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Abstract

Over-subscription, that is, being assigned too many tasks or requirements that are
too demanding, is commonly encountered in temporal planning problems. As human
beings, we often want to do more than we can, ask for things that may not be available,
while underestimating how long it takes to perform each task. It is often difficult for
us to detect the causes of failure in such situations and then find resolutions that are
effective. We can greatly benefit from tools that assist us by looking out for these
plan failures, by identifying their root causes, and by proposing preferred resolutions
to these failures that lead to feasible plans.

In recent literature, several approaches have been developed to resolve such over-
subscribed problems, which are often framed as over-constrained scheduling, config-
uration design or optimal planning problems. Most of them take an all-or-nothing
approach, in which over-subscription is resolved through suspending constraints or
dropping goals. While helpful, in real-world scenarios, we often want to preserve our
plan goals as much possible. As human beings, we know that slightly weakening the
requirements of a travel plan, or replacing one of its destinations with an alternative
one is often sufficient to resolve an over-subscription problem, no matter if the re-
quirement being weakened is the duration of a deep-sea survey being planned for, or
the restaurant cuisine for a dinner date.

The goal of this thesis is to develop domain independent relaxation algorithms that
perform this type of slight weakening of constraints, which we will formalize as contin-
uous relaxation, and to embody them in a computational aid, Uhura, that performs
tasks akin to an experienced travel agent or ocean scientists. In over-subscribed situ-
ations, Uhura helps us diagnose the causes of failure, suggests alternative plans, and
collaborates with us in order to resolve conflicting requirements in the most preferred
way. Most importantly, the algorithms underlying Uhura supports the weakening,
instead of suspending, of constraints and variable domains in a temporally flexible
plan.

The contribution of this thesis is two-fold. First, we developed an algorithmic
framework, called Best-first Conflict-Directed Relaxation (BCDR), for performing
plan relaxation. Second, we use the BCDR framework to perform relaxation for sev-
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eral different families of plan representations involving different types of constraints.
These include temporal constraints, chance constraints and variable domain con-
straints, and we incorporate several specialized conflict detection and resolution algo-
rithms in support of the continuous weakening of them. The key idea behind BCDR’s
approach to continuous relaxation is to generalize the concepts of discrete conflicts
and relaxations, first introduced by the model-based diagnosis community, to hybrid
conflicts and relaxations, which denote minimal inconsistencies and minimal relax-
ations to both discrete and continuous relaxable constraints.

In addition, we present the design and implementation of Uhura, the integrated
plan advisory system that incorporates BCDR for resolving over-subscribed temporal
plans. Uhura can efficiently produce a relaxed plan for the user to support multiple,
interrelated constraints and activities. We have applied Uhura to different types
of plans to illustrate the practical generality of our approach, which includes deep-
sea exploration, job-shop scheduling and transit system management. Results from
the computational experiments we performed also show that BCDR is one to two
orders of magnitude faster than existing algorithms that build on state-of-the-art
numerical solvers, making it an effective approach for many large-scale plans in the
aforementioned domains.

Thesis Supervisor: Brian C. Williams
Title: Professor

Thesis Committee Member: Leslie P. Kaelbling
Title: Professor

Thesis Committee Member: Randall Davis
Title: Professor
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Chapter 1

Introduction

From an evening outing to a summer vacation, we frequently plan for travels of dif-

ferent length and complexity. Unfortunately, we are not good at estimating times,

compensating for uncertainty and coordinating with other people. The problem be-

comes even more challenging when we are under time pressure. These situations

can lead to anywhere from being late for a dinner, to missing a flight. Similar sit-

uations are often encountered in the operation of unmanned robotic systems, such

as Autonomous Underwater Vehicles. From traversal times to weather conditions,

uncertainty exists in every deep-sea expedition mission. The imperfect modeling and

unbounded uncertainty in the environment, as well as the underwater vehicles and

the crew performance, make it impossible to find a mission plan that offers a 100%

guarantee of success. Therefore, correct handling of uncertainties and management

of risk are essential requirements for the ocean scientist who manages expedition

plans. When the situations become over-subscribed, the scientists have to quickly

make trade-offs between scientific goals, mission requirements and risk to restore the

feasibility of the mission. It would be of great help if there is an intelligent plan

assistant that can keep us informed about such issues, and provide advice on which

goals and requirements should be modified, such that a robust plan, no matter if it

is for us humans or our robotic systems, can be generated.

Prior work on this issue starts with a scheduling model, which encodes such

scenarios using over-constrained temporal problems. A temporal problem is over-

17



constrained if no execution strategy can be found that meets all constraints (Dechter,

Meiri, & Pearl, 1991; Vidal & Fargier, 1999). To solve an over-constrained temporal

problem, one has to identify its conflicting constraints and weaken some of them, such

that all conflicts are resolved and a feasible execution strategy, either a static sched-

ule or a dynamic policy, can be generated. In literature, several methods have been

developed to solve such problems. (Beaumont, Sattar, Maher, & Thornton, 2001;

Beaumont, Thornton, Sattar, & Maher, 2004) took a partial constraint satisfaction

approach (Freuder & Wallace, 1992) to find subsets of satisfiable constraints for over-

constrained Simple Temporal Problems (STPs). Later, disjunctive constraints and

optimality were added in the context of over-constrained Disjunctive Temporal Prob-

lems with Preferences (DTPPs) (Moffitt & Pollack, 2005a, 2005b; Peintner, Moffitt,

& Pollack, 2005). In a DTPP, the disjuncts of every constraint are assigned a prefer-

ence function that maps the temporal constraint to a cost value. The optimal partial

solution is obtained by enumerating consistent subproblems using Branch & Bound,

as well as other optimization techniques introduced in (Khatib, Morris, Morris, &

Rossi, 2001). Most of the prior work has focused on restoring consistency through

complete suspension of constraints, however, in real-world scenarios, the user often

wants to preserve as much of the schedule as possible.

One approach to address this issue is presented in (Rossi, Sperduti, Venable,

Khatib, Morris, & Morris, 2002), which presents the formulation of Simple Temporal

Problems with Preferences (STPPs). To allow the weakening for an over-constrained

temporal problem, it introduces soft temporal constraints, which contains a disjunc-

tive set of predefined temporal bounds. These bounds, associated with preference

functions defined over the time assigned to each event, provides more alternatives

for the scheduling algorithm to meet the feasibility requirements. (Khatib et al.,

2001) demonstrates that finding the optimal solution to a STPP with semi-convex

preferences is tractable. Later, (Rossi, Venable, & Yorke-Smith, 2006) introduces a

generalization of the STPP formulation to include uncertain durations, and a suite

of algorithms for finding the optimal solutions under strong, weak and dynamic con-

trollability assumption. Beyond scheduling problems, researchers have also used a
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much richer activity and constraint model for encoding the over-subscribed planning

problems. For example, (Domshlak & Mirkis, 2015) presents several approximation

techniques for deterministic oversubscription planning (OSP). In literature, optimal

planning has been the primary approach for OSPs, in which the objective is reformu-

lated as finding a plan to achieve a subset of the goals with higher rewards.

In addition to weakening the relations of constraints or dropping goals, there is also

work on resolving over-subscription by introducing more options into the problem. In

(Thompson, Goker, & Langley, 2004), a conversational recommendation system for

point-of-interest selections is presented. It integrates a personalized preference model

that updates through interactions with the users. Moreover, the approach presented

in this paper addresses over-subscription along a different dimension: if the users

ask for too much and no candidate place can meet their requirements, the presented

system will propose domain constraints to drop in order to allow more candidates to

be considered, effectively resolving the over-subscription. However, similar to prior

works on over-constrained temporal problems, this is also an all-or-nothing approach,

in which domain constraints are completely suspended if any of them are in conflict.

While able to restore the feasibility of over-constrained problems, these suspensions

are often not necessary. As human beings, we know that slightly weakening the

constraints with an alternative one is often sufficient to resolve the issues.

This is the motivation for us, and the issue we address in this thesis: we would like

to develop an autonomous system that behaves more like an experienced travel agent

or expedition scientist. In over-subscribed situations, it will help humans diagnose the

causes of failure, suggest alternative plans, and collaborate with us in order to resolve

conflicting requirements in the most preferred way. More importantly, its reasoning

algorithm supports the weakening, instead of suspending, of constraints such that the

original plans can be preserved to the maximal extent.

Thesis Statement

Resolving over-subscribed temporal plans using a variety of efficient continuous relax-

ation techniques leads to greater flexibility in plan adaptation. Compared to discrete
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relaxations, which suspend constraints completely, continuous relaxations for the

temporal and domain constraints are often more preferred since they weaken the

original requirements to the minimal extent. The key to efficient generation of con-

tinuous relaxations is to pinpoint the set of conflicting constraints, which denote

minimal inconsistencies in the plan and minimal relaxations to both discrete and

continuous relaxable constraints. The development of such a continuous relaxation

capability pose four separate sub-problems:

1. The problem of detecting the exact cause of failure in over-subscribed temporal

plans, and enumerate their relaxations in best-first order.

2. The problem of computing preferred continuous relaxations, instead of suspen-

sions, for temporal bounds in over-subscribed temporal plans, based on a user

preference model.

3. The problem of generating a robust and risk-bounded relaxations for plans under

temporal uncertainty.

4. The problem of computing preferred relaxations, instead of complete removal,

for domain constraints, based on a user preference model.

In this thesis, we present four main contributions to solve each of the problems.

First, we present a novel framework for detecting and resolving conflicts in over-

subscribed temporal plans, which builds upon prior work on conflict-directed diagno-

sis and is capable of enumerating discrete relaxations in best-first order. Second, we

introduce the extension for computing continuous relaxations for temporal bounds in

conflicts. The key of continuous relaxation is to generalize the discrete conflicts and

relaxations, to hybrid conflicts and relaxations, which denote minimal inconsisten-

cies and minimal relaxations to both discrete and continuous relaxable constraints.

Third, we develop a set of algorithms for detecting conflicts that involve uncertain

durations, and computing risk-bounded temporal relaxations. Fourth, we present

the extension to the relaxation framework for computing domain relaxations, which
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resolves conflicts by allowing more options to be considered in the destinations’ do-

mains. Domain relaxation extends the continuous weakening concept from temporal

constraints to domain constraints, which explores candidates along a different dimen-

sion in situations where we cannot compromise on time. These contributions are

summarized in Sections 1.1 through 1.4.

1.1 A Conflict-directed Relaxation Framework for

Over-subscribed Temporal Plans

The first contribution of the thesis is a novel framework, Best-first Conflict-Directed

Relaxation (BCDR), for detecting and resolving conflicts in over-subscribed temporal

plans. Building upon prior work on diagnosis (de Kleer & Williams, 1987; Williams &

Ragno, 2002) and over-constrained CSPs (Bailey & Stuckey, 2005; Moffitt & Pollack,

2005b), BCDR is capable of handling temporal plans with discrete and continuous

variables and constraints. Instead of likely failure modes, it detects the causes of

failure in the plans and supports the enumeration of preferred conflict resolutions in

best-first order. Our goal is to develop a system that supports the resolution for more

complex travel planning, deep-sea exploration and robotic manufacturing scenarios

that may involve multiple activities and agents. The system will be applicable to a

broad range of interesting use cases, and can answer user requests like where to meet,

when to leave, how to get to the places, and how long to stay. In over-subscribed

situations where some of the requirements cannot be met, we would like the system

to propose preferred resolutions using alternatives for both destinations and timing,

and preserve as much flexibility as possible for the users.

We first presented the framework in (Yu, Shen, Yeh, & Williams, 2016b), which

takes plans encoded using the Temporal Plan Network (TPN) formalism as input,

and produce a variety of partial relaxations and temporally feasible plans as output.

This model is more general than the temporal problem formulations used in many

prior works on relaxation, since it provides support for choices over alternative plans
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and multi-agent coordination.
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Figure 1-1: The generate and test architecture and extensions

The conflict-directed diagnosis algorithms we are building upon, General Diag-

nosis Engine and Conflict-directed A*, take a generate-and-test approach for finding

consistent diagnosis for robotic systems. As shown in Figure 1-1a, there are two major

components, Candidate Generator and Consistency Tester, in the framework. BCDR

iterates between the two components until an agreement, which is a temporally feasi-

ble plan, is reached. Given a candidate solution, the consistency tester evaluates if all

constraints are satisfied. If not, it produces a conflicting set of assignments and con-

straints as the explanation. The generator then incorporates the conflict, produces a

new candidate solution that resolves it, and passes it over to the tester to evaluate

its temporal feasibility again.

