated time points that represent different states. There are
ten events in the CCTPU (Table 1): an event that represents
the beginning of the trip (ST); an event for the end of the
trip (RT); and pairs of events that represent the arrival and
departure of each location (Store A, B; Restaurant X, Y).

Table 2 shows all the constraints in the CCTPU. They en-
code the durations of driving, shopping and dining activi-
ties in John’s trip, as well as his time requirements. Con-
straints C1 through C4 encode John’s desired length of stay
at each location. Constraints C5 through C12 are highlighted
in bold: they are uncontrollable simple temporal constraints
that encode the driving times between locations. Their tem-
poral bounds indicate the domain of the random outcomes.
Constraints C13 and C14 represent the lunch reservations
that John can get at restaurant X and Y. He has to arrive
at the restaurant within the reservation window in order to

Table 2: Temporal constraints in John’s trip (in minutes)

C1(R):AL-AA ∈ [50, 60] C5:AA-ST ∈ [45,65] Store←A
C2(R):BL-BA ∈ [45, 60] C6:BA-ST ∈ [30,50] Store←B
C3(R):XL-XA ≥ 60 C7:RT -XL ∈ [28,35] Lunch←X
C4(R):YL-YA ≥ 65 C8:RT -YL ∈ [30,32] Lunch←Y
C9 XA-AL[51,54] Store←A and Lunch←X
C10 XA-BL[22,24] Store←B and Lunch←X
C11 YA-AL[42,45] Store←A and Lunch←Y
C12 YA-BL[21,25] Store←B and Lunch←Y
C13 XA-ST [105, 120] Lunch←X
C14 YA-ST [90, 105] Lunch←Y
C15(R) RT -ST ∈ [0, 180]

secure a table. Finally, constraint C15 encodes the length of
John’s Zipcar reservation.

Note that some of the constraints are conditional and la-
beled by one or more assignments. A conditional constraint
is activated if and only if the assignments in its label hold.
For example, constraints C1 and C5 encode the driving and
shopping time for store A. They are considered only if
John chooses to shop at A. In addition, the constraints la-
beled with (R) are relaxable constraints (Yu and Williams
2013). Their lower or upper bounds can be relaxed at a
specified cost, in order to restore the feasibility of the prob-
lem. In this problem, we assume that the gradients of the
cost functions are 3/minute for shortening the shopping time
(C1, C2), 2/minute for shortening the dining time (C3, C4),
and 1/minute for extending the Zipcar reservation (C15).

Without any relaxations, these is no solution that can sat-
isfy all requirements in John’s trip: the overall trip length is
at least 193 minutes, which is 13 minutes more than John’s
Zipcar reservation. To resolve this over-constraint problem,
we first apply the consistency-based BCDR algorithm. It re-
turns Figure 1 as the most preferred relaxation for John.

DrivestosB
ss[30,s50]

ShopsatsB
ss[45,s60]

DrivestosX
ss[22,s24]

LunchsatsX
sssss≥s60

DrivesHome
ssss[28,s35]

Reservations[0,s180]s→s[0,s193]s

Figure 1: Consistent solution for John’s trip

The utility of this solution is 387, which is computed by
subtracting the cost of relaxing the reservation constraint
(13) from the reward of going to store B and restaurant X
(400). However, the solution does not account for the un-
controllable driving times: BCDR only considers the low-
est driving times while computing the solution. As a result,
the solution may fail during the trip, since it has no margin
to absorb any delay in driving. Next, we present two solu-
tions generated by CDRU, which are based on two execu-
tion strategies that take the uncertainty into consideration.
The first strategy, called Strong Controllability, comes up
with a schedule of activities before starting the plan, which
ensures success for all uncontrolled durations. The second
execution strategy, called Dynamic Controllability, instead
observes these uncertain outcomes along the way, and makes
’more informed’ decisions about scheduling each activity.

DrivestosB
ss[30,s50]

ssssssssShopsatsB
ss[45,s60]→[40,s60]

DrivestosX
ss[22,s24]

LunchsatsX
sssss≥s60

DrivesHome
ssss[28,s35]

Reservations[0,s180]s→s[0,s209]s

Figure 2: Strongly controllable solution for John’s trip

The second solution is computed based on strong control-
lability (Figure 2). It extends the reservation to 209 minutes,
and decrease the lower bound of the shopping time at B to
account for the uncertainty in the driving between home and
store B. This solution has a lower utility of 356, but enables
a schedule that satisfies John’s requirements and the uncer-
tain driving durations.

DrivestosB
ss[30,s50]

ShopsatsB
ss[45,s60]

DrivestosX
ss[22,s24]

LunchsatsX
sssss≥s60

DrivesHome
ssss[28,s35]

Reservations[0,s180]s→s[0,s214]s

Figure 3: Dynamically controllable solution for John’s trip
The third and final solution is computed based on dynamic

controllability (Figure 3). Unlike the previous solution, it
does not need to decrease the lower bound of shopping time
at B to account for the uncertainty in driving, and hence is
less conservative than the second solution, while still being
safe. The solution has a higher utility of 366, and enables
a dynamic schedule on the fly instead of a static schedule
beforehand: the times of leaving store B and restaurant X
depend on the actual driving times.

