
Towards Personal Assistants that Can Help
Users Plan

Abstract. Intelligent personal assistants, such as Siri and Google Now,
are pervasive, and can help users with a variety of requests such as
checking the weather, recommending restaurants, getting directions, and
more. However, the usefulness of these personal assistants quickly dimin-
ish when presented with requests that are no longer limited to a single
goal or activity, such as a device command or a straight-forward informa-
tion lookup. For example, these assistants cannot help users plan a night
out after a hard day at work, which may involve a dinner and a movie.
They do not understand that these complex requests involve multiple
goals and activities with interrelated (and even competing) constraints
and preferences that must be met accordingly.
In this paper, we present an intelligent personal assistant, called Uhura,
that handles requests involving multiple, interrelated goals and activities
by efficiently producing a coherent plan. Uhura achieves this by inte-
grating a collaborative dialog manager, a conflict-directed planner with
spatial and temporal reasoning capabilities, and a large-scale knowledge
graph. We also present a user study that assesses the usefulness of the
plans produced by Uhura in urban travel planning, and show that Uhura
performs well on a wide range of scenarios.

1 Introduction

People are now using intelligent personal assistants for many day-to-day tasks.
For example, we use Siri, Google Now or Cortana to send messages, check
weather and find restaurants. Many of these assistants support both verbal and
visual communications to make the interaction simpler. However, their func-
tions are limited to simple commands and information retrieval tasks. None of
them can understand user requests involving multiple goals and activities, which
require planning and scheduling capabilities to properly fulfill.

There is also much research on advanced end-to-end personal assistants, but
most of these assistants also do not support planning. For example, [18] reports
an end-to-end personal assistant framework, but their work is focused on proac-
tivity and task management. [17] and [7] report end-to-end personal assistants
for TV program discovery, but these assistants are unable to plan (and hence
cannot support complex user requests involving interrelated goals and activities).
[3] reports a personal assistant that helps reduce email overload, but again, this
assistant cannot support user requests that require planning. Finally, the human-
machine collaborative planning prototype system developed by [1], and the task
and time management assistant presented in [9] both support planning, but can
only account for temporal and spatial constraints.



2

In contrast, our goal is to develop a personal assistant, called Uhura, that
supports complex user requests that require planning (e.g., take kids out for a
play date). Uhura can also consider semantic constraints (e.g., an action movie
with Tom Cruise, a Greek restaurant with a good wine list), which occur fre-
quently in many day to day scenarios. It achieves these benefits by uniquely
utilizing three distinct components: Knowledge Base, Planner, and Collabora-
tive Dialog Manager (CDM). First, Uhura uses a knowledge base that provides
the data necessary (e.g., road condition, restaurants, movies, etc.) to formulate
candidate plans that meet the users’ semantic, temporal and spatial constraints.
Second, Uhura integrates a dialog manager and a knowledge base with a planner
that supports temporal and spatial reasoning, similar to the ones used in tourist
assistant systems [15]. This allows Uhura to support semantic constraints as well
as temporal and spatial ones. If there are competing requirements, the Planner
will propose relaxations for them, and negotiate with the user until a resolu-
tion is reached. Finally, Uhura uses a dialog manager to: 1) serve as a mediator
between the planner and knowledge base; 2) maintain the context of the inter-
action with the users along with their goals; 3) communicate with the users in a
natural way. Results from a user study demonstrate the effectiveness of Uhura
in helping users plan everyday tasks, especially in over-subscribed scenarios. In
this paper, we discuss the roles of the above components and how we integrate
them to assist planning.

2 Example

Consider a scenario in which a user works with Uhura to make a trip plan for an
evening outing. The user plans to leave the office with a friend at 6pm, have din-
ner at a nice French restaurant and watch an animation movie. The user needs to
be home before 9:30pm, since that is when the babysitter leaves. The trip plan-
ning problem is challenging since there is heavy traffic on the way, which may
make some constraints in the user’s overly packed evening infeasible. Uhura’s
task is to work out a robust plan with the user, which includes the choices for
restaurant and movie showing, the sequence of these activities, and appropriate
adjustments to the timing requirements, if necessary. During the first part of the
conversation, the user communicate with Uhura about all her goals and require-
ments for the trip.

User: I am going on an outing trip with friends this evening.