Our relaxation framework preserves this conflict-directed approach for its exten-

sibility, transparency, and efficiency. First, the simple generate-test structure makes

it very easy to incorporate new plan features and relaxation techniques. Second, the

conflicts used to guide the search and candidate generation are also essential compo-

nents in the solution presented to the users. They allow BCDR to explain not only

the relaxations, but also the rationale behind them. The transparency enables more

effective communication with the users, which will help them make more informed

decisions. Third, conflict-directed search has been proven to be an efficient approach

in hardware diagnosis, and in this thesis we also demonstrate its effectiveness in re-

solving large-scale over-subscribed temporal plans through experiments.
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The approach taken by our framework can also be viewed as a specialization of

Logic-based Benders Decomposition (Hooker & Ottosson, 2003), in which the master

problem determines the activation of temporal constraints and the degree of their

relaxations, while the subproblem checks if an execution policy exists given all ac-

tivated constraints. The basic setup of the framework is only capable of handling

discrete relaxations, which resolves any conflicts by suspending one or more of the

constraints involved. For example, given that 30 minutes is not enough time for a

person to grab lunch and have a hair cut, the discrete relaxations available are to

either give up lunch or hair cut completely. While this not-so-preferred behavior is

similar to prior works on over-subscription, it serves as the bases for the other three

contributions of this thesis. Hence we start our presentation with this framework,

then fold in the three other extensions into the tester and generator as plugins to

support constraint weakening and risk-bounded relaxations. As shown in Figure 1-

1b, to compute continuous relaxation, we generalized both the tester (for returning

hybrid conflicts) and the generator (for computing continuous temporal relaxations).

For problems that are subject to temporal uncertainty, the two components are fur-

ther extended to extract conflicts involving uncertain durations, and for computing

risk-bounded relaxations. Finally, domain relaxation is supported by extending the

generator with the capability for weakening the constraints for variable domains.

Finally, note that the conflict-directed relaxation framework also supports the

incorporation of user feedback. As the user models we work with are often imperfect,

it is likely that the relaxations BCDR proposes to the users are not preferred because

the users did not specify that one or more constraints should not have been relaxed

at all, or weakened to a certain extent. Supporting this feature is in fact a very

natural extension for the conflict-directed relaxation framework. As shown in Figure

1-1c, every user feedback is encoded as an additional conflict and pushed into the

candidate generator, such that all future candidate solutions will respect the newly

added feedback. In addition, these conflicts can be preserved and carried over from

one problem to another, so that future iterations will try to avoid running into the

same situation.
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1.2 Continuous Relaxation for Temporal Constraints

The second contribution of this thesis is a novel method for computing continu-

ous relaxations for conflicting temporal constraints. We previously introduced it

in (Yu & Williams, 2013) as the Best-first Conflict-Directed Relaxation algorithm

for scheduling problems. The continuous relaxation approach efficiently resolves

over-subscribed temporal plans with controllable temporal variables. It reformulates

an over-subscribed temporal plan by identifying its continuously relaxable temporal

bounds, which can be partially relaxed to restore consistency. The key idea behind

continuous relaxation is to generalize the discrete conflicts and relaxations in BCDR,

to hybrid conflicts and relaxations, which denote minimal inconsistencies and mini-

mal relaxations to both discrete and continuous relaxable constraints. Through learn-

ing hybrid conflicts, BCDR is able to use their resolutions for generating continuous

relaxations that weaken the temporal bounds to the minimal extent, as well as guid-

ing the search away from infeasible regions. The continuous relaxation approach

is implemented as extensions to the consistency tester and candidate generator in

BCDR.

For example, imagine that a graduate student, Simon, is planning for an evening

outing trip with his friends. Simon is leaving his office at 6pm, and would like to have

dinner with a friend at a Chinese restaurant then watch a comedy movie. He needs to

be home before 9:30pm. We use a TPN to model Simon’s travel plan and determine

the best strategy for him that includes: which movie to watch, which restaurant to

dine at, how much time to spend at each location and whether to delay his arrival

at home. The TPN that encodes his travel problem is shown in (Figure 1-2), which

contains the two activities for dinner and movie, the options available for them, and

the temporal constraints over the trip departure and completion times. The durations

of travel between locations are encoded as conditional constraints, and their bounds,

as well as guard assignments, are presented in Table 1.1.

Unfortunately, due to the long travel times to and from the candidate Chinese

restaurants, no solution can be found that meets all temporal requirements. In this
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18:00
Leave Office

Arrive Home

< 210 mins

20:00 Joy
at AMC 16 (124 mins)

19:30 Norm of the North 
at AMC 20 (90 mins)

Panda Express (30 mins) 

Magic Wok (30 mins)  

Figure 1-2: A TPN for Simon’s dinner and movie activities (the double circles indicate
choices between alternative activities)

Traversal Durations Guard Assignments

Office → PE: [40,65] 𝐷𝑖𝑛𝑛𝑒𝑟 ← 𝑃𝐸
Office → MW: [30,35] 𝐷𝑖𝑛𝑛𝑒𝑟 ←𝑀𝑊
PE → AMC 16: [25,45] 𝐷𝑖𝑛𝑛𝑒𝑟 ← 𝑃𝐸, 𝑀𝑜𝑣𝑖𝑒← 𝐽𝑌
PE → AMC 20: [35,55] 𝐷𝑖𝑛𝑛𝑒𝑟 ← 𝑃𝐸, 𝑀𝑜𝑣𝑖𝑒← 𝑁𝑁
MW → AMC 16: [35,45] 𝐷𝑖𝑛𝑛𝑒𝑟 ←𝑀𝑊 , 𝑀𝑜𝑣𝑖𝑒← 𝐽𝑌
MW → AMC 20: [40,55] 𝐷𝑖𝑛𝑛𝑒𝑟 ←𝑀𝑊 , 𝑀𝑜𝑣𝑖𝑒← 𝑁𝑁
AMC 16 → Home: [25,30] 𝑀𝑜𝑣𝑖𝑒← 𝐽𝑌
AMC 20 → Home: [20,25] 𝑀𝑜𝑣𝑖𝑒← 𝑁𝑁

𝑃𝐸 for Panda Express, 𝑀𝑊 for Magic Wok, 𝐽𝑌 for movie
Joy, 𝑁𝑁 for movie Norm of the North.

Table 1.1: Travel times between locations (in minutes)

situation, the decision assistant (DA) initiates a discussion with Simon about possible

resolutions for his problem.

DA: You may have dinner at Magic Wok then watch the 8pm Joy at AMC 16.

However, due to the length of the movie you won’t be back home until 10:34pm. Is

that OK?

Simon: No, I cannot arrive later than 10pm.

DA: OK, then can you leave office 30 minutes earlier? If so you may watch Norm

of the North at 7:30pm, and arrive home at 9:30pm.

Simon: Sounds good. Thank you.

Before relaxing any constraints, there is no consistent solution to Simon’s plan:

three hours and 30 minutes is not enough for him to complete both dinner and movie

tasks. Instead of dropping either movie or dinner activity, BCDR tried several options

of weakening the constraints that are in conflict, and provided a balanced trade-off

for Simon that also respects the new requirements he added during the conversation.
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This example demonstrates the advantage of continuous relaxation: it minimizes

perturbation to the requirements in the original plan. Compared to discrete relax-

ations used by prior approaches, which may ask Simon not to watch movie or have

dinner, continuous relaxations preserve more of the original problem while restoring

consistency. In addition, as a benefit of using the conflict-directed relaxation frame-

work, BCDR is able to adapt to newly added constraints and enumerate relaxations

accordingly. When evaluated empirically on a range of travel planning, autonomous

underwater vehicle management, and transit network scheduling problems, the contin-

uous relaxation approach demonstrates a substantial improvement in solution quality

compared to previous discrete approaches. In addition to solving over-subscribed

temporal plans, the continuous relaxation approach has also found applications for

feasible ones: given a solution for a temporally feasible plan, it can efficiently find the

boundary between consistency and inconsistency, allowing the users to evaluate the

amount of redundancy that can be built into a plan.

1.3 Rick-bounded Relaxation Under Temporal Un-

certainty

The third contribution of this thesis is an approach for learning conflicts from prob-

lems that involve temporal uncertainty, and computing relaxations for them with

bounded risk. Uncertainty is commonly encountered in scheduling and planning

problems, and is a major cause of over-subscription. Prior work for over-subscribed

temporal and planning problems, including the first version of BCDR algorithm (Yu

&Williams, 2013), only work with temporal constraints that have controllable bounds

whose outcomes can be fully controlled. When applied to problems with uncertain

durations, these algorithms may only satisfy a subset of the random outcomes and

hence their relaxations may fail during execution.

This is the motivation for us to develop a risk-bounded version of the continu-

ous relaxation approach, which allows BCDR to compute more robust solutions for
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real-world scenarios. We first presented this approach as the Conflict-Directed Re-

laxation with Uncertainty (CDRU) algorithm in (Yu, Fang, & Williams, 2014). This

extension to the relaxation framework generalizes the conflict-learning process to use

controllability models, instead of consistency. The key innovation of the algorithm

is a new conflict learning procedure for strong and dynamic controllability checking,

which ensures that a static schedule or a dynamic execution policy for a scheduling

problem can be found subject to the uncertain durations.

In addition, the risk-aware approach also supports problems with probabilistic

temporal durations and bounded risk of failure. Given a temporal plan with uncer-

tain duration, it proposes execution strategies that operate at acceptable risk levels

and pinpoints the source of risk. If no such strategy can be found that meets the risk

bound, the risk-aware approach can help us repair the over-subscribed plan by trading

off between desirability of solution and acceptable risk levels. The probabilistic exten-

sion was first presented in (Yu, Fang, & Williams, 2015), which leverages prior work

on probabilistic scheduling (Fang, Yu, & Williams, 2014). The key idea is to diagnose

the source of risks by grounding the probabilistic durations to a set-bounded repre-

sentation through risk allocation, then applying controllability checking and conflict

extraction algorithms to identify conflicting constraints from the grounded problem.

The extension also introduces the second type of relaxation: chance constraint

relaxation.

To demonstrate the desired features of BCDR on solving problems with temporal

uncertainty, we present an example from the domain of deep-sea explorations. In

these missions, correct handling of uncertainties and management of risk are essential

requirements for the ocean scientist who makes expedition plans. Imagine that an

ocean scientist, Rich, is planning to deploy an autonomous underwater vehicle to

survey a volcano eruption on the sea floor. The eruption will occur at around 10:00,

following a normal distribution with a variance of 30 minutes. It is 8:00 now, and

the vehicle needs to arrive at the site before the start of the eruption. In addition, at

least 45 minutes is required for traversing to the site, and 30 minutes for collecting

samples. Rich wants the mission to complete in 3 hours, with less than 5% risk of
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violating any constraints, such as being late or missing the event. BCDR captures this

problem using a chance-constrained probabilistic Temporal Plan Network formulation

(cc-pTPN, Figure 1-3). After evaluating all the requirements, the decision assistant

determines that no solution exists that meets all requirements. It engages Rich and

initiates a discussion to resolve this problem.

Start
8:00

End

[0,3]

Eruption

Arr. Site Dep. Site

[0.75,+∞] [0.75,+∞]

[0.5,+∞]

[0,+∞]

μ=2,σ=0.5

Figure 1-3: The cc-pTPN for the autonomous underwater vehicle’s mission (the dou-
ble arc represents the uncertain duration between start and volcano eruption times)

DA: I cannot meet all requirements due to the limited mission time and the un-

certainty in eruption. Can you extend the mission to 4 hours and 10 minutes.

Rich: You can have at most 4 hours for this mission.

DA: May I increase the risk bound for this mission to 7.3% in order to meet

the duration requirement?

Rich: I do not want to take that much risk on this task.

DA: Ok, can you shorten the traversal time from the site to the ship by 6

minutes? My plan can then cover 95% of the possible eruption time, between 8:45

and 10:51.

Rich: That’s fine. Thanks.

The decision assistant supported by BCDR is able to compute risk-bounded re-

laxations by making trade-offs between relaxations over both chance and temporal

constraints. During the process, it continues to work collaboratively with the user,

proposing alternatives and learning new requirements, in order to find better reso-

lutions. Empirical test results on a range of trip scheduling problems show that the

risk-bounded relaxation approach generates robust solutions, and is efficient enough
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for resolving large-scale plans with temporal uncertainty.

1.4 Domain Relaxations of Parameterized Variables

The final contribution of this thesis is a novel method for computing domain re-

laxations for resolving conflicts in over-subscribed temporal plans. Recall that our

problem is to relax a TPN so that its choices and activities can be grounded and

then executed. Further, grounding involves finding a schedule and assignment to the

choices. Thus far we have focused on relaxing temporal and risk-bound requirements.

We can also achieve consistency by relaxing the domains of the parameters. For ex-

ample, given that no Chinese restaurant can meet Simon’s requirement of arriving

home by 9:30pm, it might be better to consider going to a Korean restaurant that is

closer to his home. This motivates an alternative approach for relaxation, which can

not only suggest relaxing timing requirements, but also recommend good alternative

options not encoded in the original domain, such as destinations, in over-subscribed

situations.

The extension, called Domain Relaxation, works together with temporal relaxation

to enable such a capability. Instead of widening the range of temporal bounds, domain

relaxation widens the domain of variables. As a result, more options can be considered

in the plan, which gives the users more flexibility in resolving their over-subscribed

plans.