This example demonstrates the effectiveness of CDRU
in resolving uncontrollable temporal problems. Compared
to consistency-based relaxation algorithms, whose solutions
may fail during execution, CDRU guarantees that its solu-
tions satisfy all random outcomes of uncertain durations.
Depending on the user’s needs, CDRU can generate relax-
ations that enable either a schedule for all events, or a dy-
namic execution strategy.

Problem Statement
Simple Temporal Networks with Uncertainty (Vidal and
Fargier 1999) have been widely used to model temporal
problems with uncertain durations. It is an extension to the
Simple Temporal Network formalism (Dechter et al. 1991)
by adding a new class of constraints: contingent constraints.
The duration of a contingent constraint is a random variable
between its lower and upper bounds and cannot be freely
assigned. The solution to a STNU is an execution strategy
that satisfies all requirement constraints regardless of the
outcomes of contingent constraints. The existence of such
a strategy is characterized by the controllability, instead of
consistency, of the STNU. Controllability concerns about
the outcomes of contingent constraints and the time points
when the outcomes become available to the agent.

There are three types of controllability (Vidal and Fargier
1999): Strong, Dynamic and Weak. Each type has a differ-
ent assumption about the time when the outcomes of con-
tingent constraints become available. In this paper, we focus
on the first two types, strong and dynamic controllability,
which assume that no outcome is known prior to the execu-
tion. Strong controllability requires a predetermined sched-
ule which satisfies all constraints regardless of the outcomes
of the uncertain durations, whereas dynamic controllability
requires a policy for scheduling as observations of uncertain
durations become available. Intuitively, dynamic controlla-
bility is more flexible as it make use of information gained
during execution.

In addition, the STNU formalism has been extended with
disjunctions and conditional constraints to handle more real-
world scheduling and planning problems. In (Venable and
Yorke-Smith 2005; Peintner et al. 2007), the Disjunctive
Temporal Problem with Uncertainty (DTPU) formalism was
introduced to permit non-convex and non-binary constraints.
DTPU can be viewed as an extension to the determin-
istic Disjunctive Temporal Problem (DTP) (Stergiou and
Koubarakis 1998; Tsamardinos and Pollack 2003) formal-
ism with contingent constraints. It allows the expression of
disjunctive constraints, and enables the agent to choose be-
tween alternatives.

In this paper, we define a new formalism that extends DT-
PUs to permit the description of more general trip planning
and relaxation problems, the Controllable Conditional Tem-
poral Problem with Uncertainty (CCTPU). The new formal-
ism is also an extension to Controllable Conditional Tem-
poral Problem (CCTP, (Yu and Williams 2013)) with the
addition of contingent constraints. We first repeat the defi-
nition of CCTP here, then present the additions introduced
by CCTPU.

Definition 1. A CCTP is an 9-tuple 〈V,E,RE,Lv, Lp, P,
Q, fv, fe〉 where:

• P is a set of controllable finite domain discrete variables;
• Q is the collection of domain assignments to P ;
• V is a set of events representing designated time points;
• E is a set of temporal constraints between pairs of events

vi ∈ V ;
• RE ⊆ E is a set of relaxable temporal constraints whose

bounds can be relaxed;
• Lv : V → Q is a function that attaches conjunctions of

assignments to P , qi ∈ Q, to some events vi ∈ V ;
• Lp : P → Q is a function that attaches conjunctions of

assignments to P , qi ∈ Q, to some variables pi ∈ P ;
• fp : Q→ R+ is a function that maps each assignment to

every controllable discrete variable, qij : pi ← valuej ,
to a positive reward;

• fe : (ei, e
′
i)→ r ∈ R+ is a function that maps the relax-

ation to one relaxable temporal constraint ei ∈ RE, from
ei to e′i, to a positive cost.

Definition 2. A CCTPU contains all elements in a CCTP,
plus Eu and REu, where:

• Eu ⊆ E is a set of contingent constraints between pairs
of events. E\Eu is the set of all requirement constraints;

• REu ⊆ Eu is a set of relaxable contingent constraints
whose bounds can be tightened, and REu ⊆ RE.

The cost function is generalized to include both require-
ment and contingent constraints: fe : (ei, e

′
i) → r ∈ R+ is

a function that maps the following to a non-negative cost.