Uhura: OK, when are you planning to leave office.

User: 6pm. Note that I have to be home before 9:30pm.

Uhura: What would you like to do this evening?

User: I want to watch an animated movie tonight, and eat at a French restaurant.

Uhura: Anything else?

User: No, that’s it.

Given this information, CDM, the dialog manager in Uhura, creates a Qual-
itative State Plan (QSP, [6]) to capture all tasks and requirements. QSP is an
abstract plan that encodes all the desired states the user would like to achieve,



Towards Personal Assistants that can Help Users Plan 3

and the temporal requirements between them. Graphically, a QSP can be repre-
sented by a node-edge graph: each node represents an event in the plan, which
is a unique point of time; each arc represents an episode, which can be ei-
ther a goal state to achieve, or a temporal constraint that restricts the duration
between time points. The semantic meaning of a goal state, such as animated
movie tonight, is encoded as a set of first-order logic constraints. These FOL
constraints capture all the user requirements that cannot be modeled by only
using temporal or spatial constraints.

Leave Office
18:00

Arrive Home

< 210 mins

Arrive
Cinema

Leave
Cinema

Animation Movie

Arrive
Restaurant

Leave
Restaurant

French Restaurant

Fig. 1. A QSP for the user’s trip

Leave)Office
18:00

Arrive)Home<)210)mins

20:00)Hotel)Transylvania)
2)at)AMC)16)F89)mins)

19:30)Hotel)Transylvania)
2)at)AMC)16)F89)mins)

20:00)The)Peanuts)
Movie)at)AMC)20

F90)mins)

Le)Papillon)F75)mins)

La)Fontaine)F75)mins))

Fig. 2. Expanded QSP with grounded tasks

For example, the QSP for the user’s evening trip is shown in Figure 1. There
are six events in the graph, and each represents a time point associated with
a task or a constraint, such as Arrive Cinema and Leave Office. The two tasks
given by the user, watch an animated movie and dine at a French restaurant, are
highlighted by the bold arcs. The tasks are associated with the following sets of
semantic constraints that encode the genre and cuisine requirements.

– Animated Movie: (film m2) ∧ (surface m3 ’animated’) ∧ (genre m3) ∧
(cwGenre m2 m3)

– French Restaurant: (restaurant r2) ∧ (cuisine r3) ∧ (surface r3 ’French’) ∧
(servesCuisine r2 r3)

In addition, there are four dotted arcs connecting the tasks to the begin-
ning and end of the trip, which represent temporal constraints that encode the
sequencing requirement for the tasks: they must take place after leaving office,
and finish before arriving home. Finally, there is one arc connecting the first and
last events, which encodes the duration constraint of 210 minutes (from 6pm to
9:30pm) for the entire trip.

Once all the goals and requirements have been collected by CDM, it will
pass the semantic constraints for each task to the Knowledge Base, which will
search through the data sources and retrieve candidate options. These options
will then be encoded as alternative episodes for the tasks and added to the QSP.
For example, the expanded QSP for the user’s evening trip is shown in Figure
2. The animated movie task is replaced by three grounded movie showings at
two theaters, while the French restaurant task is replaced by two restaurants.
In the QSP graph, the grounded options for each task share one common start
event, which is represented by a double circle and indicates that the subsequent
episodes are alternatives. In addition, each grounded task is associated with a
duration (highlighted in red). These durations encode the length of the movie
or the average time for dinner.



4

Next, Uhura passes the expanded QSP to the Planner to fill in the details
of the plan, select the candidate for each task, and determine their orders while
meeting the user’s requirements. The result is a complete plan with grounded
activities. In addition, the Planner uses an uncertainty-sensitive scheduling al-
gorithm, which builds contingencies into the plan for likely delay during transit.
If no feasible plan can be found that meets all requirements, as in this example,
the Planner will also try relaxing some constraints or tightening durations in
order to make room for completing all tasks.

For example, one plan for the evening trip is shown in Figure 3. It takes the
user to dinner before movie, and selects La Fontaine for the French restaurant
task and Hotel Transylvania 2 at AMC 16 cinema for the animated movie task.
The planner fills in the driving activities between locations, and estimates the
lower and upper bounds on their durations. Note that these traversal durations
are uncontrollable [16], since the user cannot control exactly how much time
it will take, as opposed to the other temporal constraints. Activities with un-
controllable durations are represented by double arcs in plan graphs. Finally,
the trip duration constraint has been relaxed from 210 minutes to 240 minutes,
which indicates that the user will not be home until 10pm.