We introduced the domain relaxation extension to BCDR in (Yu, Shen, Yeh,

& Williams, 2016a), which also includes extending the temporal plan formulation

with domain constraints for discrete variables. These domain constraints encode

the meaning of the domain values of their variables.And domain relaxation resolves

conflicts by allowing additional values in the variable domains through weakening

their domain constraints. The relaxation of domain constraints are guided by a

semantic similarity model generated by the Word2Vec (Mikolov, Sutskever, Chen,

Corrado, & Dean, 2013a) and SemanticMemory (Raiman, 2016) packages, which

use high-dimension vector representations of concepts trained on a large corpus of

29



Natural Language data. The word vector approach has been shown to carry semantic

meanings (Mikolov, Yih, & Zweig, 2013b) when comparing concepts.

For example, we consider the aforementioned travel example again, but this time

Simon cannot compromise on either an early departure from office, or a late arrival at

home. In this situation, the decision assistant engages Simon and initiates a discussion

about possible resolutions along a different direction.

DA: You may have dinner at Magic Wok then watch the 8pm Joy at AMC 16.

However, due to the length of the movie you won’t be back home until 10:34pm. Is

that OK?

Simon: No, I cannot arrive later than 9:30pm.

DA: OK, then can you leave office 30 minutes earlier? If so you may watch Norm

of the North at 7:30pm, and arrive home at 9:30pm.

Simon: No I cannot leave office before 6pm.

DA: How about eating at Sunny Bowl, a Korean restaurant? It is closer

and you can make the 7:30pm movie without leaving any earlier.

Simon: Sounds good. Thank you.

In this example, Simon cannot change the departure and arrival times for his

travel plan, hence he rejected the first two proposals. Domain relaxation is able

to find Simon a satisfactory solution: it weakened the domain constraints for the

restaurant task, such that three new options became available for his trip. In this

case, the decision assistant discovered a close alternative, Korean, for the cuisine

requirement of restaurant. It then queried the knowledge base to retrieve additional

restaurant candidates, and found one that is closer to Simon’s route and satisfies all

temporal constraints (Figure 1-4).

18:00
LeaveSOffice

ArriveSHome<S210Smins

19:30SNormSofStheSNorthS
atSAMCS20S590Smins,

SunnySBowlS530Smins,S

DriveStoSAMCS20
[25,30]S

DriveStoS
SunnySBowl

[15,20]S

DriveSHome
[20,25]S

Figure 1-4: A solution for Simon’s problem enabled by relaxing the cuisine require-
ment
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This example demonstrates the desired behavior of domain relaxation: resolving

conflicts in over-subscribed problems by weakening the domain constraints, which

enables more options to be considered that are not encoded in the original problem.

Given a conflict, BCDR has three options to resolve it: (1) continuous relaxations

for temporal bounds; (2) continuous relaxations for the risk bound; and (3) domain

relaxations for discrete variables. Through resolving conflicts by computing all three

types of relaxations simultaneously, BCDR is able to enumerate them in best-first or-

der while resolving over-subscribed temporal plans. When evaluated empirically on a

range of urban trip planning scenarios, the domain relaxation approach demonstrates

a substantial improvement in flexibility compared to the temporal relaxation only

approach. It enables solutions to be found in many scenarios that were previously

infeasible, or finds more preferred ones by avoiding drastic relaxations for temporal

constraints.

1.5 Summary of Contributions and Conclusions

In this section we give a summary of the contributions of this thesis, and the major

conclusions drawn.

1. A Conflict-directed Relaxation Framework

We introduce a conflict-directed relaxation framework, Best-first Conflict-Directed

Relaxation, which has three key properties: (a) detecting conflicts in over-

subscribed temporal plans; (b) enumerating relaxations for resolving conflicts

in best-first order; and (c) incorporating user feedback to dynamically improve

solutions.

2. Continuous Relaxations for Temporal Constraints

We present an extension to the tester and candidate generator of BCDR that

(a) encodes the cause of failure as hybrid conflicts; and (b) computes preferred

continuous relaxations, instead of discrete relaxations, for resolving these con-

flicts.
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3. Risk-bounded Relaxations Under Temporal Uncertainty

We present the second extension to BCDR for handling temporal uncertainty,

which (a) learns conflicts using strong and dynamic controllability models; and

(b) computes risk-bounded temporal relaxations subject to chance constraints.

4. Domain Relaxation for Parameterized Variables

Finally, we introduce the extension to the relaxation generator of the conflict-

directed relaxation framework that (a) computes domain relaxations, instead of

temporal relaxations, for conflicts using semantically similar alternatives; and

(b) simultaneously enumerates preferred temporal and domain relaxations for

hybrid conflicts in temporal plans.

1.6 Organization of Thesis

First, in Chapter 2 we present the definition for over-subscribed temporal plans and

their relaxations based on the Temporal Plan Network formalism. It includes the

necessary background, problem statement and notations that are used throughout

the dissertation.In Chapter 3, we introduce the Best-first Conflict-Directed Relaxation

algorithm, and its application for computing preferred discrete relaxations, which are

the foundation of all the relaxation techniques presented in this thesis.

Then in Chapter 4, we present the extension to BCDR for computing continuous

temporal relaxations, and how it interleaves the enumeration of both discrete and con-

tinuous relaxations. In Chapter 5, we describe the augmented continuous relaxation

extension for supporting risk-bounded temporal relaxations.

In Chapter 6, we present the final extension to BCDR for computing domain

relaxations, and how it enumerates both temporal and domain relaxations simulta-

neously. In Chapter 7, we present the design and implementation of the advisory

system, Uhura, for collaborative diagnosis of over-subscribed temporal plans. This

chapter describes how Uhrua integrates the BCDR algorithm, a conversational user

interface and point-of-interest database, and discusses its applications in the domain
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of urban travel planning. In Chapter 8, we present the results from empirical evalu-

ations of the different relaxation techniques. Finally, we conclude in Chapter 9 and

discuss future research directions.
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Chapter 2

Problem Statement

In this chapter, we present the problem statement for the BCDR algorithm, which

includes the over-subscribed temporal plans, and the four types of relaxations, dis-

crete, continuous, risk-bounded and domain relaxations, that can be used to resolve

conflicts in them. Throughout this chapter, we will be using two examples from ur-

ban travel planning and deep-sea exploration to illustrate the different elements in

the inputs and outputs of BCDR.

2.1 Temporal Plan Network

The BCDR algorithm takes a Temporal Plan Network (TPN) as input, and produces a

plan, as well as suspension of some temporal constraints if necessary. The definition

of TPN was first presented in (Kim, Williams, & Abramson, 2001) as a compact

representation of multiple alternative plans, which captures the activities, choices as

well as the temporal constraints. Graphically, a TPN can be represented by a node-

edge graph, similar to the Progress Evaluation and Review Technique chart (Stauber,

Douty, Fazar, Jordan, Weinfeld, & Manvel, 1959). Each node represents an event

in the plan, which is a unique point of time. Each arc represents an episode, which

can be either an activity, or a temporal constraint that restricts the duration between

time points. Formally, we define a TPN as the following:

Definition 1. A TPN is an 7-tuple ⟨𝑃,𝑄, 𝑉,𝐸, 𝐿𝑒, 𝐿𝑝, 𝑓𝑝⟩ where:

35



∙ 𝑃 is a set of controllable finite domain discrete variables;

∙ 𝑄 is the collection of domain assignments to 𝑃 ;

∙ 𝑉 is a set of events representing designated time points;

∙ 𝐸 is a set of episodes between pairs of events 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ;

∙ 𝐿𝑒 : 𝐸 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some episodes 𝑒𝑖 ∈ 𝐸;

∙ 𝐿𝑝 : 𝑃 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some discrete variable 𝑝𝑖 ∈ 𝑃 ;

∙ 𝑓𝑝 : 𝑄→ ℛ+ is a function that maps each assignment to every controllable discrete

variable, 𝑞𝑖 ∈ 𝑄, to a positive reward value;

Function 𝐿𝑒 and 𝐿𝑝 specify the guard assignments of some episodes in 𝐸 and

variables in 𝑃 . If the guard assignments of a conditional variable are not satisfied,

then it is deactivated and will not be assigned. If the guard assignments for an episode

are not satisfied, then the episode’s temporal requirements do not need to be satisfied.

For example, in Simon’s trip, if he chooses to watch movie Joy instead of Norm of

the North, then the activities of going to AMC 20 as well as the temporal constraint

associated with the duration of the movie do not need to be satisfied.

In addition to the TPN, we also include two additional inputs for BCDR in order

to model the temporal plan: (1) a set of agent models that encode their requirements,

preferences and mode of travel; and (2) a routing function for estimating the travel

times between locations for each agent.

Definition 2. Each agent model is a 6-tuple ⟨𝑃𝑖, 𝐸𝑖, 𝑄𝑖, 𝑓𝑝𝑖, 𝑂𝐷𝑖,𝑚⟩, where:

∙ 𝑃𝑖 ⊆ 𝑃 is a set of finite domain variables representing decisions for this agent 𝑖;

∙ 𝑄𝑖 ⊆ 𝑄 is the collection of domain assignments to 𝑃𝑖;

∙ 𝐸𝑖 ⊆ 𝐸 is a set of episodes representing activities and requirements for this agent

𝑖;
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∙ 𝑓𝑝𝑖 : 𝑄𝑖 → ℛ+ is a function that maps each assignment to discrete variable, 𝑞𝑖𝑗 :

𝑝𝑖 ← 𝑣𝑎𝑙𝑢𝑒𝑗, to a positive reward;

∙ 𝑂𝐷𝑖 is a pair of latitude/longitude locations that specifies the origin and destination

of agent 𝑖;

∙ 𝑚𝑖 ∈ ⟨𝑑𝑟𝑖𝑣𝑖𝑛𝑔, 𝑏𝑖𝑘𝑖𝑛𝑔, 𝑤𝑎𝑙𝑘𝑖𝑛𝑔⟩ is the mode of travel for agent 𝑖.

For an agent 𝑖, the model defines the subset of goals and requirements in the

TPN that belongs to the agent. BCDR uses the model to ensure that its solution is

consistent for each agent, such that their plans originates from their original location,

and ends at the specified destination. In addition, when a solution is generated, the

agent model allows BCDR (and Uhura supported by it) to decide which part of the

solution should be presented to which agent, and provide more compact explanations

to the users. It is possible that one decision variable or episode is shared among

multiple agents. In this case all of them will be informed when a choice or relaxation

is made.

Next, we define the routing function as the following:

Definition 3. The routing function 𝑓𝑟 : (𝑂,𝐷,𝑚) → ⟨𝑙𝑏, 𝑢𝑏, 𝑝𝑙⟩ takes in three pa-

rameters as input, and outputs a 3-tuple, where:

∙ 𝑂 = ⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒⟩ is a coordinate encoding the origin of the route;

∙ 𝐷 = ⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒⟩ is a coordinate encoding the destination of the route;

∙ 𝑚 ∈ ⟨𝑑𝑟𝑖𝑣𝑖𝑛𝑔, 𝑏𝑖𝑘𝑖𝑛𝑔, 𝑤𝑎𝑙𝑘𝑖𝑛𝑔⟩ indicate the mode of travel;

∙ 𝑙𝑏 ∈ ℛ+ is the lower bound on the duration of travel;

∙ 𝑢𝑏 ∈ ℛ+ is the upper bound on the duration of travel.

∙ 𝑝𝑙 = ⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1⟩, ⟨𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2⟩, ... is an array of coordinates

encoding the polyline of the route.
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For the travel between any pair of locations, the routing function computes the

fastest route between them and outputs the travel times, given the mode of travel

available to the agent. The route is encoded by the polyline, which is an ordered

set of coordinates. The travel time is encoded using a set-bounded duration, whose

lower and upper bounds represents the best and worst estimates given traffic condi-

tions. Depending on the user requirements, BCDR has multiple ways to handle these

bounds while checking the temporal feasibility of a candidate solution or resolving

conflicting constraints that involve uncertainty. For example, an optimistic approach

may only considers the lower bounds of these traversal durations, while a more robust

approach considers them as random variables and a solution must be robust to all

possible outcomes. We will elaborate on these different treatments when discussing

the temporal relaxation algorithms in Chapter 5.

The solution to a TPN is a 3-tuple, which defines a temporally feasible set of

choices to the variables, and set of activities for each agent specified in the input

TPN.

Definition 4. The solution to a TPN is a 3-tuple ⟨𝐴, 𝑆,𝐸 ′⟩, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines ordering over activities in the TPN;

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between locations, gener-

ated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time associated with

an agent’s movement between locations specified in 𝐴, following the order defined

by 𝑆.