• the relaxation to a requirement constraint, ei → e′i, ei ∈
RE\REu;

• or the tightening to a contingent constraint, ei → e′i, ei ∈
REu;

We generalize the concept of relaxations to include con-
tingent constraints. To resolve a conflict by relaxing require-
ment constraints, we will either increase its upper bound or
reduce its lower bound. On the other hand, we can shrink
the uncertainty for contingent constraints in a conflict: we
may resolve the conflict by increasing the lower bound or de-
creasing the upper bound of its contingent constraints. Usu-
ally, contingent constraints are used to reserve some flexi-
bility for the agents or the environment in executing their
tasks. A tighter duration means less flexibility for them, but
also imposes less restriction on the solution to the temporal
problem. We will give more insights into the relation be-
tween contingent constraints and conflict resolutions in the
algorithm section.

The solution to a CCTPU is a 3-tuple 〈A,Re, Ru〉, where:

• A is a complete set of assignments to some variables in P
that leaves no variable unassigned.

• Re is a set of relaxed bounds of some relaxable require-
ment constraints in RE\REu.

• Ru is a set of tightened bounds of some relaxable contin-
gent constraints in REu.

A feasible solution provides a grounded and control-
lable CCTPU. We separate the solutions into two categories:
strongly controllable and dynamically controllable. This is
based on the type of execution strategies a solution can en-
able.

• A strongly controllable solution makes the CCTPU
strongly controllable. That is, the relaxation enables an
execution strategy with a firm schedule for all events.

• A dynamically controllable solution makes the CCTPU
dynamically controllable. Due to the flexibility of dy-
namic controllability relative to strong controllability,
there is usually a greater solution space to explore.

Note that a strongly controllable solution is also a dy-
namically controllable solution, since strong controllability
is more restrictive than dynamic controllability. In this pa-
per, we are only concerned about controllable variables that
are not dependent on observation events in CCTPUs. This
makes it simpler to solve compared to the Conditional Tem-
poral Problems with Uncertainty (CTPUs) (Hunsberger et
al. 2012) in that those tasks may require the enumeration of
all scenarios that are dependent on uncontrollable variables.

Approach
In this section, we present the Conflict-Directed Relaxation
with Uncertainty algorithm that enumerates strongly and dy-
namically controllable relaxations for CCTPUs. CDRU can
be viewed as an extension to the BCDR algorithm (Yu and
Williams 2013). It extends the conflicts learning and reso-
lution process to account for uncontrollable durations. To
enumerate relaxations for CCTPUs, CDRU needs to extract
conflicts from strong and dynamic controllability checking
algorithms. The conflict could be a mixed set of requirement
and contingent constraints. The resolution of conflicts in-
volves both relaxing requirement constraints and tightening
contingent constraints. We will first give an overview of the

CDRU algorithm, and then discuss the conflict learning and
resolution process in detail.

The CDRU Algorithm
CDRU uses a conflict-directed approach to enumerate can-
didate relaxations and prune infeasible search space. This
approach was first introduced by Conflict-directed A*
(Williams and Ragno 2002) on discrete domain variables
and later extended to continuous variables and constraints
by BCDR. The key of this conflict-directed approach is to
explore the search space using two types of expansions: ex-
pand on unassigned variables and on unresolved conflicts.
The first expansion guides the search into unexplored re-
gions, and the second expansion keeps the search away from
known infeasible regions in the search space.

CDRU can be implemented with different search orders,
such as best-first, depth-first and branch&bound, to meet the
needs of different applications. In this section, we will use
best-first order to demonstrate the concepts and techniques
in it. The pseudo code of CDRU is given in Algorithm 1.

Input: A CCTPU
T = 〈V,E,Eu, RE,REu, Lv, Lp, P,Q, fv, fe〉.

Output: A relaxation 〈A,Re, Ru〉 that maximizes fv − fe.
Initialization:

1 Cand← 〈A,Re, Ru, Cr, Ccont〉; the first candidate;
2 Q← {Cand}; a priority queue of candidates;
3 C ← {}; the set of all known conflicts to be checked;
4 U ← V ; the list of unassigned controllable variables;

Algorithm:
5 while Q 6= ∅ do
6 Cand←Dequeue(Q);
7 currCFT ←UNRESOLVEDCONFLICTS(Cand,C);
8 if currCFT == null then
9 if isComplete?(Cand, U) then

10 newCFT ←CONTROLLABILITYCHECK(Cand);
11 if newCFT == null then
12 return Cand;
13 else
14 C ← C ∪ {newCFT};
15 Q← Q ∪ {Cand};
16 endif
17 else
18 Q← Q∪EXPANDONVARIABLE{Cand, U};
19 endif
20 else
21 Q←Q∪EXPANDONCONFLICT{Cand, currCFT};
22 endif
23 end
24 return null;

Algorithm 1: The CDRU algorithm

A candidate in CDRU is a 5-tuple 〈A,Re, Ru, Cr, Ccont〉:
• A: a set of assignments to variables;

• Re: a set of relaxations to requirement constraints;

• Ru: a set of tightening to contingent constraints;

• Cr: a set of conflicts resolved by this candidate;

• Ccont ⊆ Cr: a set of continuously resolved conflicts.