Leave)Office
18:00

Arrive)Home
22:00

240)mins

20:00)Hotel)
Transylvania)2)at)
AMC)16)389)mins))

La)Fontaine)
375)mins)))

Drive)from)Office)
to)La)Fontaine

[12,15])

Drive)from)
La)Fontaine)to)

AMC)16)[25,30]

Drive)from)
AMC)16)to)Home

[26,31]

Fig. 3. One plan for the user’s evening trip

Uhura: You may eat at La Fontaine Restaurant then watch the 8pm Hotel Tran-
sylvania 2 at AMC 16. However, you won’t be back until 10pm. Is that OK?

User: No, I have to be home before 9:30pm.

Uhura: OK, then can you shorten your dinner to 45 minutes? If so you may
catch an earlier showing of the movie at 7:30pm, and arrive home before 9:30pm.

User: I prefer to spend at least an hour on dinner.

Uhura: How about leaving work at 5:45pm? I can then find a plan that meets
all other requirements.

User: I am fine with that. Thank you Uhura.

Once a candidate plan is found, Uhura will engage the user, discuss about
the choices made and the relaxations they require. If the users are not satisfied
with the proposed plan, they can ask Uhura to search for the next best one, with
additional constraints that have not been encoded in the problem. This process
continues until Uhura reaches an agreement with the users. In this example, the
user is not satisfied with Uhura delaying the arrival home time or shortening the
dinner, and rejects Uhura’s proposals. Given the additional constraints, Uhura
then computes new plans that respect them.

This example demonstrates the desired features of Uhura as a personal as-
sistant that helps users with planning tasks. It works collaboratively with the
users, generates plans that achieve the goals while respecting their constraints,
and discusses trade-offs with the users in over-subscribed situations. In the fol-



Towards Personal Assistants that can Help Users Plan 5

lowing sections, we present the design and integration of Uhura’s components
that enable these capabilities.

3 System Architecture
Uhura provides the following features to simplify the planning process for the
users: 1) natural language communication; 2) mixed initiative goal-directed in-
teraction; 3) supports for multiple tasks and constraints; and 4) being robust
to temporal uncertainty and over-subscription. They are supported by a co-
ordinated system of three major components (Figure 4): Collaborative Dialog
Manager (CDM), Planner and Knowledge Base. CDM handles the interactions
with users, and elicits their goals and requirements as a Qualitative State Plan
(QSP). It also takes the semantic constraints expressed by the user as well as
the temporal and spatial constraints, and formulates queries for the Knowledge
Base. The results of these queries ground the tasks in the QSP with additional
episodes and constraints. Finally, the expanded QSP is sent to the Planner,
which evaluates the alternatives of each task and produces plans that best meet
the users’ requirements.

Dialog 
Manager

Knowledge 
Base

Planner

Freebase

Restaurants

Movie Showings

Map

User:

QSP

Expanded QSP

Plan

NLU

NLG

Uhura

Fig. 4. The architecture graph of Uhura

3.1 Collaborative Dialog Manager

CDM [11] is an extension to Disco [13], an open source dialog development
framework based on Collaborative Discourse Theory [5, 4, 8], and Sidner’s ar-
tificial language for negotiation [14]. It views a personal assistant dialogue as
a process of plan augmentation, where the purpose of the dialogue is for the
system and the user to collaboratively form a complete sharedPlan in order to
meet the user’s intention. When the user makes an utterance, the system first
attempts to interpret it as one of the built-in utterance types with relation to
the current dialogue, using the semantic representation produced by the natural
language understanding pipeline as its input. Then it attempts to form a meta
plan with the assistance of the recipe library. The recipe library is a collection
of Hierarchical Task Networks (HTNs) that capture the high-level task (goal)
structures and is written in the ANSI/CEA-2018 standard [12]. Here we call
the plan generated by the CDM a meta plan to distinguish it from the user
activity plan generated by the Planner. This meta plan is to be executed by
CDM, and its actions are often meta actions such as accessing the knowledge
base for answering queries, or calling the Uhura planner to find a user activity
plan. If a complete meta plan cannot be constructed, then one of the built-in
utterance generation rule is fired and a system utterance is generated to acquire
necessary information from the user to further the planning process. Some ex-
amples of such system utterance include soliciting missing task parameters and



6

asking to confirm a suggested change of original task parameters. These system
utterances are then turned into natural language by the natural language gen-
eration pipeline, such as ”When are you leaving the office?” and ”How about
leaving work at 5:45pm?”. This cycle of interaction and planning continues until
a complete plan can be formed and the user requests are met.

