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Abstract

Humans and robots working together can efficiently complete
tasks that are very difficult for either to accomplish alone. To
collaborate fluidly, robots must recognize the humans’ inten-
tions and adapt to their actions appropriately. Pike is an online
executive introduced previously in the literature that unifies
intent recognition and plan adaptation for temporally flexible
plans with choice. While successful at coordinating human-
robot teams, Pike had limited robustness to temporal uncer-
tainty about the durations of actions. This paper presents two
extensions to Pike that make it much more robust to tempo-
ral uncertainty. First, we extend Pike to handle uncontrollable
action durations by enforcing strong temporal controllability.
We accomplish this by generalizing standard strong control-
lability algorithms for STNUs to plans with choice. Second,
in case a realized duration exceeds even the specified bounds
and makes the entire plan infeasible, we attempt to intelli-
gently negotiate with a human to relax some of the tempo-
ral constraints and restore feasibility, rather than immediately
failing and halting execution. This negotiation is guided by a
state-of-the-art conflict directed relaxation algorithm, which
has previously only been used offline.

Introduction
Robots excel at perfoming repeated, monotonous tasks, but
cannot perform many tasks that humans can. On the other
hand, humans need flexibility as demonstrated, e.g., by the
Skylab 4 strike, due to overly rigid schedules (Douglas
1991). This makes controlling a team of robots working to-
gether with a human a useful, yet challenging, objective.
Pike (Levine and Williams 2014) is an online executive
which unifies intent recognition and plan adaptation for tem-
porally flexible plans with choice. It is responsible for mak-
ing choices for the robots in the plan, monitoring execution,
and dispatching actions at the appropriate times. Pike has
been successfully used to coordinate human-robot teams, as
demonstrated on a team of three robots and a human in an
airplane manufacturing scenario (Burke et al. 2014). How-
ever, the previous version of Pike did not provide any sort of
guatanteed robustness to temporal uncertainty.

Several other model-based executives interleave planning
and online execution to improve robustness (Haigh and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Veloso 1998; Ambros-Ingerson and Steel 1988; Ayan et al.
2007; Finzi, Ingrand, and Muscettola 2004; Alili et al. 2009;
Clodic et al. 2009). Others use temporally flexible represen-
tations to further improve robustness (Lemai and Ingrand
2004; Py, Rajan, and McGann 2010; Chien et al. 2000;
Shah, Conrad, and Williams 2009). However, these often
treat the human as a disturbance, rather than a teammate.

The SAM executive (Pecora et al. 2012) explicitly con-
siders both human activity recognition and appropriate robot
adaptations in a single framework with temporal flexibility.
Pike differs from SAM in that instead of generating temporal
plans for robot adaptations online, it uses an a-priori known
temporal plan with choices, allowing a great deal of prepro-
cessing to be performed offline at compile time. This trades
some generality for fast, reactive online performance.

Pike takes as input a task specified as a temporal plan
network with uncertainty (TPNU), an extension of temporal
plan networks (Kim, Williams, and Abramson 2001). TP-
NUs describe which activities should be executed, with a set
of temporal constraints between them. Each activity has a
duration, which might be controllable by Pike, or uncontrol-
lable, in which case we only know a lower and upper bound
on its duration. TPNUs also contain choices as to how ex-
ecution proceeds. As with durations, choices can either be
controllable, in which case the system makes the choice, or
uncontrollable, in which case an external agent makes the
choice. In the context of teamwork, we assume that these un-
controllable choices are made by a friendly teammate, who
will not make a choice which causes the task to fail. While
Pike can handle uncontrollable choices made by a teammate,
it assumes that all activity durations are controllable, and
thus has limited robustness to temporal uncertainty.

In this paper, we describe two extensions to Pike, which
increase its robustness in the face of temporal uncertainty.
First, we describe how to guarantee that Pike’s choices lead
to a schedule which is consistent for all possible realized
uncontrollable durations, thus ensuring that the plan will be
feasible as long as these action durations are actually within
their specified bounds. However, since in the real world
things might go horribly wrong, actual durations might ex-
ceed even the specified bounds. Our second extension to
Pike is to intelligently negotiate with a human to relax some
of the temporal constraints of the TPNU in order to restore
its feasibility, rather than immediately failing and halting



execution. This negotiation uses the conflict directed relax-
ation under uncertainty (CDRU) algorithm (Yu, Fang, and
Williams 2014), which has previously been used in an of-
fline intelligent decision assistant.