All these fields are empty sets for the first candidate.
CDRU starts with a loop and continues until a candidate is

found that makes the CCTPU controllable (Line 10). De-
pending on the type of solutions required, function CON-
TROLLABILITYCHECK checks either strong or dynamic
controllability, and returns a conflict if the candidate failed
the test. If CDRU does not find a controllable relaxation be-
fore the queue exhausts, it returns null indicating that no so-
lution exists for this CCTPU (Line 24).

Within each loop, CDRU first dequeues the best candi-
date (Line 6) and checks if it resolves all known conflicts
(Line 7). If not, an unresolved conflict currCFT will be
returned by function UNRESOLVEDCONFLICTS. This unre-
solved is used by function EXPANDONCONFLICT (Line 21)
to expand the current candidate, Cand. The child candidates
of Cand will then be queued.

If Cand resolves all known conflicts, CDRU then pro-
ceeds to check if it is complete by comparing its assign-
ments and unassigned variables in the CDRU (Line 9). If
Cand is incomplete, CDRU will expand it using function
EXPANDONVARIABLE (Line 18), which creates child can-
didates using the domain values of an unassigned variable. If
Cand is complete and resolves all known conflicts, CDRU
will check its controllability using function CONTROLLA-
BILITYCHECK (Line 10). If a new conflict is returned by the
function, it will be added to the list of known conflicts for ex-
panding candidates. CDRU will also put Cand back to the
queue for future expansion since it now has an unresolved
conflict (Line 15).

Conflict Learning For Strong Controllability
For CCTPs, a conflict is an inconsistent set of requirement
constraints. It can be detected by negative loop detection al-
gorithms: a negative cycle in the equivalent distance graph
of a grounded CCTP can be mapped to a set of conflict-
ing constraints. This is because of the one-to-one mapping
between the distance edges and the lower/upper temporal
bounds of constraints. However, this method does not ap-
ply to controllability checking algorithms. Due to the reduc-
tion procedures in both strong and dynamic controllability
checking algorithms, the one-to-one mapping property is not
preserved: during reductions, new distance edges are cre-
ated and added to the graph, and the weights of some edges
are modified. We cannot extract the sets of conflicting con-
straints from the negative loops in reduced graphs directly.

The key to solve this issue is to understand what con-
straints contributed to each distance edge in the reduced
graph. We name these constraints the supporting con-
straints. The supporting constraints for an edge include the
source constraint and the constraints that modify the weight
of the edge during reduction. We extend the polynomial time
algorithm in (Vidal and Fargier 1999) with additional proce-
dures for recording supporting constraints during reductions
(Algorithm 2). This extension enables the algorithm to ex-
tract a conflict from a negative loop in the reduced graph.
The input to it is a grounded CCTPU without any unassigned
variables. There are three major steps in this algorithm:
• Map the grounded CCTPU to its equivalent distance graph (Line

1) and record the supporting constraint of each distance edge
in the graph with its source, which is either an upper or lower
bound of a temporal constraint.

• Reduce all non-contingent edges that start (Line 14) or end (Line
5) at an uncontrollable node using the triangular reduction rule.
If constraint A is reduced to C through B, the supporting con-
straints of C will be updated to the union of the supporting con-
straints of A and B (Line 11, 20).

• After the reductions, we run the Bellman-Ford algorithm on the
reduced graph (Line 24). If a negative loop is detected, we col-
lect the supporting constraints of all its edges into a set (Line 25)
and return it as a conflict that makes the problem uncontrollable.
Otherwise, the function returns null to indicate that the problem
is strongly controllable.

Input: A grounded CCTPU T = 〈V,E,Eu, Lv, Lp〉.
Output: A conflict 〈A,E′〉 that makes T uncontrollable
Algorithm:

1 DG←GETDISTANCEGRAPH(T);
2 ReductionQ←NONCONTINGENTEDGES(DG);
3 while ReductionQ 6= ∅ do
4 A←Dequeue(ReductionQ);
5 if END(A) is uncontrollable then
6 B ← CONTINGENTEDGEENDAT(END(A));
7 A′ ← REDUCE(A,B);
8 C ←GETEDGE(START(A),START(B));
9 if WEIGHT(A′) <WEIGHT(C) then

10 C ← A′;
11 SUPPORTS(C)← SUPPORTS(A,B);
12 ReductionQ← ReductionQ ∪ C;
13 endif
14 else if START(A) is uncontrollable then
15 B ← CONTINGENTEDGEBEGINAT(START(A));
16 A′ ← REDUCE(A,B);
17 C ←GETEDGE(END(B),END(A));
18 if WEIGHT(A′) <WEIGHT(E) then
19 C ← A′;
20 SUPPORTS(C)← SUPPORTS(A,B);
21 endif
22 endif
23 end
24 NCycle←BELLMAN-FORD(DG);
25 return GETSUPPORTS(NCycle);

Algorithm 2: Strong controllability checking algorithm

We demonstrate this process using a temporal network
with four constraints (Figure 4.1): A and B are contin-
gent constraints with uncontrollable durations; C and D are
requirement constraints. First, we map the network to its
equivalent distance graph (Figure 4.2). Each distance edge
in the graph is labeled with its weight and supporting con-
straints. The subscript after the constraint name, either U or
L, specifies if the distance edge is generated from the upper
or lower bound of the constraint.