As presented earlier, BCDR may also present the solution on an agent-by-agent

basis, such that the individual solution only contains choices and relaxations associ-

ated with that agent. The agent-based solution is also a 3-tuple ⟨𝐴𝑖, 𝑆𝑖, 𝐸
′
𝑖⟩, which

encodes the choices and relaxations associated with the variables and episodes sup-

plied by agent 𝑖.
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2.2 Discrete Relaxations

2.2.1 Example Scenario

Consider a scenario in which a user, Simon, is planning for an evening outing trip

with Uhura, our plan assistant that builds on BCDR. Simon plans to leave the office

at 6pm, and would like to have dinner with a friend, Christian, at a nice Chinese

restaurant. He also plans to watch a comedy movie this evening. In addition, Simon

needs to be home before 9:30pm. Uhura’s task is to work out a robust plan with them,

which includes the choices for restaurant and movie showing, the sequence of these

activities, and appropriate adjustments to the timing requirements, if necessary. In

this section, we describe informally how Uhura collaborates with Simon and Christian,

and resolves their over-subscribed travel plan.

Uhura starts with the TPN for Simon and Christian’s travel problem (Figure 2-

1), which encodes the two activities for dinner and movie, as well as the temporal

constraints over the trip departure and completion times. The two activities requested

by them, watch a comedy movie and dine at a Chinese restaurant, are highlighted

in bold. There are four dotted arcs connecting the activities to the beginning and

end of the trip, which represent temporal constraints that encode the sequencing

requirement for the activities: they must take place after leaving office, and finish

before arriving home. Finally, there is one dotted arc connecting the first and last

events, which encodes the overall temporal constraint of 210 minutes (from 6pm to

9:30pm) for the entire trip. Each activity and temporal requirement is also tagged

with 𝑆𝐼 (Simon) or 𝐶𝑅 (Christian) to indicate the participation or sources for them.

Given the variables for the activities, we can pass their description to a knowledge

base, which can search through multiple data sources and retrieve candidate options

for them. We will explain this in detail how the retrieval process works in Chapter

7. These options are then encoded as alternative episodes for the activities and

added to the TPN. For example, the expanded TPN for Simon and Christian’s outing

trip is shown in Figure 2-2. The comedy movie activity is replaced by two movie

showings at different theaters, while the Chinese restaurant activity is replaced by
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Leave Office
18:00

Arrive Home

< 210 mins (SI)

Arrive
Cinema

Leave
Cinema

Comedy Movie (SI)

Arrive
Restaurant

Leave
Restaurant

Chinese Restaurant (SI,CR)

(movie m) ∧ (genre g) ∧
(hasGenre m g) ∧(surface g ’Comedy’)

(restaurant r) ∧ (cuisine c) ∧
(servesCuisine r c) ∧(surface c ’KOREAN’)

Figure 2-1: A TPN for Simon and Christian’s trip

two restaurant options. In the TPN graph, these grounded options for each activity

share one common start event, which is represented by a double circle and indicates

that the subsequent episodes are alternatives. In addition, each grounded activity is

associated with a duration (highlighted in the figure). These durations encode the

length of the movie or dinner. The constraints for traversals between locations (Table

2.1) are omitted from the graph to save space.

Leave Office
18:00

Arrive Home

< 210 mins

20:00 Joy
at AMC 16 (124 mins)

19:30 Norm of the 
North at AMC 20

(90 mins)
Panda Express (30 mins)

Magic Wok (30 mins) 

Figure 2-2: An expanded TPN with activity candidates

Next, Uhura passes the expanded TPN to BCDR to fill in the details of the plan,

select the candidate for each activity, and determine their orders while meeting all

the requirements. The result is a complete plan with grounded activities for both

Simon and Christian. If no feasible plan can be found that meets all requirements,

as in this example, BCDR will try relaxing the temporal bounds of some episodes in

order to make room for completing all activities. This is the situation encountered

by Simon in this example: due to the long travel times to and from the candidate
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Traversal Durations

Office → PE: [40,65] PE → Home: [25,30]
Office → MW: [30,35] MW → Home: [20,25]
Office → AMC 16: [40,65] AMC 16 → Home: [25,30]
Office → AMC 20: [30,35] AMC 20 → Home: [20,25]
PE → AMC 16: [25,45] AMC 16 → PE : [25,45]
PE → AMC 20: [35,55] AMC 20 → PE: [35,55]
MW → AMC 16: [35,45] AMC 16 → MW: [35,45]
MW → AMC 20: [40,55] AMC 20 → MW: [40,55]

Table 2.1: Travel times between locations (PE stands for Panda Express, and MW
stands for Magic Wok)

Chinese restaurants, no solution can be found that meets all temporal requirements.

Hence Uhura engages Simon and Christian, and initiates a discussion about possible

resolutions for his problem.

Uhura: Simon, you may have dinner at Magic Wok then watch the 8pm

Joy at AMC 16. However, due to the length of the movie you have to

remove the constraint on the time of arriving home. Is that OK?

Simon: No, I cannot delay my arrival time.

Uhura: OK, then Simon can you remove the constraint on departure time

from Office? If so you may watch Norm of the North at 7:30pm, and arrive

home on time.

Simon: No I cannot leave office before 6pm.

Uhura: Simon and Christian, How about not having dinner tonight?

Christian: That’s fine.

Simon: Sounds good. Thank you.

In this example, BCDR proposed different relaxations that resolves the conflicts

in the Simon and Christian’s plan. Since they cannot suspend the constraints on the

departure and arrival times, the first two proposals were rejected. BCDR incorporates

their inputs on earlier solutions, and kept proposing new ones that respects all their

feedback until an agreement is reached, which enables a feasible plan for both Simon

and Christian (Figure 2-3).
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18:00
Leave Office

Arrive Home< 210 mins

19:30 Norm of the North 
at AMC 20 (90 mins)

Drive to AMC 20
[30,35] 

Drive Home
[20,25] 

(a) Simon’s trip with suspended dinner episode

17:45
Leave Office

Arrive Home< 180 mins

Drive Home [40,55] 

(b) Christian’s trip with suspended dinner episode

Figure 2-3: A solution enabled by relaxed cuisine constraint

This example demonstrates the desired features of BCDR on resolving over-

subscribed temporal plans using discrete relaxations: it allows Uhura to work col-

laboratively with the users to resolve conflicts in over-subscribed plans, enumerating

discrete relaxations in best-first order and providing rationale for the relaxations

made.

2.2.2 Definitions

We extend the definition of TPN with an additional set of relaxation episodes, 𝑅𝐸,

to support discrete relaxations. For its solutions, we also include a set of suspended

episodes from 𝑅𝐸 that are necessary for making the solution consistent. Formally,

we define a relaxable TPN as the following:

Definition 5. A relaxable TPN is a 9-tuple ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩, where:

∙ 𝑃 is a set of controllable finite domain discrete variables;

∙ 𝑄 is the collection of domain assignments to 𝑃 ;

∙ 𝑉 is a set of events representing designated time points;

∙ 𝐸 is a set of episodes between pairs of events 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ;

∙ 𝑅𝐸 ⊆ 𝐸 is a set of relaxable episodes that can be suspended;
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∙ 𝐿𝑒 : 𝐸 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some episodes 𝑒𝑖 ∈ 𝐸;

∙ 𝐿𝑝 : 𝑃 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some discrete variable 𝑝𝑖 ∈ 𝑃 ;

∙ 𝑓𝑝 : 𝑄→ ℛ+ is a function that maps each assignment to every controllable discrete

variable, 𝑞𝑖 ∈ 𝑄, to a positive reward value;

∙ 𝑓𝑒 : 𝑅𝐸 → ℛ+ is a function that maps the suspension to one relaxable temporal

constraint 𝑒𝑖 ∈ 𝑅𝐸, to a positive cost value.

The solution to a relaxable TPN is a set of assignments to variables in 𝑃 such that

all activated episodes that are not suspended (not in 𝑅𝑒) are temporally consistent.

Definition 6. The solution to a relaxable TPN is a 4-tuple ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines ordering over activities in the TPN;

∙ 𝑅𝑒 is a set of episodes in 𝑅𝐸 that are suspended.

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between locations, gener-

ated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time associated with

an agent’s movement between locations specified in 𝐴, following the order defined

by 𝑆.

In addition, given a solution, we may also define if its set of discrete relaxations are

minimal. A set of discrete relaxations of a temporally consistent solution is minimal

if and only if none of its strict subset still makes the solution temporally consistent:

Definition 7. A solution ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ has a minimal set of discrete relaxation if

and only if:

∙ ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ is a temporally consistent solution;

∙ ⟨𝐴, 𝑆,𝑅′
𝑒, 𝐸

′⟩, where 𝑅′
𝑒 ⊂ 𝑅𝑒 is not temporally consistent.
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2.3 Continuous Relaxations

2.3.1 Example Scenario

For continuous relaxations, we use an example from the deep-sea exploration scenario

to demonstrate its definitions. Consider the following example in which an ocean sci-

entist, Rich, is planning to deploy an autonomous underwater vehicle (AUV), Sentry

(Figure 2-4b), to survey the sea floor close to the coast of Northern California. This

mission is expected to start at 11:00AM from the R/V Atlantis (Figure 2-4a), and

Rich has reserved the vehicle until 2:00PM. During this mission, he would like to visit

one of the two asphalt mounds (Figure 2-4c). The two sites are denoted by Location

A and B. Rich has a preference over the two options and their required survey times

vary from 35 minutes to 50 minutes. After visiting the mound, Rich wants to scan

one of the three nearby methane seeps (Figure 2-4d), denoted by Location X, Y or

Z. It takes a different amount of time at each site due to their sizes and complexity.

Finally, traversal times to and between these sites are different, and Sentry must re-

turn to the ship in three hours (11:00AM to 2:00PM) so that the next scientist can

start their mission on time.

We again model Sentry’s mission using a TPN, which includes: which asphalt

mounds site to survey, which methane seep site to scan, how much time to spend

at each site, and whether to extend the mission length. We start by defining two

variables for the choices he needs to make: AM (asphalt mounds sites) and MS

(methane seep sites). AM has two options in its domain: A (40) and B (100). Each

option is associated with a positive reward value that represents Rich’s preference

towards it, the larger the better. The other variable MS for methane seeps sites has

three options: X (73), Y (80), and Z (47).

Next, we define twelve events in the plan (Table 2.2): a reference point in time

(𝑆) that represents the beginning of the trip at 11am; a time point that indicates the

end of the trip (𝐸); and time points representing the arrival and departure of each

location (asphalt mounds sites A and B, methane seep sites X, Y, and Z).

Table 2.3 shows all the conditional episodes in the TPN that encode the temporal
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(a) Research Vessel, Atlantis
(b) Autonomous Underwater Vehicle,
Sentry

(c) Sonar data of an undersea asphalt
mound collected by Sentry

(d) An active methane seep in South Ell-
wood Oil Field (Photo by R K Nelson)

Figure 2-4: Vehicles and survey targets of the example expedition (Courtesy WHOI)

Events
Mission starts 𝑆 asphalt mounds site A arrive/leave 𝐴𝐴,𝐴𝐿

Mission ends 𝐸 asphalt mounds site B arrive/leave 𝐵𝐴,𝐵𝐿

methane seep site X arrive/leave 𝑋𝐴,𝑋𝐿

methane seep site Y arrive/leave 𝑌𝐴,𝑌𝐿

methane seep site Z arrive/leave 𝑍𝐴,𝑍𝐿

Table 2.2: Events in Sentry’s mission TPN

S E

BA BL

YA YL

C17

AA AL
XA XL

ZA ZL

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11
C12

C13
C14

C15

C16

Figure 2-5: A graphical representation of Rich’s mission TPN

relaxations between events. A subset of these episodes only hold for some choices,

such as the duration of survey at site A (𝐶1) for assignment 𝐴𝑀 ← 𝐴. We represent

this by saying that episode 𝐶1 is 𝐴𝐶𝑇𝐼𝑉 𝐸 only when the choice 𝐴𝑀 ← 𝐴 is made,
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Constraints (in minutes)
𝐶1(R):𝐴𝐿-𝐴𝐴 ∈ [50, 60] 𝐶6:𝐴𝐴-𝑆 ∈ [45, 65] 𝐴𝑀 ← 𝐴
𝐶2(R):𝐵𝐿-𝐵𝐴 ∈ [45, 60] 𝐶7:𝐵𝐴-𝑆 ∈ [30, 50] 𝐴𝑀 ← 𝐵
𝐶3(R):𝑋𝐿-𝑋𝐴 ≥ 60 𝐶8:𝐸-𝑋𝐿 ∈ [28, 35] 𝑀𝑆 ← 𝑋
𝐶4(R):𝑌𝐿-𝑌𝐴 ≥ 65 𝐶9:𝐸-𝑌𝐿 ∈ [30, 32] 𝑀𝑆 ← 𝑌
𝐶5(R):𝑍𝐿-𝑍𝐴 ≥ 100 𝐶10:𝐸-𝑍𝐿 ∈ [50, 60] 𝑀𝑆 ← 𝑍

𝐶11:𝑋𝐴-𝐴𝐿 ∈ [51, 54] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑋
𝐶12:𝑌𝐴-𝐴𝐿 ∈ [42, 45] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑌
𝐶13:𝑍𝐴-𝐴𝐿 ∈ [30, 55] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑍
𝐶14:𝑋𝐴-𝐵𝐿 ∈ [22, 24] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑋
𝐶15:𝑌𝐴-𝐵𝐿 ∈ [21, 25] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑌
𝐶16:𝑍𝐴-𝐵𝐿 ∈ [30, 35] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑍
𝐶17(R):𝐸-𝑆 ∈ [0, 180]

Table 2.3: Episodes in the TPN of Sentry’s mission (Solid arrows represent traversal
durations, while dotted arrows represent Rich’s temporal requirements)

and indicate this by labeling the episode with 𝐴𝑀 ← 𝐴. The episode is called

conditional episode, and the label is called the guard of the episode. In this problem,

episodes 𝐶1 through 𝐶5 have inequality temporal constraints that represent Rich’s

desired length of survey at five locations. For example, 𝐵𝐿–𝐵𝐴 ≥ 35 indicates that

Rich would like Sentry to spend at least 35 minutes at asphalt mound site B. These

episodes are labeled by the assignments made to the decision variables: an episode

is activated only if its label assignment is made. For example, 𝐶2 will be considered

only if Rich chooses to visit site 𝐵, as shown in the right side of Table 2.3. Episodes

𝐶6 through 𝐶16 encode simple temporal constraints that model the traversal time

required between locations. They are conditioned on assignments made to either 𝐴𝑀

or 𝑀𝑆, or both (𝐶11 through 𝐶16). Finally, 𝐶17 constrains the duration of Sentry’s

mission to three hours. The TPN can be visualized using a directed graph (Figure

2-5), in which nodes represent events and arcs represent episodes.