To illustrate how these two extensions make Pike more
robust to temporal uncertainty, we will use the following
running example throughout the paper: consider a scenario
where Pike controls a UAV, which is collaborating with a
human-piloted helicopter. These are both stationed at the
base, and are tasked with searching for a missing vehicle,
which could be in 3 possible locations:A,B, or C. The plan
calls for the UAV to search location A alone, the helicopter
to search location C alone, and for both the UAV and the
helicopter to search location B together. Travelling from the
base to B takes some time between 2 and 4 minutes, trav-
elling between any two other locations takes some time be-
tween 3 and 4 minutes — all durations are uncontrollable.
Finally, the human pilot is not willing to wait for the UAV at
location B for more than 2 minutes.

Background
Before we present our extensions to Pike, we review the def-
initions of temporal plan networks and how Pike works.

Temporal Plan Networks
We begin with a formal definition of a TPNU:
Definition 1. A Temporal Plan Network with Uncertainty
(TPNU) is a 4-tuple, 〈P, V,E,Eu〉, where:

• P = PC ∪ PU is a set of finite domain decision vari-
ables. PC are controllable by the system, while PU are
uncontrollable. Each variable v ∈ P is associated with a
domain dom(v). An assignment to a decision variable is
called a choice.

• V is a set of events representing designated time points.
Each event v is also associated with a guard condition,
guard(v), which is a (possibly empty) set of choices, rep-
resenting their conjunction.

• E is a set of simple temporal constraints between pairs
of events. A simple temporal constraint is of the form
l ≤ vi − vj ≤ u. Some of these represent the execution of
an action, while others correspond to user requirements.
Each constraint e is also associated with a guard condi-
tion, guard(e).

• Eu ⊆ E is a set of uncontrollable durations (also known
as contingent constraints). E \Eu is the set of all control-
lable durations (also known as requirement constraints).

Note that TPNUs contain two sources of uncertainty: un-
controllable decision variables (choices), and uncontrollable
durations. While in general these can both be made adversar-
ially, in this paper we assume that the uncontrollable choices
are made by a cooperative agent, that is, a human working in
a team with our system. Thus, we will focus on controllabil-
ity of the TPNU with regards to temporal uncertainty about
the uncontrollable durations, while attempting to maintain
flexibilty with regard to uncontrollable choices.

Given an assignment to all decision variables, the active
events and constraints are those whose guard conditions are

true. These active events and constraints contitute a Simple
Temporal Network with Uncertainty, or STNU (Vidal and
Fargier 1999) — an extension of Simple Temporal Network,
or STN (Dechter, Meiri, and Pearl 1991) which incorporates
set-bounded uncertainty about durations. Several different
notions of controllability have been defined with regards to
STNUs; we will focus on the notion of strong controllabil-
ity. An STNU is strongly controllable if there exists a sched-
ule for the controllable events, such that for every possible
realization of the uncontrollable durations, all temporal con-
straints are satisfied.

Another important aspect is that actions have conditions,
which must occur at certain points during an action’s exe-
cution, and effects which are caused by the action. We say
that a schedule for an STNU is causally complete if the con-
ditions of each scheduled action are satisfied at the appro-
priate times. Finally, an assignment to all decision variables
that results in a strongly controllable STNU with a causally
complete schedule will be called feasible. A TPNU that has
such a feasible assignent will also be called feasible. A par-
tial assignment to decision variables, which can not be ex-
tended to a feasible assignment is a conflict.

Modelling our running example as a TPNU is straight-
forward. The TPNU contains an uncontrollable choice —
whether the human pilot goes to C or B first, and a con-
trollable choice — whether the UAV goes to A or B first.
The uncontrollable durations in the TPNU correspond to the
possible actions in the plan (e.g., UAV flies from base to
A, UAV flies from base to B, ...). The guard conditions for
each of these are simply the choices that enable them. Fi-
nally, we have a temporal constraint which denotes that the
human pilot is not willing to wait for the UAV for more than
2 minutes.