There are two non-contingent edges in the graph, S2-
S1 and E1-E2, and E1-E2 starts and ends at uncontrollable
nodes (denoted by squares in the graph). We first reduce it
using edge S2-E2, a contingent edge that shares the same
end node with E1-E2. The result is a new edge E1-S2 with
weight -2 and supporting constraints CL, BU , which are the
union of the supporting constraints of E1-E2 and S2-E2
(Figure 4.3). Since E1-S2 starts at an uncontrollable node,
we can further reduce it using E1-S1. The result is edge
S1-S2 with weight 3 and supporting constraints CL, BU , AL

(Figure 4.4).

E1

E2

S1

S2

D:
≥4

 C:
≥0

A:[5,10]

B:[1,2]

E1

E2

S1

S2

-4:DL 0:CL

10: AU

-5: AL

2: BU

-1: BL

1. 2.

E1

E2

S1

S2

-4:DL
 -2:CL,BU

10: AU

-5: AL

2: BU

-1: BL

4. 3.
E1

E2

S1

S2

-4:DL 3:CL,BU,AL

10: AU

-5: AL

2: BU

-1: BL

Figure 4: Supports recording during triangular reductions

It can be seen from the reduced graph that there is a neg-
ative cycle of two edges: S1-S2 and S2-S1. The negative
cycle indicates that the original STNU is not strongly con-
trollable, and the supporting constraints of these two edges,
{AL, BU , CL, DL}, are in conflict and cause the failure. The
negative value of the conflict is -1.

Using this algorithm for checking strong controllability
and extracting conflicts does not add much overhead: it takes
the same order of magnitude in time compared to consis-
tency checking algorithms. Given a graph with V nodes and
E edges, there will be at most 2E reductions and support
constraint recordings. The time complexity of strong con-
trollability is thus the same order of magnitude as consis-
tency checking. Both are dominated by the O(V E) negative
cycle detection.

Conflict Learning For Dynamic Controllability
Our approach for learning conflicts from dynamic control-
lability checking algorithm is similar to that for strong con-
trollability. We extend the fastDCcheck algorithm in (Mor-
ris 2006) with an additional step in its reduction procedures
to record the supporting constraints of reduced edges. Its
pseudo code is presented in Algorithm 3.

An STNU is dynamically controllable if and only if it
does not have a semi-reducible negative cycle (Morris 2006).
The fastDCcheck algorithm is designed based on this theo-
rem. It converts the STNU to an equivalent distance graph
of normal form (Line 1) and identifies all negative paths
that start with a lower-case edge, called moat paths, through
propagations (Line 6). The input STNU is determined to
be dynamically controllable if none of these negative paths
leads to a semi-reducible negative cycle (Line 3, 17).

During the reduction of moat paths, we record the sup-
porting constraints for each reduced edge (Line 9). If the
ALLMAXCONSISTENT function captures a negative cycle
in the reduced graph, it will return a conflict that collects
the supporting constraints of all edges in the cycle. There
are five types of reductions in this procedure (Morris and
Muscettola 2005; Morris 2006). We demonstrate the sup-
ports recording process for each of them in Figure 5.

Checking dynamic controllability and extracting con-
flicts is significantly harder than that for strong controllabil-
ity. The fastDCcheck algorithm is currently the fastest DC
checking algorithm with a complexity of O(N4), which is

Input: A grounded CCTPU T = 〈V,E,Eu, Lv, Lp〉.
Output: A conflict 〈A,E′〉 that makes T uncontrollable
Algorithm:

1 DG←GETNORMALDISTANCEGRAPH(T);
2 for 1 to K do
3 NCycle←ALLMAXCONSISTENT(DG);
4 if NCycle == null then
5 for E in LOWERCASEEDGES(DG) do
6 moatPaths←PROPAGATE(E);
7 for Path in moatPaths do
8 E′ ←REDUCE(E,Path);
9 SUPPORTS(E′)← SUPPORTS(E,Path);

10 ADDTOGRAPH(E′, DG)
11 end
12 end
13 else
14 return GETSUPPORTS(NCycle);
15 endif
16 end
17 NCycle←ALLMAXCONSISTENT(DG);
18 return GETSUPPORTS(NCycle);
Algorithm 3: Dynamic controllability checking algorithm

Upper-Case: A C D adds A D
B:x y B:(x+y)

SCA SDC SCA U SDC

Lower-Case: A C D adds A D
x c:y x+y

SCA SDC SCA U SDC

Cross-Case: A C D adds A D
B:x c:y B:(x+y)

SCA SDC SCA U SDC

No-Case: A C D adds A D
x y x+y

SCA SDC SCA U SDC

Label-Removal: A C adds A C
B:x x

SCA SCA

Figure 5: Supports recording in fastDCcheck reductions
two orders of magnitude higher than checking strong con-
trollability. Recording supports during reductions does not
increase the overall complexity of the algorithm. To improve
efficiency, the algorithm can be terminated and return true
after a no-reduction iteration. This is similar to the imple-
mentation in (Morris and Muscettola 2005) and will not af-
fect the correctness of the results.