Some of the episodes followed by a symbol ‘R’ (also highlighted in dotted arcs in

the graph: 𝐶1 through 𝐶5 and 𝐶17) are continuously relaxable episodes. Their lower

and/or upper bounds can be relaxed in order to restore the temporal feasibility of the

plan, if necessary. Each relaxable episode comes with one or two cost functions that

describe Rich’s preferences towards the weakening for their upper and lower bounds.
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These functions map the relaxation from 𝐿𝐵 to 𝐿𝐵′, or from 𝑈𝐵 to 𝑈𝐵′, to a positive

cost value, as seen in Figure 2-6. If the upper bound of 𝐶17 is increased from 180

minutes to 200 minutes, meaning that Rich extends his mission by 20 minutes, the

cost will be 40. On the other hand, if he shortens the survey time by reducing the

lower bound of 𝐶3 to 40, the cost would be 80. In this example, we assume that all

other relaxable episodes have linear cost functions with gradient 1 for simplicity, but

the approach is generalizable to arbitrary monotonic functions (decreasing for lower

bounds, and increasing for upper bounds).
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Figure 2-6: Preference functions for 𝐶3 and 𝐶17

Relaxation 1

Do not
relax 𝐶17

Relaxation 2

𝐶2 is at
least 44

Relaxation 3
𝐴𝑀 ← 𝐵 𝐴𝑀 ← 𝐵 𝐴𝑀 ← 𝐵
𝑀𝑆 ← 𝑌 𝑀𝑆 ← 𝑋 𝑀𝑆 ← 𝑌
𝐶2 to ∈ [39, 60] 𝐶3 to ≥ 57.5 𝐶4 to ≥ 55
𝐶17 to ∈ [0, 185] 𝐶2 to ∈ [42.5, 60] 𝐶2 to ∈ [44, 60]
Utility: 171.5 Utility: 169.25 Utility: 169

Table 2.4: Three preferred continuous relaxations to Rich’s TPN

Before making any relaxations, there is no temporally consistent solution to the

problem. The cause of failure is that three hours is not enough for Sentry to complete

both activities: traversing to the nearest asphalt mounds and methane seep site will

consume at least 80 minutes, which brings the minimum trip duration to nearly 190

minutes. Therefore, one or more episodes’ temporal constraints need to be relaxed.

Table 2.4 shows three continuous relaxations for the TPN ranked in best-first or-

der. Relaxation 1, suggests visiting site 𝐵 and 𝑌 . The survey time for 𝐵 should

be reduced to 39 minutes and the mission should be extended by 5 minutes. The

utility of the relaxation is 171.5, which is computed by summing up the reward of
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two assignments, 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑌 , and subtracting the cost of relaxing 𝐶2

and 𝐶17. If Rich decides not to relax 𝐶17, Relaxation 2 will be preferred since it only

takes Sentry to methane seeps site 𝑋, shortens the scan time to 57.5 minutes and

reduces the survey time at 𝐵 to 42.5 minutes. If Rich requires that survey time at

the asphalt mound site should be no less than 44 minutes, Relaxation 3 will be more

preferred since it respects both additional requirements.

2.3.2 Definitions

The AUV mission example illustrates the modeling of continuous relaxations for over-

subscribed temporal plans, and demonstrates the most significant advantage of con-

tinuous relaxation: it weakens the temporal requirements to the minimal extent.

Compared to discrete relaxations, which may ask Rich to give up on the survey for

asphalt mound sites or methane seeps, continuous relaxations preserve more of the

original plan while restoring its temporal feasibility. In this subsection, we define

the extensions to the TPN formulation and its solutions for supporting continuous

relaxations.

Definition 8. A continuously relaxable TPN is a 9-tuple ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩,

where:

∙ 𝑃 is a set of controllable finite domain discrete variables;

∙ 𝑄 is the collection of domain assignments to 𝑃 ;

∙ 𝑉 is a set of events representing designated time points;

∙ 𝐸 is a set of episodes between pairs of events 𝑣𝑖 ∈ 𝑉 ;

∙ 𝑅𝐸 ⊆ 𝐸 is a set of relaxable episodes whose temporal bounds can be continuously

relaxed;

∙ 𝐿𝑒 : 𝐸 → 2𝑄 is a guard function that attaches conjunctions of assignments in

𝑄, 𝑞𝑖 ∈ 𝑄, to some episodes 𝑒𝑖 ∈ 𝐸;
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∙ 𝐿𝑝 : 𝑃 → 2𝑄 is a guard function that attaches conjunctions of assignments in

𝑄, 𝑞𝑖 ∈ 𝑄, to some discrete variable 𝑝𝑖 ∈ 𝑃 ;

∙ 𝑓𝑝 : 𝑄 → ℛ+ is a function that maps each assignment to every controllable

discrete variable, 𝑞𝑖 ∈ 𝑄, to a positive reward value;

∙ 𝑓𝑒 : (𝑒𝑖, 𝑒
′
𝑖)→ ℛ+ is a function that maps the relaxation to one relaxable episode

𝑒𝑖 ∈ 𝑅𝐸, from 𝑒𝑖 to 𝑒′𝑖, to a positive cost value.

Here we refer to the deep-sea exploration scenario as a grounded example for

the definition. In the TPN model of the scenario, 𝑃 contains two finite domain

variables 𝐴𝑀 and 𝑀𝑆. Their domain values 𝑄 contains two sets: {𝐴,𝐵} for 𝐴𝑀

and {𝑋, 𝑌, 𝑍} for 𝑀𝑆. The set 𝑉 contains all events in Table 2.2, while the set 𝐸

contains all episodes in Table 2.3. The relaxable episodes, 𝑅𝐸, consists of 𝐶1 through

𝐶5 and 𝐶17. Guard function 𝐿𝑒 attaches assignments of 𝐴𝑀 and 𝑀𝑆 to conditional

episodes in 𝐸, which are 𝐶1 through 𝐶16 in this example. Finally, the assignment

reward function, 𝑓𝑝, is defined over the five variable assignments and associates them

with positive real values: 𝐴𝑀 ← 𝐴 (40), 𝐴𝑀 ← 𝐵 (100), 𝑀𝑆 ← 𝑋 (73), 𝑀𝑆 ← 𝑌

(80) and 𝑀𝑆 ← 𝑍 (47). While the relaxation cost function, 𝑓𝑒, is defined over the

six episodes in 𝑅𝐸, as shown in Figure 2-6.

To allow the continuous relaxation for an over-subscribed temporal plan, we in-

clude relaxable temporal episodes in the extended definition of TPN (𝑅𝐸), similar

to the soft constraints in a Simple Temporal Problem with Preferences (Rossi et al.,

2002). We do not use a disjunctive set of temporal bounds for soft constraints. In-

stead, the temporal bounds of an episode can be relaxed continuously at the price

of increasing cost. The cost is defined over the degree of relaxation made to the

lower and upper bounds. Continuous relaxation provides greater flexibility in resolv-

ing over-subscribed plans: it does not limit our options to the predefined alternative

temporal bounds, and allows us to weaken the constraint to the minimum extent

necessary.

Reward function 𝑓𝑝 is defined over the assignments to controllable discrete vari-

ables 𝑞𝑖 ∈ 𝑄. Each assignment is mapped to a positive reward value, such as
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𝑀𝑆 ← 𝑋 : 73. The larger the number is, the more preferred the choice will be.

Cost function 𝑓𝑒 is defined over relaxable episodes. The cost of relaxing an upper

bound 𝐸𝑖𝑗 : 𝑣𝑗 − 𝑣𝑖 ≤ 𝑢𝑖𝑗 from 𝑢𝑖𝑗 to 𝑢′
𝑖𝑗 is 𝑓𝑒𝑖𝑗(𝑢

′
𝑖𝑗 − 𝑢𝑖𝑗). Figure 2-6b shows an

example function defined over 𝑢′
𝑖𝑗 − 𝑢𝑖𝑗.

The cost function for episodes that restrict the lower bounds between two events

is 𝑓𝑒𝑖𝑗(𝑙𝑖𝑗 − 𝑙′𝑖𝑗). This is illustrated in Figure 2-6a. We assume that the user always

prefers smaller relaxations. The motivation of this assumption is that people generally

prefer to minimize the perturbations to the original requirements, and penalize larger

deviations from them. Therefore, all 𝑓𝑒 functions must be monotonically increasing,

and equal to 0 when there is no relaxation. 𝑓𝑒 can be viewed as a semi-convex (Khatib

et al., 2001) function with a segment of zero cost when there is no relaxation. This

assumption simplifies our relaxation process, as the tightest relaxation will always

result in the lowest cost.

Definition 9. A solution to a continuously relaxable TPN is a 4-tuple ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩

such that all activated constraints are temporally consistent, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines ordering over activities in the

TPN;

∙ 𝑅𝑒 is a set of continuous temporal relaxations for some episodes in 𝑅𝐸.

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between locations,

generated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time

associated with an agent’s movement between locations specified in 𝐴, following

the order defined by 𝑆.

where a continuous temporal relaxation is defined as a tuple, ⟨𝑒, 𝑟𝐿, 𝑟𝑈⟩, as the

following:

∙ 𝑒 is an episode in 𝑅𝐸;

∙ 𝑟𝐿 is a weakened lower bound for 𝑒 and 𝑟𝐿 ≤ 𝑒𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑;
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∙ 𝑟𝑈 is a weakened upper bound for 𝑒 and 𝑟𝑈 ≥ 𝑒𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑.

The utility of a solution is computed by subtracting the relaxation cost from the

assignment reward:
∑︀

𝑖 𝑓𝑝(𝑝𝑖 ← 𝑣𝑎𝑙𝑢𝑒𝑖)−
∑︀

𝑖 𝑓𝑒(𝑒𝑖 → 𝑒′𝑖). For example, Solution 1 in

Table 2.4 consists of two assignments and two relaxations: assignment 𝐴𝑀 ← 𝐵 and

𝑀𝑆 ← 𝑌 have reward of 100 and 80, while the cost of relaxing 𝐶2 and 𝐶17 are 6 and

2.5, respectively. Hence the utility value of this solution is 171.5, which is computed

by summing up the rewards, and subtracting the cost of relaxing 𝐶4 and 𝐶17 from it.

Given a TPN, the most preferred relaxation to it is the one with the highest utility

value according to 𝑓𝑝 and 𝑓𝑒.

Finally, similar to discrete relaxations, we may also define minimal set of con-

tinuous relaxations in a solution. A set of continuous relaxations of a temporally

consistent solution is minimal if and only if none of its strict subset, or any relaxation

with strictly tighter bounds, still makes the solution temporally consistent:

Definition 10. A solution ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ has a minimal set of continuous relaxation

if and only if:

∙ ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ is a temporally consistent solution;

∙ ⟨𝐴, 𝑆,𝑅′
𝑒, 𝐸

′⟩, where 𝑅′
𝑒 ⊂ 𝑅𝑒 is not temporally consistent;

∙ ∀𝑟𝑒 ∈ 𝑅𝑒, 𝑟𝑒
′ ⊂ 𝑟𝑒 and 𝑅𝑒∖{𝑟𝑒} ∪ {𝑟𝑒′} is not temporally consistent.

If the cost function 𝑓𝑒 is strictly increasing with the extent of relaxation, |𝑟𝐿 −

𝑒𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑| and |𝑟𝑈−𝑒𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑|, then the consistent set of continuous relaxations with

the lowest cost is guaranteed to be minimal, since any non-minimal set of relaxations

must have higher costs.