Pike: An Executive for Human-Robot Teams
We now provide a brief overview of Pike (Levine and
Williams 2014), an online plan executive which can execute
TPNUs. Pike’s function is to assign values to the control-
lable decision variables and temporal durations, based on
previous choices made by the human and robot, precondi-
tions and effects of future actions in the plan, temporal con-
straints, and unexpected disturbances.

Pike takes as input a TPNU to be executed. During exe-
cution, Pike also takes input from a state estimator, which
allows it to respond to unanticipated state disturbances,
and from an activity recognition module, which recognizes
the choices made by the human (i.e., via computer vision
or any other sensing mechanism). Pike uses this informa-
tion to infer possible intents of the human teammates (who
are assumed to be rational and non-adverserial), and make
decisions for the robots consistent with the humans’ past
choices. Using Pike to control robots results in a mixed-
initiative execution in which humans and robots simultane-
ously work and adapt to each other to accomplish a task.

Pike must deal with two different types of constraints:
causal constraints, such as ensuring that the conditions of
the actions in the TPNU are satisfied, and the temporal
constraints in the TPNU. To handle the causal constraints,
Pike extracts labeled causal links from the TPNU, and en-



codes them in an Assumption-based Truth Maintenance Sys-
tem (De Kleer 1986) which allows Pike to efficiently check
whether a choice will definitely violate causal consistency or
not. For complete details we refer the reader to the original
Pike publication (Levine and Williams 2014).

In order to dispatch activities at their proper times, which
may also depend on the choices made, Pike leverages ideas
originally presented in the Drake executive (Conrad 2010).
A labeled all-pairs shortest path (APSP) is computed on
the TPNU, to determine which events occur before which
other events (Conrad, Shah, and Williams 2009). This la-
beled APSP is used as a dispatchable form for execution.

However, Pike assumes that the durations of all actions
are controllable. We illustrate why this is problematic with
a possible execution of our running example. First, assume
the human helicopter pilot chooses to go to B first, and will
get there sometime between 2 and 4 minutes. If Pike then
chooses to send the UAV to A first and then to B, then the
UAV will reach B sometime between 6 and 8 minutes. This
is not a feasible combination of choices, as the human might
reach B in 2 minutes, the UAV would reach B after 4 min-
utes (at least), and the human pilot is not willing to wait for
more than two minutes. In the next section, we explain how
to extend Pike to guarantee strong controllability subject to
uncontrollable set-bounded durations.

Handling Uncontrollable Durations
In this section, we discuss extending Pike to make it robust
to temporal uncertainty. This extension is a pre-processing
step that ensures the strong controllability of the given tem-
poral plan by generating additional temporal constraints.

We start with a review of existing methods for check-
ing the strong controllability of STNUs. Checking whether
an STNU is strongly controllable can be done by mapping
the STNU into an equivalent STN with some additional
temporal constraints (Vidal and Fargier 1999). The key for
checking controllability is to identify what constraints may
“squeeze” the uncontrollable durations, and apply additional
constraints to shrink their ranges in order prevent it. This ap-
proach looks at each requirement constraint (that is, a tem-
poral constraint which is not an uncontrollable duration),
and checks which uncontrollable durations share an event
with it. For each such uncontrollable duration, this approach
adds a new temporal constraint (between the non-shared
events) which ensure that all possible realizations of the
uncontrollable duration are consistent with the requirement
constraint and the added constraint. This new constraint can
be obtained using simple arithmetic between the bounds of
the requirement constraint and the contingent constraint, as
described by Vidal and Fargier (1999).