Resolving Conflicts with Contingent Constraints
CDRU uses the resolutions to unresolved conflicts to ex-
pand the search tree. There are three options for resolving a
conflict that includes both requirement and contingent con-
straints:

1. Changing assignments to deactivate constraints in the conflict.
2. Relaxing the temporal bounds of requirement constraints.
3. Tightening the temporal bounds of contingent constraints.

The conflict resolution process, implemented as the EX-
PANDONCONFLICT function, is separated into two stages.
The first stage implements the first option: resolving con-
flicts by changing assignments. This is identical to that in
BCDR: we look for alternative assignments that can deacti-
vate one or more constraints in the conflict, and use them to
generate new candidates.

The second stage implements option 2 and 3. We compute
the continuous relaxations to the relaxable constraints in the
conflict. In the reduction process of both strong and dynamic
controllability checking algorithms, the weights of support-
ing constraints are combined linearly: addition for require-
ment constraints and subtraction for contingent constraints.

In addition, only constraints that modifies the weights of re-
duced edges are recorded as supports. Therefore, the change
to any constraint in a conflict will have equal effect on its
negative cycle. If the amount of modification we applied
to the constraints in a conflict exceeds the negation of its
negative value, its negative cycle will be eliminated and the
conflict is then resolved. This allows us to formulate an op-
timization problem with linear constraints to compute pre-
ferred continuous relaxations. The variables in this prob-
lem are the modifications applied to the temporal bounds of
relaxable constraints. They are non-negative and their sum
must compensate the negative value of the conflict.∑

i∈Conflict(∆UBi + ∆LBi) ≥ −1×NegativeV alue.

For a contingent constraint eu, ∆LBu and ∆UBu repre-
sent the amount of tightening. That is, the lower bound will
increase ∆LBu while the upper bound will decrease ∆UBu

in the relaxation. We add an additional linear constraint for
each contingent constraint in the conflict to prevent over-
tightening: ∆LBu + ∆UBu ≤ UBu − LBu. For require-
ment constraints, these variables represent the amount of re-
laxations, and will make the lower time bounds lower and
the upper time bounds higher. In addition, the semi-convex
objective function of the problem is defined over these vari-
ables and minimizes the total cost of relaxing and tightening
constraints:

min
∑

i∈Conflict feiu(∆UBi) + feil(∆LBi)

For example, the conflict in Figure 4 contains two contingent
constraints and two requirement constraints. The negative
value for this conflict is -1. We can construct the following
optimization problem to compute its continuous relaxations.
The second and third constraints prevent over-tightening to
contingent constraints A and B.

min(fA(∆AL) + fB(∆BU) + fC(∆CL) + fD(∆DL)).
s.t. ∆AL + ∆BU + ∆CL + ∆DL ≥ 1;

∆AL ≤ 5; ∆BU ≤ 1;

CDRU constructs a new candidate using the best contin-
uous relaxation, if one exists. This candidate and the candi-
dates generated in the first stage will be returned by function
EXPANDONCONFLICT to expand the search tree.

Application and Experimental Results
The CDRU algorithm has been incorporated within a mis-
sion advisory system, called Uhura, for helping oceanog-
raphers plan activities in their expeditions. During expedi-
tions, the lead oceanographer has a list of prioritized scien-
tific goals, which require the use of multiple deep-sea vehi-
cles and sensors for sampling and mapping. However, there
is uncertainty in the durations of their operations. Due to un-
expected weather changes and unfamiliar terrain, predicting
the times for completing activities and goals is infeasible. It
is difficult for the oceanographer to determine which goals
are feasible and to make a plan that accounts for each of the
possible uncertain outcomes.

Uhura significantly reduced their workload and improved
the planning process. It can quickly check the feasibility of
expedition plans with uncertain activities, and make optimal
decisions between alternatives. If a plan is over-subscribed,

Uhura can expose its conflicts to the user and suggest pre-
ferred alternatives for them to make more informed deci-
sions. With its assistance, the oceanographers can make sure
that all critical goals can be achieved in uncertain situations.

In the rest of this section, we present empirical results that
compare the performance of the following algorithms.
• BCDR: the consistency-based relaxation algorithm.

• CDRU-SC: CDRU for strongly controllable relaxations.

• CDRU-DC: CDRU for dynamically controllable relaxations.