Figure 5 shows two of the key recipes for our activity planning example do-
main. Here the nodes represent tasks, some of which can be further decomposed,
and others are directly executable. The solid arrows represent decomposition step
relations, while the dotted arrows represent alternative decompositions. Figure
6 shows the meta plan generated as a result of the example dialog shown in the
previous section.

PlanActivities (Constraints)

FindEvent
(Constraints)

FindPlan
(Events)

Repeat till 

no more 

event

FindEvent (Constraints)

FindExhibitionEvent
(Constraints)

FindMealEvent
(Constraints)

event type 

== exhibitionEvent

event type 

== mealEvent

(a) (b)

Fig. 5. Recipes for the example domain

PlanActivities (Constraints)

FindEvent
(Constraints)

FindPlan
(Events)

FindEvent
(Constraints)

FindExhibitionEvent (Constraints) FindMealEvent (Constraints)

Fig. 6. The CDM meta plan from the
example dialog

The plan based approach of CDM puts it as the processing hub of the sys-
tem, whose assembled meta task plan often includes knowledge base querying
(the FindEvent tasks) and Uhura planner invocation (the FindPlan task). On
the other hand, it is also the information hub of the system, since CDM is respon-
sible for assembling all user requests to form legitimate knowledge base queries,
integrating knowledge base query results into a valid QSP input to the Uhura
planner as well as interacting with the user to communicate all the information
generated by Uhura. In order to effectively carry out all these responsibilities,
CDM uses first order logic (FOL) encoded as semantic graphs to store and pro-
cess this vast amount of information from various sources. Figure 7 shows an
example of semantic graph. The green portion is the graph generated from only
the initial user request without further system actions. In the following sections,
we will present how the semantic graph is used to communicate with both the
knowledge base and the planner, and integrate their results.

3.2 Knowledge Base

Uhura uses a large-scale knowledge base to access the world knowledge, such
as restaurants and movie showtimes, to properly construct a plan that satisfies
the user’s request. This knowledge base is constructed from a combination of
open and proprietary sources of content using an ingestion pipeline [10] that
transforms the raw content into RDF triples and performs entity resolution,
that is, merging duplicate entities across different content sources.

The resulting knowledge base can be viewed as a very large knowledge graph,
where the nodes represent entities and the edges represent semantic relations
between these entities. The entities are typed (e.g. “michael jordan” is a basket-
ball player and a person), and a proprietary subsumption hierarchy is used to
organize these types. The semantic relations have domain and range constraints,



Towards Personal Assistants that can Help Users Plan 7

and also capture inverse relationships. Moreover, this knowledge graph can be
efficiently accessed and queried via SparQL, a W3C standard for querying data
represented as RDF triples. Our knowledge base has over 1 billion triples, and the
processing time for each query is typically less than a few hundred milliseconds.

3.3 Planner

The planner fills in the details of the abstract plan generated by CDM and
Knowledge Base, schedules each activity, and adds contingencies for likely delays
during transit. Uhura’s planner is implemented based on a constraint relaxation
algorithm, Conflict-Directed Relaxation with Uncertainty (CDRU, [19]), which
was first developed to solve over-constrained conditional temporal problems with
uncertain durations. The algorithm uses a conflict-directed search strategy to
prune infeasible candidates and find the optimal set of choices. In addition,
CDRU is able to detect competing constraints in the QSPs, generate concise
explanations for the cause of failure, and suggest trade-offs for the users to
resolve the issues.