2.4 Risk-bounded Relaxations

In this section, we present two additional extensions of continuous temporal relax-

ations, for plans with set-bounded uncertain durations, and probabilistic temporal

durations with information on the likelihood of outcomes.
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2.4.1 Plans with Set-bounded Uncertain Temporal Durations

Uncertainty is commonly encountered in temporal scheduling and planning problems,

and can often lead to over-subscribed situations. In Rich’s AUV mission described

earlier, the traversal times between locations are often non-deterministic. When ap-

plying the deterministic formulation to model such problems, their relaxations may

fail since they only satisfy a subset of the possible outcomes for the uncertain dura-

tions. Hence, we present an extension to the TPN formulation, called Temporal Plan

Network with Uncertainty (TPNU), for modeling relaxation problems with uncertain

duration. The definitions of TPN and TPNU differ only in the terms of temporal

durations: in addition to episodes with controllable durations, a TPNU may also

contain episodes with set-bounded uncertain durations.

We use Rich’s mission to illustrate the modeling of continuous relaxations with

uncertainty duration. Table 2.5 repeats all the episodes for his mission. Note that

episodes 𝐶6 through 𝐶16 are highlighted in bold: they have uncontrollable temporal

durations and encode the traversal times between locations. Their temporal bounds

indicate the domain of the random outcomes. Similar to TPN, TPNU can also be

visualized using a node-arc graph, in which episodes with uncontrollable durations

are represented by double arcs (Figure 2-7).

𝐶1(𝑅):𝐴𝐿-𝐴𝐴 ∈ [50, 60] C6:𝐴𝐴-𝑆 ∈ [45, 65] 𝐴𝑀 ← 𝐴
𝐶2(𝑅):𝐵𝐿-𝐵𝐴 ∈ [45, 60] C7:𝐵𝐴-𝑆 ∈ [30, 50] 𝐴𝑀 ← 𝐵
𝐶3(𝑅):𝑋𝐿-𝑋𝐴 ≥ 60 C8:𝐸-𝑋𝐿 ∈ [28, 35] 𝑀𝑆 ← 𝑋
𝐶4(𝑅):𝑌𝐿-𝑌𝐴 ≥ 65 C9:𝐸-𝑌𝐿 ∈ [30, 32] 𝑀𝑆 ← 𝑌
𝐶5(𝑅):𝑍𝐿-𝑍𝐴 ≥ 100 C10:𝐸-𝑍𝐿 ∈ [50, 60] 𝑀𝑆 ← 𝑍

C11:𝑋𝐴-𝐴𝐿 ∈ [51, 54] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑋
C12:𝑌𝐴-𝐴𝐿 ∈ [42, 45] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑌
C13:𝑍𝐴-𝐴𝐿 ∈ [30, 55] 𝐴𝑀 ← 𝐴 and 𝑀𝑆 ← 𝑍
C14:𝑋𝐴-𝐵𝐿 ∈ [22, 24] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑋
C15:𝑌𝐴-𝐵𝐿 ∈ [21, 25] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑌
C16:𝑍𝐴-𝐵𝐿 ∈ [30, 35] 𝐴𝑀 ← 𝐵 and 𝑀𝑆 ← 𝑍
𝐶17(𝑅):𝐸-𝑆 ∈ [0, 180]

Table 2.5: Episodes in Rich’s mission TPNU

Similar to the earlier example, without any relaxations, there is no solution that
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Figure 2-7: A graphical representation of Rich’s mission TPNU

can satisfy all of the requirements in Rich’s mission. If we use the TPN formalism to

model this over-constrained problem, one solution would be to visit site B and X while

extending the mission by 5 minutes (Figure 2-8). However, it does not account for the

uncontrollable traversal times: the solution is very likely to fail during the mission,

since it has no margin to absorb any delay in the traversal between locations. Next,

we present two solutions generated for the TPNU model, which are based on two

execution strategies that take the uncertainty into consideration. The first strategy,

called Strong Controllability, comes up with a schedule of activities before starting the

plan, which ensures success for all uncontrollable durations. The second execution

strategy, called Dynamic Controllability, instead observes these uncertain outcomes

along the way, and makes more informed decisions about scheduling each activity.

Move to B
[30, 50]

S EBA BL XA XL

Survey B
[45, 60]

Move to X
[22, 24]

Scan X
≥ 60

Back to Ship
[28, 35]

[0, 180] → [0, 185] 

Figure 2-8: Consistent relaxation for Rich’s mission

Move to B
[30, 50]

S EBA BL XA XL

Survey B
[45, 60] → [40, 60]

Move to X
[22, 24]

Scan X
≥ 60

Back to Ship
[28, 35]

[0, 180] → [0, 209] 

Figure 2-9: Strongly controllable relaxation for Rich’s mission

The second solution is computed based on strong controllability (Figure 2-9). It

extends the mission time to 209 minutes, and decreases the lower bound of the survey

time at 𝐵 to account for the uncertainty in the traversal between the ship and site
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𝐵. This solution has a utility of 83.9, and enables a schedule that satisfies Rich’s

requirements while being robust to the uncertain durations.

Move to B
[30, 50]

S EBA BL XA XL

Survey B
[45, 60]

Move to X
[22, 24]

Scan X
≥ 60

Back to Ship
[28, 35]

[0, 180] → [0, 214] 

Figure 2-10: Dynamically controllable relaxation for Rich’s mission

The third and final solution is computed based on dynamic controllability (Figure

2-10). Unlike the strong controllability solution, it does not need to decrease the lower

bound of survey time at 𝐵 to account for the uncertain traversal times, and hence is

less conservative than the second solution, while still being safe. The solution has a

higher utility of 57.4, and enables a dynamic schedule on the fly instead of a static

schedule beforehand: the times of leaving site 𝐵 and 𝑋 will depend on the actual

traversal times.

Definitions

Simple Temporal Networks with Uncertainty (STNUs) (Vidal & Fargier, 1999) have

been widely used to model temporal problems with uncertain durations. They are

extension to Simple Temporal Networks (Dechter et al., 1991) by adding a new class of

constraint: uncertain duration. The duration is defined by a random variable between

its lower and upper bounds and cannot be freely assigned. Formally, this structure is

defined as the following:

Definition 11. A STNU 𝑁 = ⟨𝑉𝑎, 𝑉𝑟, 𝐸𝑓 , 𝐸𝑢⟩, extends the STN definition with new

types of events and constraints associated with the uncertain duration:

∙ activated events 𝑣𝑖 ∈ 𝑉𝑎, whose times are assigned by the agent;

∙ received events 𝑟𝑖 ∈ 𝑉𝑟, whose times are assigned by external world;

∙ free constraints 𝑒𝑖 ∈ 𝐸𝑓 , which are of type 𝑣𝑥 − 𝑣𝑦 ∈ [𝑙𝑥𝑦, 𝑏𝑥𝑦] where 𝑣𝑥, 𝑣𝑦 are

events.
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∙ uncertain durations 𝑢𝑥𝑦 ∈ 𝐸𝑢, where 𝑢𝑥𝑦 ∈ [𝑙𝑥𝑦, 𝑏𝑥𝑦] describes the difference in

time between received event 𝑟𝑦 ∈ 𝑉𝑟 and activated event 𝑣𝑥 ∈ 𝑉𝑎, such that

(𝑟𝑦 − 𝑣𝑥) = 𝑢𝑥𝑦. Uncertain durations are not assigned by the agent, and can

take any value in the bounded interval.

The STNU extends the STN representation with uncertainty. Note that the uncer-

tainty representation is not probabilistic: the uncertain durations are not associated

with probability distributions. Thus, we can not reason over the likelihood of out-

comes for the uncertain durations. We must instead guarantee constraint satisfaction

given any outcome for the uncertain duration within the interval.

The solution to a STNU is an execution strategy that satisfies all constraints

regardless of the outcomes of uncertain duration. The existence of such a strategy is

characterized by the controllability, instead of consistency, of the STNU. There are

three types of controllability (Vidal & Fargier, 1999): Strong, Dynamic, and Weak.

Each type has a different assumption about the time when the outcomes of uncertain

duration become available. In this thesis, we focus on the first two types, strong

and dynamic controllability, which assume that no outcome is known prior to the

execution. Strong controllability requires a predetermined schedule which satisfies all

constraints regardless of the outcomes of the uncertain durations, whereas dynamic

controllability requires a policy for scheduling as observations of uncertain durations

become available. Intuitively, dynamic controllability is more flexible as it makes use

of information gained during execution.

Definition 12. A Simple Temporal Problem with Uncertainty, STPU, is a problem

formulation using the STNU representation.

∙ Given a STNU 𝑁 = ⟨𝑉𝑎, 𝑉𝑟, 𝐸𝑓 , 𝐸𝑢⟩, find an execution policy to events in 𝑉𝑎

such that all constraints in 𝐸𝑓 are satisfied regardless of the outcomes of dura-

tions in 𝐸𝑢.

The STPU formalism has been extended with disjunctions and conditional con-

straints to handle more real-world scheduling and planning problems. In (Venable &
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Yorke-Smith, 2005; Peintner, Venable, & Yorke-Smith, 2007), the Disjunctive Tem-

poral Problem with Uncertainty (DTPU) formalism was introduced to permit non-

convex and non-binary constraints. DTPU can be viewed as an extension to the de-

terministic Disjunctive Temporal Problem (DTP) (Stergiou & Koubarakis, 1998) for-

malism with uncertain durations. It allows the expression of disjunctive constraints,

and enables the agent to choose between alternatives. We extends TPN to TPNU in

a similar manner. Formally, the TPNU formulation extends the TPN definition with

three additional elements.

Definition 13. A TPNU contains all elements in a TPN, plus 𝑉𝑟, 𝐸𝑢 and 𝑅𝐸𝑢,

where:

∙ 𝑉𝑟 ⊆ 𝑉 is a set of received events. 𝑉 ∖𝑉𝑟 is the set of all activated events;

∙ 𝐸𝑢 ⊆ 𝐸 is a set of episodes with uncertain duration between pairs of activated

and received events. 𝐸∖𝐸𝑢 is the set of all episodes with free constraints;

∙ 𝑅𝐸𝑢 ⊆ 𝐸𝑢 is a set of continuously relaxable episodes with uncertain durations

whose bounds can be tightened, and 𝑅𝐸𝑢 ⊆ 𝑅𝐸.

The cost function is generalized to include episodes with both controllable and

uncertain duration: 𝑓𝑒 : (𝑒𝑖, 𝑒
′
𝑖) → ℛ+ is a function that maps the following to a

non-negative cost.

∙ the relaxation of an episode with controllable duration, 𝑒𝑖 → 𝑒′𝑖, 𝑒𝑖 ∈ 𝑅𝐸∖𝑅𝐸𝑢;

∙ or the tightening of an episode with uncertain duration, 𝑒𝑖 → 𝑒′𝑖, 𝑒𝑖 ∈ 𝑅𝐸𝑢;

As can be seen in the definition, we also generalize the concept of relaxations to in-

clude uncertain durations. To resolve a conflict by relaxing episodes with controllable

temporal bounds, we will either increase its upper bound or reduce its lower bound,

effectively widening the range of the temporal constraint. On the other hand, we

shrink the bounds of uncertainty we handle for episodes with uncertain duration: we

may resolve the conflict by increasing the lower bound and/or decreasing the upper
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bound of its uncertain duration, effectively reducing the amount of uncertain out-

comes to be handled. Usually, uncertain duration is used to reserve some flexibility

for the agents or the environment in executing their activities. A tighter duration

means less flexibility for them, but also imposes less restriction on the solution to

the temporal plans. We will give more insights into the relation between uncertain

durations and conflict resolutions in the approach section.

Similar to TPN, the solution to a continuously relaxable TPNU is defined as a

5-tuple ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑢, 𝐸
′⟩, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines a total ordering over activities

in the TPN;

∙ 𝑅𝑒 is a set of continuous temporal relaxations for some episodes with controllable

durations in 𝑅𝐸.

∙ 𝑅𝑢 is a set of continuous temporal tightenings for some episodes with uncertain

durations in 𝑅𝐸𝑢.

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between activities,

generated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time

associated with an agent’s movement between locations specified in 𝐴, following

the order defined by 𝑆.

A feasible solution to a TPNU provides a grounded and controllable STPU. We

separate the solutions into two categories: strongly controllable and dynamically con-

trollable. This is based on the type of execution strategies a solution can enable.

∙ A strongly controllable solution makes the resulting STPU strongly controllable.

That is, the relaxation enables an execution strategy with a firm schedule for

all events.
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∙ A dynamically controllable solution makes the resulting STPU dynamically con-

trollable, for which a dynamic execution strategy that meets all constraints can

be derived.

Note that a strongly controllable solution is also a dynamically controllable solu-

tion, since strong controllability is more restrictive than dynamic controllability. Due

to the flexibility of dynamic controllability, there is usually a greater solution space

to explore for over-subscribed temporal plans.