As presented before, a controllable relaxation that accounts
for uncertain durations will be much less risky compared to
a relaxation that only restores consistency. However, such
a relaxation may be of lower utility, and computing it may
take much more time. Determining which approach to use
for a given problem is a trade-off between efficiency and
solution quality. We would like to provide some insights into
the selection of approaches with the experiments.

Experimental Setup
We generate the test cases using a car-sharing network sim-
ilar to (Yu and Williams 2013). The uncertain driving times
between locations are modeled by contingent constraints.
The stay at each location and the length of car reservation
remain controllable. All constraints are relaxable and are as-
sociated with linear cost functions with different slopes. This
makes it easy for us to compare the quality of solutions gen-
erated by the algorithms, since all test cases are solvable by
three algorithms. We use the following parameters to char-
acterize a test case:

Nu: number of users per car, 1 ≤ Nu ≤ 12;
Nc: number of cars available, 1 ≤ Nc ≤ 10;
Nact: number of activities per reservation, 1 ≤ Nact ≤ 10;
Nopt: number of alternatives per activity, 2 ≤ Nopt ≤ 10.

Each test case has Nu × Nc × Nact discrete variables and
Nu×Nc×Nact×4Nopt constraints. 50% of the constraints
are contingent constraints used for modeling driving times
between locations. The locations in the tests are randomly
sampled from a Boston map. The driving times between
locations are computed using two different driving speeds:
VH :[20kph, 30kph] for express ways, and VL:[7kph, 15kph]
for city roads. Finally, the cost function of each relaxable
constraint is linear with a gradient between [0,2] per minute.
The rewards for choices of locations are in [0,500].

We generated two groups of test cases, each contains 2400
CCTPUs. The timeout for each test is 20 seconds, which is
usually the maximum time a user would wait for a trip plan-
ner result. The first group is used to evaluate the efficiency of
three algorithms in finding feasible solutions. The CCTPUs
in this group have both choices and relaxable constraints.
The second group is used to compare the solution quality of
the three algorithms: the best solutions found by them may
have different utility due to their different conflict detection
and relaxation procedures. Nopt is set to 1 to remove choices
from tests in this group.

Results
First, we evaluate the runtime performance of the three al-
gorithms using the first group of tests. Since choices and al-

ternative destinations are allowed, there are many more con-
straints in these tests than the tests in group 2. We run each
algorithm twice with different configurations. The first con-
figuration uses a priority queue (Figure 6a). It returns the
best solution and is useful when the user needs a solution
of the highest quality. The second configuration does depth-
first enumeration (Figure 6b), which is usually much faster
but might return poor quality solutions. The x-axis repre-
sents the number of constraints in the test, and each dot in
the graphs represents the averaged runtime across all tests in
that category.

(a)

(b)

Figure 6: Benchmark results for test group 1
In both depth-first and best-first tests, CDRU-DC takes

much more time than the other two algorithms. This is
due to the slow reduction process of dynamic controllabil-
ity checking and conflict extraction, whose complexity is
two orders of magnitude higher than consistency and strong
controllability checking. Compared to CDRU-DC, generat-
ing strongly controllable relaxations using CDRU-SC takes
much less time. In theory, checking strong controllability
and extracting conflicts is up to two times slower than check-
ing consistency. However, the actual difference in time is
bigger, since CDRU-SC has to resolve more conflicts than
BCDR. This is demonstrated in the second group of tests.

Next, we compare the quality of solutions generated by
the three algorithms using the second group of test cases.
The results are presented in Figure 7. Again, CDRU-DC
takes more time than the other two algorithms and times out
on problems with more than 500 constraints. We identified
628 out of the 2400 test cases that are solved by all three
algorithms within the time limit, and only present their re-
sults in the graph for comparison (Figure 7a). We measure
the quality of a solution by its utility, which is computed by
subtracting the costs of its relaxations from the rewards of its
assignments. For easier comparison, we present the results
using two differences between the solution utilities: BCDR
over CDRU-DC and CDRU-DC over CDRU-SC.

The solutions generated by BCDR have the highest utility,
followed by CDRU-DC. The solutions generated by CDRU-
SC have the lowest average utility. In order to satisfy the un-
controllable outcomes of contingent constraints and restore
the controllability of an over-constrained CCTPU, CDRU-
SC and CDRU-DC add or tighten constraints during the
reduction process. The solution space of their problems is

(a)

(b)

Figure 7: Benchmark results for test group 2

more restricted compared to BCDR. As a result, their best
solutions are usually of lower utility.

Due to the less conservative execution strategy of dy-
namic controllability, CDRU-DC imposes less constraints
than CDRU-SC and allows larger solution space. This can
be measured by the number of conflicts detected and re-
solved by each algorithm before returning the solution (Fig-
ure 7b). The number of conflicts determines how constrained
the optimization problem is while computing continuous re-
laxations: the more conflicts need to be resolved, the more
constraints in the optimization, which require more relax-
ations to satisfy. This is why the solutions of CDRU-SC are
of lower quality: on average, it has to resolve three times
more conflicts than CDRU-DC before returning the solution.