The Planner takes in a QSP as input, and produces a plan, as well as temporal
relaxations for some constraints if necessary. Formally, we define a Qualitative
State Plan with grounded task options, such as the one presented in Figure 2,
as an 8-tuple 〈P,Q, V,E,RE,Le, fp, fe〉, where:

– P is a set of finite domain variables defined over the alternative options for each
task;

– Q is the collection of domain assignments to P ;
– V is a set of events representing designated time points;
– E is a set of episodes between pairs of events vi ∈ V ;
– RE ⊆ E is a set of relaxable episodes whose temporal bounds can be relaxed;
– Le : E → Q is a function that attaches conjunctions of assignments to P , qi ∈ Q, to

some episodes ei ∈ E, which controls the activation and deactivation of the episodes;
– fp : Q → R+ is a function that maps each assignment to discrete variable, qi ∈ Q,

to a positive reward;
– fe : (ei, e

′
i) → r ∈ R+ is a function that maps the relaxation to relaxable episode

ei ∈ RE, from ei to e′i, to a positive cost.

The planner’s output is a 4-tuple, 〈A,S,R, T 〉, where:

– A is a complete set of assignments to variables in P .
– S is a set of additional assignments that defines a total ordering over tasks in the

QSP.
– R is a set of relaxations for some episodes in RE.
– T is a set of additional episodes that encodes the traversal activities between tasks,

following the order defined by S.

The plan defines a feasible sequence of activities that achieves all tasks spec-
ified in the input QSP, as well as the relaxations required to enable these ac-
tivities. Note that the variables in S and episodes in T are not encoded in the
input QSPs. Instead, they are generated during task sequencing, an important
feature that is not supported by the original CDRU algorithm. We introduce



8

a new global constraint, PATH, into CDRU to provide this capability. PATH
is commonly used in modeling vehicle routing problems: it is one of the global
constraints over discrete variables that ensures the vehicle visits all locations fol-
lowing a valid sequence. For Uhura’s planning problems, we define the PATH
constraint over the task sequence variables, that is, the what to do next variable
for each task. In order to check candidate plans against PATH constraint, we
added an additional PropagatePATH function before the temporal feasibility
checking, which is implemented based on the propagation function introduced in
[2]. This approach is efficient in identifying invalid task sequences and conflicting
assignments, and signaling CDRU to backtrack and try different orders.

4 Approach for Integration
The three major components of Uhura have different responsibilities and appli-
cations, and speak very different languages. The key to an effective integration
is to disintegrate the overall problems properly, assign the subproblem to the
component that has the right reasoning capability, and supply them with the
right set of data. Inside Uhura, CDM is responsible for interacting with the
users and capturing the planning problems from them. It creates and assigns
subproblems that require temporal and spatial reasoning to the Planner, and
subproblems that require semantic reasoning to the Knowledge Base. In this
section, we present the interfaces for CDM to create these subproblems, and
retrieve results from the other two components.

CDM-Knowledge Base Interface CDM often needs access to background
knowledge in order to ground the various events that meet user’s requirements so
that Uhura can generate a satisfactory activity plan for the user. However, CDM
encodes all the event constraints in semantic graph, while the knowledge base
uses SparQL as its query language. Additionally, the semantic graph encodes
only the constraints that the user has expressed so far, while the SparQL query
needed by the knowledge base needs to be very specific and complete with regard
to all the information to be returned. For example, in Figure 7, the green part
shows the original semantic graph generated by CDM that is equivalent to the
user request for “an animated movie”. However, it says nothing about the theater
where the movie is shown, or the date and time of the showing. The acquisition
of this information is essential for the planner to successfully plan for the movie
activity. In order for the two components to talk to each other, we need to bridge
these two discrepancies.

We designed two auxiliary components to address these issues. Based on the
task information from CDM’s task library, a simple query reasoner expands the
original semantic graph with new query target nodes representing any missing
information to be retrieved from the knowledge base in order to completely
ground the requested events. It is also responsible for filling in default informa-
tion such as time and location, if users do not specify them. After the original
semantic graph is thus augmented, a translator maps the FOL predicates that
encode various constraints into SparQL relations so that a valid knowledge base
query can then be generated.