2.4.2 Plans with Probabilistic Uncertain Durations and Chance

Constraints

In many situations, modeling the uncertainty in temporal duration with a set-bounded

representation is overly conservative, resulting in a loss of schedule utility. Chance-

constrained formalisms, such as chance-constrained probabilistic Simple Temporal

Problems (cc-pSTPs), address over-conservatism by imposing bounds on risk, while

maximizing utility subject to these risk bounds. On the other hand, when we are

dealing with probabilistic uncertain duration, the relaxation problem becomes more

challenging, since we are making trade-offs between not only temporal requirements,

but also risk taken. In the rest of this section, we present an extended formalism to

TPN, the chance-constrained probabilistic Temporal Plan Networks (cc-pTPNs) for

modeling relaxation for plans with probabilistic durations and chance constraints.

We again use Rich’s mission as an example to illustrate the extension. To simplify

the example, we remove the asphalt mound site survey, leave only the methane seeps

sites to visit, and make the traversal duration controllable. The periodic methane

seeps at X is likely to occur at around 1:00PM, following a normal distribution with

a standard deviation of 30 minutes. The seeps at Y will occur at around 1:30PM and

follows a normal distribution with a standard deviation of 50 minutes. As described

before, Sentry leaves the ship at 11:00AM, and needs to arrive at the site before the

start of the methane seeps. In addition, at least 30 minutes is required for traversing to

the site, and 45 minutes for scanning. As before, Rich wants the mission to complete
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in 3 hours, with less than 5% risk of violating any temporal requirements, such as

returning late or missing the event. We can capture this problem using a cc-pTPN

(Figure 2-11).

Table 2.6: Episodes in Rich’s mission cc-pTPN

𝐶1 𝑋𝐴-𝑆 > [45,+∞] 𝑀𝑆 ← 𝑋 Traversal to methane seeps site X
𝐶2 𝑋𝑠𝑝-𝑋𝐴 ∈ [0,+∞] 𝑀𝑆 ← 𝑋 Wait for seeps at site X
𝐶3(R) 𝑋𝐿-𝑋𝑠𝑝 ∈ [50, 60] 𝑀𝑆 ← 𝑋 Scanning at site X
𝐶4 𝐸-𝑋𝐿 ∈ [45,+∞] 𝑀𝑆 ← 𝑋 Traversal from site X back to ship
C5 𝑋𝑠𝑝-𝑆=[𝜇 = 120, 𝜎 = 30] 𝑀𝑆 ← 𝑋 Seeps start time at X
𝐶6 𝐵𝐴-𝑆 ∈ [30,+∞] 𝑀𝑆 ← 𝑌 Traversal to methane seeps site Y
𝐶7 𝑌𝑠𝑝-𝑌𝐴 ∈ [0,+∞] 𝑀𝑆 ← 𝑌 Wait for seeps at site Y
𝐶8(R) 𝑌𝐿-𝑌𝑠𝑝 ∈ [45, 60] 𝑀𝑆 ← 𝑌 Scanning at site Y
𝐶9 𝐸-𝑌𝐿 ∈ [30,+∞] 𝑀𝑆 ← 𝑌 Traversal from site Y back to ship
C10 𝑌𝑠𝑝-𝑆=[𝜇 = 150, 𝜎 = 50] 𝑀𝑆 ← 𝑌 Seeps start time at Y
𝐶11(R) 𝐸-𝑆 ∈ [0, 180] Mission duration

XLXSP

XA

C1

C2

C3 C4

C11

C5

Risk: <5%

YL EYSPS
C8 C9C10

YA

C6
C7

Figure 2-11: The cc-pTPN model for Rich’s mission

After evaluating all the requirements, BCDR determines that no dynamic execu-

tion policy exists that meets all requirements. It engages Rich and starts presenting

relaxations that can restore the feasibility of Rich’s problem. The first one asks Rich

to extend the mission from 3 hours to 4 hours and 26 minutes, which is robust

for surveying the methane seeps at site X if it occurs between 11:45AM and 1:51PM

(Figure 2-12). The probability of failure is determined by analyzing the assumptions

on the uncertain duration: the episode 𝐶5 with probabilistic duration is turned into a

set bounded one with bounds [45,171], and the network is checked to be dynamically

controllable against all possible outcomes within the range.

However, Rich rejects the solution and adds an additional requirement that the
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XL EXSP

XA

S

C1:[45,65]
C2: >0

C3:[50,60] C4: [45,65]

C6:[0,180] → [0, 266]

C5: μ=120,σ=30

Risk: <5%

[45,171] 

Figure 2-12: First relaxation for Rich’s mission

mission duration can be at most 4 hours, since the subsequent mission cannot be

shortened by more than an hour. BCDR incorporates this new requirement and

generates another relaxation, which requires Rich to accept an increased probability

of failure, from 5% to 20.85%. This allows the mission to be completed in 4 hours,

but cannot account for methane seeps that occurs after 1:25PM (Figure 2-13).

XL EXSP

XA

S

C1:[45,65]
C2: >0

C3:[50,60] C4: [45,65]

C6:[0,180] → [0, 240]

C5: μ=120,σ=30

Risk: <20.85%

[45,145] 

Figure 2-13: Second relaxation for Rich’s mission

XL EXSP

XA

S

C1:[45,65]
C2: >0

C3:[50,60] → [24,60] C4: [45,65]

C6:[0,180] → [0, 240]

C5: μ=120,σ=30

Risk: <5%

[45,171] 

Figure 2-14: Third relaxation for Rich’s mission

Rich rejects the solution again and tells BCDR that he cannot take more than

5% risk. BCDR again incorporates this new requirement and generates the third

relaxation, which asks Rich to reduce the survey time at site X to 24 minutes. This

allows the mission to be completed in 4 hours, while being robust to methane seeps

that takes place between 11:45AM and 1:51PM (Figure 2-14).
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Definitions

Similar to the STNU formalism, cc-pSTP is also an extension to the Simple Tempo-

ral Problems (STPs) formulation. In addition to the simple temporal constraints in

STPs, it adds two new types of constraints to the problem: probabilistic temporal

constraints for modeling uncertain durations, and chance constraints for specifying

the acceptable level of risk. Compared to the set-bounded uncertain durations used

in STNUs, the probabilistic representation of uncertain durations allows cc-pSTPs to

more accurately model uncertainty in real world activities. In addition, the chance

constraint supports a quantified bound on risk taken to be specified, which is more

flexible and intuitive than the criteria of controllability. It can be viewed as a gener-

alization of the notion of controllability: instead of a binary outcome between 100%

guarantee of success or nothing, the users can ask for any bound between [0,100%]

on the probability that a temporal network is executable.

Chance-constraints have been studied in the operations research literature, tra-

ditionally as probabilistic guarantees over satisfaction of individual or conjunctions

of constraints (Kall, 1976). In this work, we generalize the definition of chance-

constraints to include disjunctions over constraints as well. The definition is presented

in Appendix A. This generalization allows us to choose between multiple options to

find one which meets our safety requirements. We define the cc-pTPN formalism

by extending TPNU with probabilistic uncertain durations and chance constraints.

Here, we first repeat the definition of cc-pSTP from (Fang et al., 2014) for reference.

Definition 14. A cc-pSTP is a pair ⟨𝑁+,∆𝑡⟩, where:

∙ 𝑁+ is a probabilistic Simple Temporal Network (pSTN), defined as a 4-tuple

⟨𝑉𝑎, 𝑉𝑟, 𝐸𝑓 , 𝐸𝑑⟩, where:

– 𝑉𝑎, 𝑉𝑟, 𝐸𝑓 are defined as for STNU; and

– 𝐸𝑑 is a set of probabilistic uncertain durations. Each 𝑑𝑥𝑦 ∈ 𝐸𝑑, 𝑑𝑥𝑦 : Ω→ R

is a random variable describing the difference (𝑦−𝑥) between an activated

event 𝑥 ∈ 𝑉𝑎 and a received event 𝑦 ∈ 𝑉𝑟.
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∙ ⟨𝐸𝑓 , 1 − ∆𝑡⟩ is the chance constraint that sets the upper bound on the risk of

failure, for the set of requirement constraints 𝐸𝑓 in 𝑁+.

In the cc-pSTP, the set of constraints is described by 𝐸𝑓 , which are difference

constraints between elements in 𝑉𝑟 and 𝑉𝑎 to be satisfied, given the outcomes of 𝐸𝑑.

This corresponds to 𝐶 in Definition 23.

Definition 15. A cc-pSTP solution is a pair ⟨𝑁𝑔, 𝑆𝑥⟩, where:

∙ 𝑁𝑔 is a grounded STNU of the cc-pSTP. It replaces all probabilistic durations

in the cc-pSTP with set-bounded uncertain durations, which specify the allo-

cated risk over them: the lower and upper bounds allocated for each probabilistic

duration indicate the range of outcomes covered. The total probability of uncov-

ered outcomes across all probabilistic durations must be smaller than the chance

constraint bound.

∙ 𝑆𝑥 is an execution strategy for 𝑁𝑔. It covers all controllable events in the cc-

pSTP, and is controllable with respect to 𝑁𝑔.

Given a cc-pSTP, 𝑃 , if we execute the controllable events using 𝑆𝑥 in its solution,

the chance of violating any temporal constraints in 𝑃 is guaranteed to be less than

∆𝑡. The policy 𝑆𝑥 could be a static schedule (with a strongly controllable 𝑁𝑔), or

a dynamic execution policy (with a dynamically controllable 𝑁𝑔). If a cc-pSTP is

over-constrained, no solution exists that can meet all temporal constraints within the

risk bound. In other words, there is no 𝑁𝑔 that is controllable and takes less risk than

the chance constraint. This occurs when the user specifications are too restrictive,

for example when the desired time bounds are too tight, or when the user is overly

cautious in setting the chance constraint. These problems can be resolved through

temporal or chance constraint relaxations: they are trade-offs between weakening over

chance and temporal constraints for the users. We thus define a relaxable version of

the cc-pSTP formulation, which allows some of its constraints to be relaxed at a cost

to allow a feasible solution.
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Definition 16. A relaxable cc-pSTP contains all elements from a cc-pSTP plus four

additional elements, 𝑅𝐸, 𝑓𝑟𝑐, 𝑟∆𝑡 and 𝑓Δ, where:

∙ 𝑅𝐸 is a set of requirement constraints whose temporal bounds can be relaxed,

𝑅𝐸 ⊆ 𝐸𝑓 .

∙ 𝑓𝑒 : (𝑒𝑖𝑗, 𝑒
′
𝑖𝑗) → R+ is a function that maps the relaxation of a relaxable con-

straint, 𝑒𝑖𝑗 → 𝑒′𝑖𝑗 where 𝑒𝑖𝑗 ∈ 𝑅𝐸, to a positive cost value.

∙ 𝑟∆𝑡 ∈ [𝑇, 𝐹 ] is a boolean value that indicates if the chance constraint can be

relaxed.

∙ 𝑓Δ : (∆𝑡,∆
′
𝑡) → R+ is a function that maps the relaxation of the chance con-

straint, ∆𝑡 → ∆′
𝑡 where ∆𝑡 ≤ ∆′

𝑡 ≤ 1, to a positive cost value.

Definition 17. A valid resolution for an over-constrained cc-pSTP, 𝑃 , is a 3-tuple

⟨𝑅𝑒,∆
′
𝑡, 𝑁𝑎𝑙𝑙𝑜𝑐⟩, where:

∙ 𝑅𝑒 is a set of relaxations (in terms of relaxed lower and upper bounds) to con-

straints in 𝑅𝐸 of 𝑃 .

∙ ∆′
𝑡 is a relaxation for ∆𝑡 of 𝑃 , and ∆′

𝑡 ≥ ∆𝑡.

∙ 𝑁𝑎𝑙𝑙𝑜𝑐 is a STNU generated from 𝑃 by grounding all probabilistic durations with

fixed lower and upper bounds.

such that 𝑁𝑎𝑙𝑙𝑜𝑐 is controllable and covers more than 1 −∆′
𝑡 of the uncertain du-

rations’ outcomes.

Based on the relaxation problems for cc-pSTP, we define a chance-constrained

analogue to the TPNU, the chance-constrained probabilistic Temporal Plan Network

(cc-pTPN).

Definition 18. A cc-pTPN contains all elements in a TPNU (Definition 13), with

the following differences:
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∙ Instead of 𝐸𝑢 ⊆ 𝐸, a set of episodes with uncertain duration between pairs of

activated and received events in TPNU, the cc-pTPN features a set of episodes

with probabilistic uncertain durations 𝐸𝑑. Each 𝑑𝑥𝑦 ∈ 𝐸𝑑 is a random variable

describing the difference (𝑦−𝑥) between an activated event and a received event,

where 𝑥 ∈ 𝑉𝑎 and 𝑦 ∈ 𝑉𝑟;

∙ A cc-pTPN includes ⟨𝐸𝑓 , 1−∆𝑡⟩, the chance constraint that sets the upper bound

on the risk of failure, for the set of requirement constraints 𝐸𝑓 ⊆ 𝐸;

∙ A cc-pTPN includes a boolean value 𝑟∆𝑡 ∈ [𝑇, 𝐹 ] that indicates if the chance

constraint can be relaxed;

∙ The cost function is adapted for the chance constraint with the addition of 𝑓Δ :

(∆𝑡,∆
′
𝑡) → R+, a function that maps the relaxation to the chance constraint,

∆𝑡 → ∆′
𝑡 where ∆𝑡 ≤ ∆′

𝑡 ≤ 1, to a positive cost value.