Our approach extends the above with additional proce-
dures to operate on TPNUs, which contain decision vari-
ables and guards in addition to events and temporal con-
straints. The guarded constraints make it difficult to apply
the above rules, since arbitrary pairs of constraints might
have incompatible guard conditions. In order to apply these
rules to guarded constraints, whenever we add a new tempo-
ral constraint according to the above rules, we set its guard
condition to be the conjunction of the two guards for which

E1

E2

S1

S2

D:≥4
(β)

 
C:≥-2
(α^β)

A:[2,4]
Helo: Base to B

(α)

B:[3,4]
UAV: A to B

(β)

 C'≥0 (α^β)  

E1

E2

S1

S2

D:≥4
(β)

 

A:[2,4]
Helo: Base to B

(α)

B:[3,4]
UAV: A to B

(β)

Figure 1: Original TPNU (left) and Modified TPNU (right)

the rule was applied on. This is similar to the conflict learn-
ing component of CDRU (Yu, Fang, and Williams 2014),
except that they record which original constraints support
each of the derived constraints, in order to be able to resolve
conflicts. We do not need to keep track of this information
explicitly, as the guard condition is enough for our purpose.

The final step is to check the consistency of the modified
TPNU, except that we can now treat each uncontollable du-
ration as if it were controllable — as the additional temporal
constraints ensure that if the modified TPNU is temporally
consistent, then the original TPNU is strongly temporally
controllable. If the TPNU is consistent, Pike will proceed to
reformulate it for execution. If any conflict is detected in the
network, Pike will collect and record the set of guard condi-
tions of constraints in a conflict. During execution, Pike con-
stantly reviews these conflicting sets of choices and avoids
making decisions that will result in any of them.

We demonstrate this procedure on a temporal network of
four constraints extracted from our running example (Fig-
ure 1). Constraints A and B, which represent the traversal
of Helo and UAV to location B, are contingent constraints
with uncontrollable durations. Constraint C and D are both
requirement constraints. C indicates the maximum waiting
time imposed by the pilot, while D represents the minimum
time of travel for the UAV to location A. We simplified the
original network by converting the uncontrollable traversal
time between Base and A to a requirement constraint with
its upper bound. The guard conditions of constraint A, B, C
and D are α, β, α∧β and β, respectively. Guard condition α
encodes the choices of ’Helo goes to Location B first’,while
β is ’UAV goes to Location A first’.

Constraint C starts and ends at contingent time points (de-
noted by squares in the graph), therefore we need to elimi-
nate it through reduction. We start by reducing it through the
upper bound of Constraint B, a contingent constraint that
shares the same start node with C; then through the lower
bound of Constraint A, which shares the same end node with
the reduced constraint after the first step. The result is a new
constraint C’ from S2 to S1 with a lower bound of 0. Its
guard condition is the conjunction of the guard conditions
from constraint A, B and C: α ∧ β. This is inconsistent due
to a negative cycle formed by constraints D (-4) and C’ (0),
and thus Pike discovers that α∧β is a conflict, and will avoid
making this guard true. Thus, if Pike detects that the human
pilot is heading to B first (α), it will dispatch the UAV to B
first as well (¬β). If the human pilot heads to C first (¬α),
then both choices for the UAV are consistent, as the human
will reach B sometime between 6 and 8 minutes, and both
choices for the UAV ensure it reaches B on time.



Handling Unexpected Durations
In the previous section, we explained how Pike can guaran-
tee that the schedule it finds will be feasible assuming that
all action duration realizations are indeed within their uncer-
tainty bounds. Unfortunately, unexpected things often hap-
pen in the real world, which might cause the durations of
some action to fall outside of its uncertainty bounds. In such
a case, Pike may no longer be able to continue executing the
same TPNU, as the TPNU may no longer be feasible. In-
stead of simply halting execution with an error message, we
would like to degrade gracefully, and find a way to continue.

We accomplish this by using the Conflict Directed Relax-
ation with Uncertainty (CDRU) algorithm (Yu and Williams
2013; Yu, Fang, and Williams 2014). CDRU was previ-
ously used in an offline decision assistant, which negotiates
with a human about how to relax the constraints in an over-
subscribed TPNU to restore its feasibility. CDRU uses pref-
erences the human has about what can be relaxed. Given a
TPNU N = 〈P, V,E,Eu〉, these preferences take the fol-
lowing form:

• RE ⊆ E \ Eu is a set of relaxable temporal constraints
whose bounds can be relaxed;

• REu ⊆ Eu is a set of relaxable contingent constraints
whose bounds can be tightened;