Towards Personal Assistants that can Help Users Plan 9

When the knowledge base returns a list of results that meet all the constraints
specified in the query, CDM in turn needs to integrate these grounded event
instances into its semantic graph. Figure 7 shows an example of the expanded
semantic graph that integrated the two ground instances of the showing of an
animated movie. This expanded semantic graph is also the base for which a QSP
is generated so that the planner can step in and find a valid activity plan. Note
that the system does not search through all candidate options in the knowledge
base: given the current location of the users and the task descriptions, we can
often narrow the domain of possible options down to a few dozen.

m-:Nmovie

m4:Nanimation

7objectDisplayedNm5Nm-H

7cwGenreNm-Nm4H

m5

DISJUNCTION

w.5 w.9

w.6:N.9:4+
w-+:N-+:++

w7:NHotelNTransylvaniaN-
w.7:NTheNPeanutsNMovie

w..:NAMCN-+w8:NAMCN.6

w9

P47A4-556- M.-.A+.4685 P47A489.44 M.-.A98-857

w7

AtimeOfDayOfEventow19ow20L

AequalsoDISUJNCTIONow19L

AobjectDisplayedow19ow17L

AeventsOccursAtow19ow11L

AinLocationow11ow7L

Alongitudeow7LAlatitudeow7L

AequalsoDISUJNCTIONow15L

AtimeOfDayOfEventow15ow16L

Alatitudeow9L Alongitudeow9L

AinLocationow8ow9L

AeventsOccursAtow15ow8L

AobjectDisplayedow15ow7L

AORom5oDISUJNCTIONL

7cwGenreNw.7Nm4H

7cwGenreNw7Nm4H

Fig. 7. Semantic graph with grounded tasks

Leave9
Office
18:00 Arrive9

Home

w7:9Hotel9Transylvania92;9
w8:9AMC916;9w9:9

[37.3255]-121.0147

w17:9The9Peanuts9Movie;9
w11:9AMC920;9w12:9
[37.3891]-121.9829

w16:9[90]90]

w20:9[120]120]

m5 DISJUNCTION

w15 w19

w16:v19:30
w20:v20:00

w7:vHotelvTransylvaniav2 w17:vThevPeanutsvMovie

w11:vAMCv20w8:vAMCv16

w9

437.325562 -121.014685 437.389133 -121.982875

w12

AtimeOfDayOfEventow19ow20L

AequalsoDISUJNCTIONow19L

AobjectDisplayedow19ow17L

AeventsOccursAtow19ow11L

AinLocationow11ow7L

Alongitudeow12LAlatitudeow12L

AequalsoDISUJNCTIONow15L

AtimeOfDayOfEventow15ow16L

Alatitudeow9L Alongitudeow9L

AinLocationow8ow9L

AeventsOccursAtow15ow8L

AobjectDisplayedow15ow7L

AORom5oDISUJNCTIONL

Fig. 8. The QSP generated from a se-
mantic graph branch

CDM-Planner Interface If the users’ problems require any temporal and
spatial reasoning, such as traveling between places, CDM will pass them to the
planner after grounding the tasks with options from the Knowledge Base. The
Planner then evaluates different choices and sequences for the tasks, and gen-
erates plans that meet the users’ requirements. As mentioned in the previous
section, the output from CDM is a set of first order logic expressions encoded
in a semantic graph, while the input to the planner is a set of goals and re-
quirements encoded as a Qualitative State Plan. A mapping needs to be created
between them such that (1) each task’s temporal and spatial requirements can be
extracted from the semantic graph and encoded in the QSP; and (2) the choices
and relaxations in the Planner’s output can be mapped back to the nodes in the
semantic graph, such that CDM can present them to the user.

We take a breadth-first approach to explore the graph, and extract any tem-
poral and spatial information around a task. The exploration starts from the
root of the branch for a task specified by the users, such as m5 in Figure 7. We
then iterate through all its children, which connect to the root through a DIS-
JUNCTION node, to search for grounded candidates from the knowledge base.
A task variable is created for the root node, with the grounded options for the
task as the variable’s domain assignments. Next, we examine the branches under
each of the child nodes to extract details about the grounded option. Every time
an edge with certain labels is visited, such as eventOccursAt and inLocation, a
corresponding function will be executed to extract the data stored in its end



10

node. The data is then associated with the episode for the candidate, either as
name, location, or temporal constraints. Finally, during the exploration, a map
is created from each QSP element to the corresponding semantic graph node.
The map is later used by CDM to interpret the Planner’s solutions.