In summary, both CDRU-SC and CDRU-DC can resolve
over-constrained CCTPUs and enumerate relaxations to re-
store controllability. CDRU-SC runs significantly faster due
to its simpler reduction process, while the quality of the re-
laxations generated by CDRU-DC is higher. If both static
and dynamic execution strategies are acceptable, the deci-
sion on which algorithm to use is then determined by the
trade-off between time and solution quality. In addition,
best-first enumeration can be very time-consuming without
an efficient heuristic function for guiding the search process.
For large-scale problems, it is better to start with depth-first
expansion and find a feasible solution first, then continue to
improve it using a branch & bound approach.

Contributions
In this paper, we presented the Conflict-Directed Relaxation
with Uncertainty algorithm, the first approach that resolves
over-constrained conditional temporal problems with un-
controllable durations. Compared to previous relaxation al-
gorithms, which only restore temporal consistency, CDRU
generates continuous relaxations restoring both strong and
dynamic controllability. It extends the conflict learning and
resolution process in previous relaxation algorithms to ac-
count for contingent constraints, and incorporates this new
capability into a conflict-directed framework for efficient
enumeration of solutions. CDRU has been incorporated in a
mission advisory system for activity planning and schedul-
ing in oceanographic expeditions. In addition, experimental
results have demonstrated its effectiveness in resolving large
and highly constrained real-world problems.

Acknowledgments
Thanks to David Wang, Enrique Gonzalez, Julie Shah, Scott
Smith and Ronald Provine for their support. This project is
funded by the Boeing Company under grant MIT-BA-GTA-
1. Additional support was provided by the DARPA meta pro-
gram, under contract number 6923548.

References
Matthew Beaumont, Abdul Sattar, Michael Maher, and John
Thornton. Solving overconstrained temporal reasoning
problems. In Proceedings of the 14th Australian Joint Con-
ference on Artificial Intelligence (AI-2001), pages 37–49,
2001.
Rina Dechter, Itay Meiri, and Judea Pearl. Temporal con-
straint networks. Artificial Intelligence, 49(1-3):61–95,
1991.
Luke Hunsberger, Roberto Posenato, and Carlo Combi. The
dynamic controllability of conditional stns with uncertainty.
In Proceedings of the Planning and Plan Execution for Real-
World Systems: Principles and Practices (PlanEx) Work-
shop, pages 121–128, 2012.
Michael D. Moffitt and Martha E. Pollack. Partial constraint
satisfaction of disjunctive temporal problems. In Proceed-
ings of the 18th International Florida Artificial Intelligence
Research Society Conference (FLAIRS-2005), 2005.
Paul Morris and Nicola Muscettola. Temporal dynamic
controllability revisited. In Proceedings of the 20th Na-
tional Conference on Artificial Intelligence (AAAI-2005,
pages 1193–1198. AAAI Press / The MIT Press, 2005.
Paul Morris. A structural characterization of temporal dy-
namic controllability. In Proceedings of the 12th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP-2006), pages 375–389, 2006.
Bart Peintner, Michael D. Moffitt, and Martha E. Pol-
lack. Solving over-constrained disjunctive temporal prob-
lems with preferences. In Proceedings of the 15th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2005), 2005.
Bart Peintner, Kristen Brent Venable, and Neil Yorke-Smith.
Strong controllability of disjunctive temporal problems with
uncertainty. In Proceedings of the 13th International Con-
ference on Principles and Practice of Constraint Program-
ming (CP-2007), pages 856–863, 2007.
Kostas Stergiou and Manolis Koubarakis. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence, 120:248–253, 1998.
Ioannis Tsamardinos and Martha E. Pollack. Efficient solu-
tion techniques for disjunctive temporal reasoning problems.
Artificial Intelligence, 151(1-2):43–90, 2003.
K. Brent Venable and Neil Yorke-Smith. Disjunctive tem-
poral planning with uncertainty. In Proceedings of the
19th International Joint Conference on Artificial Intelli-
gence (IJCAI-05), pages 1721–1722, 2005.
Thierry Vidal and Helene Fargier. Handling contingency in
temporal constraint networks: from consistency to controlla-

bilities. Journal of Experimental and Theoretical Artificial
Intelligence, 11:23–45, 1999.
Brian C. Williams and Robert J. Ragno. Conflict-directed
A* and its role in model-based embedded systems. Jour-
nal of Discrete Applied Mathematics, 155(12):1562–1595,
2002.
Peng Yu and Brian Williams. Continuously relaxing over-
constrained conditional temporal problems through gener-
alized conflict learning and resolution. In Proceedings of
the 23th International Joint Conference on Artificial Intelli-
gence (IJCAI13), pages 2429–2436, 2013.
Zipcar. An overview of zipcar. http://www.zipcar.
com/about, 2013. Accessed: 2013-04-07.