• fp : ×p∈P dom(p)→ R+ is a function that maps each as-
signment to every decision variable to a positive reward

• fe : (ei, e
′
i) → r ∈ R+ is a function that maps the fol-

lowing to a non-negative cost.
– the relaxation to a requirement constraint, ei →
e′i, ei ∈ RE;

– or the tightening to a contingent constraint, ei →
e′i, ei ∈ REu;

If Pike encounters an execution failure due to temporal in-
consistency, it will capture the current status of execution as
a TPNU: the choices that were already made (both control-
lable and uncontrollable) and the realized durations of ac-
tions which have already finished are encoded in this TPNU.
It then runs CDRU on this over-subscribed TPNU to attempt
to restore consistency by relaxing some constraints through
a collaborative dialog with the human.

CDRU enumerates relaxations in best-first order of util-
ity. It uses an approach that is based on conflict-directed A∗
(Williams and Ragno 2002), extended to continuous vari-
ables and constraints (Yu and Williams 2013). There are
three major steps in the algorithm:

1. Conflict learning: given the infeasible combination of
choices detected by Pike and CDRU, extract the conflict-
ing sets of temporal constraints that cause the failure.

2. Conflict resolution: compute the optimal continuous re-
laxations for constraints in the conflicts to resolve them.

3. Negotiation with the users: communicate the relaxations
to the users and ask for approval. If any additional require-
ments are given, record them as new conflicts and return
to the second step.

CDRU loops through these three steps and generates new
candidate relaxations until one candidate makes the TPNU
feasible. Within each loop, CDRU looks at the best candi-
date so far, and checks if it resolves all known conflicts. If
not, an unresolved conflict will be learned and used to gen-
erate other candidate relaxations. These candidates are ob-
tained by either setting a decision variable to some value,
or relaxing a continuous constraint which repairs a conflict,
according to RE and REu. If CDRU does not find a con-
trollable relaxation before the candidate queue exhausts, it
will return null indicating that no relaxation exists for the
over-constrained TPNU.

In addition, it is important to explain how the CDRU algo-
rithm interacts with the human. Every time a feasible relax-
ation is identified, the system will present it to the user and
ask for approval. If the user is not satisfied, they can sup-
ply additional requirements and ask for an alternative. Each
new requirement will be recorded as an additional conflict
and all future relaxations generated by CDRU will respect
it. The negotiation will continue until an agreement with the
user is reached. At this point, we can apply the relaxation to
generate a new TPNU, which Pike will then execute.

Currently the system supports two modes of communica-
tions: a graphical user interface and a natural language in-
terface. While finding the right modality for interacting with
the user depends on the application, the environment, and
many other factors, it is beyond the scope of this paper. We
simply assume that some form of interaction is possible.

To illustrate this with our running example, consider the
case that the helicopter pilot heads to C first, gets there in 3
minutes, and then heads toB. The helicopter pilot will reach
B between 6 and 7 minutes from the start. Since the human
started off going to C, Pike sent the UAV to A first, but due
to a completely unexpected and unmodeled storm, it took the
UAV 6 minutes to reach A — a duration which exceeds the
specified bounds. The UAV will reach B sometime between
9 and 10 minutes, thereby violating the pilot’s temporal con-
straint of not waiting for more than 2 minutes. Instead of
halting execution with an error message, our new version of
Pike will negotiate with the human to find a relaxation which
would enable execution to proceed. As the only temporal re-
quirement is the pilot’s, Pike would ask her whether she is
willing to relax her temporal constraint, and wait at most 4
minutes for the UAV. Assuming the pilot agrees, execution
can then proceed.

Conclusion

We have described two extensions to Pike. First, we added
constraints that enforce strong temporal controllability,
which guarantees that as long as the temporal uncertainty
remains “within bounds”, Pike will be able to successfully
execute the plan. Second, we extended Pike to handle the
case where temporal uncertainty goes “out of bounds”, by
negotiating with a human to relax some of the temporal re-
quirements in the plan. These extensions make Pike much
more robust to temporal uncertainty, as demonstrated on a
simple search-and-rescue task.
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