For example, Figure 8 shows a branch of the semantic graph for a movie task
and the QSP generated from it. The graph encodes two movie showings that
meet the description animation movie. In the equivalent QSP, each of the movie
showings is modeled by an episode, with theaters and their locations. In addition,
the temporal constraints connected to the start event of each episode encode
their start times. The mapping between the nodes in the branch and the QSP
constraint is represented by the node IDs tagged to the episodes’ names, locations
and durations. Once a plan is generated, we can use the mapping to convert
Planner’s decision, such as selecting the episode with node tags w11, w12, w17,
to a natural language output, You can watch The Peanuts Movie at AMC 20.

5 User Study

In this section, we present a user study on the usefulness of Uhura in the con-
text of a personal assistant for managing day-to-day tasks. The user study was
conducted using a web interface, which provides step-by-step guidance for the
users to interact with Uhura. It operates on a set of templates, and will prompt
the users to input the requirements and goals for their trips, such as origin, des-
tination, and desired length of trip. Each time a user provides new trip related
data, the web interface will send it to CDM, which decodes the data and incor-
porates it into a QSP for the user’s trip. Once the user is done providing trip
information, a plan query is sent to Uhura, which starts searching for plans for
the QSP. When a plan is found, it is presented to the users, both visually and
verbally. Finally, if the user is not satisfied, they can send a NextSolution
request to Uhura for a different plan.

There are six sessions in this study, each presenting a different scenario. These
scenarios are based on commonly encountered urban travel problems, such as an
evening outing or a weekend kids playdate. The users are asked to plan for two
or more tasks per session. For example, one scenario is:

Your relatives are visiting today, and you are planning to take them out in
the afternoon. This trip may include a lunch, a movie and possibly a dinner. It
starts from your home, and ends at the airport they are flying out.

At the end of each session, the participants are asked to evaluate the last
plan proposed by Uhura, and grade it on quality and novelty (on a 5 point
Likert scale). The quality score captures the user’s satisfaction with the plan.
The novelty score indicates if the solution is something new to the participant,
5 being very novel and 1 not at all.

Results and Discussion We received results from ten participants. Each par-
ticipant worked on 6 sessions, for a total of 60 sessions. During each session, we
recorded the problems specified by the participants, the number of NextSolution
requests in each session, the solutions generated, and the quality and novelty
scores. In the study, we limited the type of responses from the users to [Yes,No]



Towards Personal Assistants that can Help Users Plan 11

for each plan to simplify the results. With the complete system, the user can
ask for alternatives of one destination, and fine-tune the relaxations for timing
constraints. On average, the urban trips specified by the participants contains
4 tasks, with around 30 options for each. The resulting QSPs have around 500
episodes with a dozen discrete variables, and is usually solved within a few sec-
onds. From the users’ perspective, the delay in response is not longer than many
popular routing applications. The study result is summarized in Table 1.

Session Quality Novelty # of Solutions Generated

1 3.2 (1.40) 3.8 (1.08) 4.8 (6.14)

2 2.4 (1.43) 2.9 (1.22) 4.8 (4.60)

3 2.9 (1.58) 3.9 (0.83) 4.5 (5.30)

4 3.8 (1.54) 3.8 (1.17) 2.9 (2.91)

5 3.3 (1.35) 3.4 (1.20) 2.9 (1.97)

6 3.3 (1.42) 3.8 (1.08) 3.0 (5.37)

Table 1. Average scores and next solution requests in each session (standard deviation)

In general, participants found Uhura to be useful in planning daily tasks.
The plans generated are acceptable in most situations, and the average quality
score is above 3. Participants also gave feedback that Uhura simplified the other-
wise complicated planning tasks. Without Uhura, planning a day trip may take
minutes or even hours. With Uhura, a feasible solution can be found in seconds.
Finally, Uhura occasionally produced plans that are novel to the participants,
as the average novelty scores are above 3 for most scenarios.

On the other hand, we also discovered a few issues related to Uhura’s ar-
chitecture and implementation in the study. Some participants reported that
Uhura is not making good decisions. For example, Uhura may decide to shorten
the dinner time in order to get the participant home on time, while the partici-
pant may care more about spending enough time on dinner. This is the result of
Uhura’s lack of personalized preference model. Some participants also reported
that Uhura occasionally produced nonsensical plans which can easily be avoided
by applying common sense reasoning. For example, one user asked for two meals
(lunch and dinner), and Uhura scheduled them back to back. We believe that
these are the reasons for the large variance in the quality scores, and are impor-
tant issues for us to address in the future.

6 Conclusion

In this paper, we presented Uhura, an intelligent personal assistant that helps
users plan. Uhura coordinates a spectrum of subsystems, including a collabora-
tive dialog manager, a planner and a knowledge base, to support the communi-
cation and solution of complex urban trip planning problems. We also presented
a user study that demonstrates Uhura’s effectiveness. Based on qualitative user
feedback, the users found that Uhura can provide a coherent solution to complex
planning requests. As part of future work, we are working to address limitations
surfaced in the user study. These include better preference models and common
sense reasoning in Uhura’s planning process, which will provide higher quality
plans for the users.



12

References

1. Allen, J., Ferguson, G.: Human-machine collaborative planning. In: Proceedings of
the Third International NASA Workshop on Planning and Scheduling for Space.
pp. 27–29 (2002)

2. Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1–29 (2014), http://dx.doi.org/10.1007/s10601-013-9148-0

3. Freed, M., Carbonell, J., Gordon, G., Hayes, J., Myers, B., Siewiorek, D., Smith,
S., Steinfeld, A., Tomasic, A.: Radar: A personal assistant that learns to reduce
email overload. In: AAAI (2008)

4. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86(2), 269–357 (1996)

5. Grosz, B.J., Sidner, C.L.: Plans for discourse. In: Cohen, P.R., Morgan, J., Pollack,
M.E. (eds.) Intentions in Communication, pp. 417–444. MIT Press, Cambridge, MA
(1990)

6. Leaute, T., Williams, B.C.: Coordinating agile systems through the model-based
execution of temporal plans. In: ICAPS. pp. 22–28 (2005)

7. Liu, J., Cyphers, S., Pasupat, P., McGraw, I., Glass, J.: A conversational movie
search system based on conditional random fields. In: INTERSPEECH (2012)

8. Lochbaum, K.E.: A collaborative planning model of intentional structure. Compu-
tational Linguistics 24, 525–572 (1998)

9. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D.L.,
Morley, D., Pfeffer, A., Pollack, M., Tambe, M.: An intelligent personal assistant
for task and time management. AI Magazine 28(2), 47 (2007)

10. Noessner, J., Martin, D., Yeh, P., Patel-Schneider, P.: Cogmap: A cognitive support
approach to property and instance alignment. In: ISWC (2015)

11. Ortiz, C., Shen, J.: Dynamic intention structures for dialogue processing. In: Pro-
ceedings of the 18th Workshop on the Semantics and Pragmatics of Dialogue (Sem-
Dial 2014) (2014)

12. Rich, C.: Building task-based user interfaces with ansi/cea-2018. Computer 42(8),
20–27 (Aug 2009)

13. Rich, C., Sidner, C.L.: Using collaborative discourse theory to partially automate
dialogue tree authoring. In: Intelligent Virtual Agents. pp. 327–340. Springer (2012)

14. Sidner, C.: An artificial discourse language for collaborative negotiation. In: In
Proceedings of the Twelfth National Conference on Artificial Intelligence. pp. 814–
819. MIT Press (1994)

15. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: The city trip
planner: An expert system for tourists. Expert Systems with Applications 38, 6540–
6546 (2011)

16. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. Journal of Experimental and Theoretical Artificial
Intelligence 11, 23–45 (1999)

17. Yeh, P., Ramachandran, D., Douglas, B., Ratnaparkhi, A., Jarrold, W., Provine,
R., Patel-Schneider, P., Laverty, S., Tikku, N., Brown, S., Mendel, J., Emfield, A.:
An end-to-end conversational second screen application for tv program discovery.
AI Magazine 36(3) (2015)

18. Yorke-Smith, N., Saadati, S., Myers, K., Morley, D.: The design of a proactive
personal agent for task management. IJAIT 21(1) (2012)

19. Yu, P., Fang, C., Williams, B.: Resolving uncontrollable conditional temporal prob-
lems using continuous relaxations. In: Proceedings of the Twenty-fourth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS-14) (2014)