Intuitively, the cc-pTPN formulation adds probabilistic uncertain durations with

an associated chance-constraint, in addition to the set-bounded uncertain durations

in TPNUs. Correspondingly, the relaxation over the risk bound is encoded by the

tightness of the chance constraint.

The concept of relaxing an uncertain duration is related to the concept of relaxing

a chance constraint. In finding a solution to cc-pTPN, we are required to find an

example set of episodes with set-bounded uncertain durations which cover enough

probability mass to satisfy the chance constraint. A relaxation of the chance con-

straint allows the choice of episodes with set-bounded uncertain durations to cover

a smaller probability mass, in some cases a more restrictive set of outcomes. This is

analogous to the relaxation of the uncertain durations in the original TPNUs.

Similar to TPNU, the solution to a continuously relaxable cc-pTPN is defined as

a 6-tuple ⟨𝐴, 𝑆,𝑅𝑒,∆
′
𝑡, 𝑁𝑎𝑙𝑙𝑜𝑐, 𝐸

′⟩, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines a total ordering over activities

in the TPN;
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∙ 𝑅𝑒 is a set of continuous temporal relaxations for some episodes with free con-

straints in 𝑅𝐸.

∙ ∆′
𝑡 is a relaxation for ∆𝑡, and ∆′

𝑡 ≥ ∆𝑡.

∙ 𝑁𝑎𝑙𝑙𝑜𝑐 is a TPNU that grounds all episodes with probabilistic durations using

fixed lower and upper bounds.

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between locations,

generated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time

associated with an agent’s movement between locations specified in 𝐴, following

the order defined by 𝑆.

A feasible solution to a cc-pTPN provides a grounded and controllable STPU. We

can also separate the solutions into two categories, strongly controllable and dynami-

cally controllable, based on the type of execution strategies a solution can enable.

Given an over-subscribed cc-pTPN, there is usually more than one valid resolution

to it due to the continuous property of temporal and chance constraint relaxations.

It is important to prioritize the resolutions and enumerate only preferred ones of

lower cost for the users. In addition, finding a good resolution usually requires a

considerable amount of negotiation since the users may not have encoded all their

requirements in the input problem. BCDR needs to learn about them through the

interaction before reaching an agreement with the user.

2.5 Domain Relaxations

2.5.1 Example Scenario

For the fourth and final type of relaxation, domain relaxation, we switch back to use

the urban travel example to illustrate the extensions required to the TPN and its so-

lution formalisms. Recall that Uhura’s task is to work out a temporally feasible plan

with Simon and Christian for their evening outing trip, which includes the choices

for restaurant and movie showing, the sequence of these activities, and appropriate
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adjustments to the timing requirements, if necessary. We extend the variable repre-

sentation for their activities to be parameterized, which include domain constraints

that encode the meanings as sets of semantic queries. These semantic queries capture

the user requirements on the state that cannot be encoded by only using temporal

constraints, and describe allowed values for the domain of these variables.

Leave Office
18:00

Arrive Home

< 210 mins (SI)

Arrive
Cinema

Leave
Cinema

Comedy Movie (SI)

Arrive
Restaurant

Leave
Restaurant

Chinese Restaurant (SI,CR)

(movie m) ∧ (genre g) ∧
(hasGenre m g) ∧(surface g ’Comedy’)

(restaurant r) ∧ (cuisine c) ∧
(servesCuisine r c) ∧(surface c ’CHINESE’)

Figure 2-15: A TPN for Simon’s trip

For example, the extended TPN for Simon and Christian’s travel problem is shown

in (Figure 2-15), which again encodes the two activities for dinner and movie, as well

as the temporal requirements over the trip departure and completion times. The two

activities requested by them are associated with a set of semantic queries that encode

the genre and cuisine requirements. When implemented with SparQL, these queries

can be expressed as the following (m.05p553 and m.01xw9 are Freebase Machine IDs

for entity Comedy film and Chinese food):
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∙ Comedy Movie:

SELECT ?m WHERE{ //select subject ?m that meets the following triples

?m ns:type.object.type ns:film.film. //subject ?m is of type film

?g ns:type.object.type ns:film.film_genre. //subject ?g is of type genre

?m ns:film.film.genre ?g. //?m has genre ?g

FILTER (?g =<http://rdf.freebase.com/ns/m.05p553>).} //?g is object m.05p553

∙ Chinese Restaurant:

SELECT ?r WHERE{

?r ns:type.object.type ns:dining.restaurant.

?c ns:type.object.type ns:dining.cuisine.

?r ns:dining.restaurant.cuisine ?c.

FILTER (?c = <http://rdf.freebase.com/ns/m.01xw9>).}

Given the domain constraints of the variables for dinner and movie, we pass their

semantic queries to a knowledge base, which can search through multiple data sources

and retrieve candidate options for the activities. These options will then be encoded

as alternative episodes for the activities and added to the TPN. For example, the

expanded TPN for Simon and Christian’s outing trip is shown in Figure 2-16.

Leave Office
18:00

Arrive Home

< 210 mins

20:00 Joy
at AMC 16 (124 mins)

19:30 Norm of the 
North at AMC 20

(90 mins)
Panda Express (30 mins)

Magic Wok (30 mins) 

Figure 2-16: An expanded TPN with alternative activity candidates

Due to the long travel times to and from the candidate Chinese restaurants, no

solution can be found that meets all temporal requirements. Hence the system engages

Simon and Christian, and initiates a discussion about possible resolutions for their
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problem.

DA: Simon, you may have dinner at Magic Wok then watch the 8pm Joy

at AMC 16. However, due to the length of the movie you won’t be back

home until 10:34pm. Is that OK?

Simon: No, I must arrive home by 9:30pm.

DA: OK, then Simon can you leave office 30 minutes earlier? If so you

may watch Norm of the North at 7:30pm, and arrive home at 9:30pm.

Simon: No I cannot leave office before 6pm.

DA: Simon and Christian, How about eating at Sunny Bowl, a Ko-

rean restaurant? It is closer and Simon can make the 7:30pm movie

without leaving any earlier.

Christian: That’s fine.

Simon: Sounds good. Thank you.

In this example, Simon cannot change the departure and arrival times. As a result,

he rejected the first two proposals. Previous approaches would have failed at this step,

as no more temporal relaxation can be found that resolves the conflicts between long

travel times to the restaurants and movie start times. However, the domain relaxation

extension to BCDR weakens the domain constraints for the restaurant variable, such

that three new options became available for his trip (Figure 2-17). In this case, BCDR

discovered a close alternative, Korean, for the cuisine requirement of restaurant. It

then queried the knowledge base to retrieve additional candidate restaurants, and

found one that is closer to their home and satisfies all temporal constraints (Figure

2-18).

This example demonstrates the desired behavior of domain relaxation: it allows

BCDR to resolve over-subscribed travel plans through relaxing the domain con-

straints, and actively searching for candidates that are not encoded in the original

problem. It gives the users more flexibility in resolving their over-subscribed plans

when they cannot compromise on the temporal requirements.
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CHINESE RESTAURANT
?r ns:type.object.type ns:dining.restaurant.
?c ns:type.object.type ns:dining.cuisine.
?r ns:dining.restaurant.cuisine ?c.
FILTER (?c = <http://rdf.freebase.com/ns/m.01xw9>).

KOREAN RESTAURANT
FILTER (?c = <http://rdf.freebase.com/ns/m.048vr>).

{Panda Express, 
Magic Wok}

{Sunny Bowl, 
Bibimbowl, 

Jang Su Jang}

K
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E

Relaxing Cuisine Constraint
+

Figure 2-17: Domain relaxation for the restaurant cuisine

18:00
Leave Office

Arrive Home< 210 mins

19:30 Norm of the North 
at AMC 20 (90 mins)

Sunny Bowl (30 mins) 

Drive to AMC 20
[25,30] 

Drive to 
Sunny Bowl

[15,20] 

Drive Home
[20,25] 

(a) Simon’s trip

17:45
Leave Office

Arrive Home< 180 mins

Sunny Bowl (30 mins) 

Drive to 
Sunny Bowl

[25,35] 

Drive Home
[30,45] 

(b) Christian’s trip

Figure 2-18: A solution enabled by relaxed cuisine constraint

2.5.2 Definitions

To support domain relaxation, we augment the TPN formulation to include relaxable

domain constraints for the variables. Formally, we define a relaxable Temporal Plan

Network with domain constraints, such as the one presented in Figure 2-16, as the

following:

Definition 19. A relaxable TPN with domain constraints is an 11-tuple ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,

𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒, 𝑃𝑠, 𝐿𝑠⟩ where:

∙ 𝑃 is a set of controllable finite domain discrete variables;

∙ 𝑄 is the collection of domain assignments to 𝑃 ;

∙ 𝑉 is a set of events representing designated time points;

∙ 𝐸 is a set of episodes between pairs of events 𝑣𝑖 ∈ 𝑉 ;
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∙ 𝑅𝐸 ⊆ 𝐸 is a set of relaxable episodes whose temporal bounds can be continuously

relaxed;

∙ 𝐿𝑒 : 𝐸 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some episodes 𝑒𝑖 ∈ 𝐸;

∙ 𝐿𝑝 : 𝑃 → 2𝑄 is a guard function that attaches conjunctions of assignments in 𝑄,

𝑞𝑖 ∈ 𝑄, to some discrete variable 𝑝𝑖 ∈ 𝑃 ;

∙ 𝑓𝑝 : 𝑄→ ℛ+ is a function that maps each assignment to every controllable discrete

variable, 𝑞𝑖 ∈ 𝑄, to a positive reward value;

∙ 𝑓𝑒 : (𝑒𝑖, 𝑒
′
𝑖) → ℛ+ is a function that maps the relaxation to one relaxable temporal

constraint 𝑒𝑖 ∈ 𝑅𝐸, from 𝑒𝑖 to 𝑒′𝑖, to a positive cost value.

∙ 𝑃𝑠 is a set of domain constraints, where each 𝑃𝑠𝑖 ∈ 𝑃𝑠 is a semantic query;

∙ 𝐿𝑠 : 𝑃 → 𝑆 is a function that attaches semantic constraints, 𝑠𝑖 ∈ 𝑆, to some

variables 𝑝𝑖 ∈ 𝑃 , which defines the domain of the variable.

As presented in the previous section, some of the variables in the TPN are associ-

ated with domain constraints to encode their meanings, such as the example presented

in Figure 2-16. They are highlighted in the definition: domain constraints 𝑃𝑠 and func-

tion 𝐿𝑠 that associates the constraints to the corresponding variables. These domain

constraints, represented by semantic queries, are used to retrieve domain values (en-

coded as object bindings) from the knowledge base. In the case of over-subscription,

some of the queries can be relaxed, which effectively weakens the domain constraints

for a variable and allows additional options in the domain for resolving conflicts. In

this thesis, we use SparQL as the implementation for the semantic queries. And

formally, we encode the SparQL query as a 4-tuple ⟨𝑁,𝐻,𝑊,𝑅𝑊 ⟩, where:

∙ 𝑁 is the namespace of the query;

∙ 𝐻 is the select clause, which identifies the variables to appear in the query results;
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∙ 𝑊 is a collection of SparQL query triples, each contains a subject, predicate and

object field. They are encoded as part of the where clause;

∙ 𝑅𝑊 ⊆ 𝑊 is a set of relaxable triples, whose object field can be modified to other

values.

For example, Figure 2-17 demonstrates the relaxation to a domain constraint for

the 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 variable. The original set of triples in the SparQL query retrieves

only two Chinese restaurants, and neither of which meets Simon’s tight temporal

requirements. A domain relaxation for this variable weakens the FILTER triple,

allowing its object to be Korean cuisine in addition to Chinese cuisine, which adds

three more restaurants to be considered. Internally, all objects are encoded using

their unique Freebase Machine IDs (MIDs), such as m.01xw9 for Chinese cuisine and

m.048vr for Korean cuisine, to avoid ambiguity.

Note that it is also possible to include uncertain temporal durations and chance

constraints in the TPN using the extensions for TPNUs and cc-pTPNs. They are

necessary for generating risk-bounded relaxations for many real-world problems. As

presented in Section 2.4, BCDR is capable of checking controllability and computing

risk-bounded relaxations to the uncertain durations. For simplicity, we omit the un-

certain durations from our extended formulation for domain relaxation in this section.

With the extensions for temporal and domain relaxations, the output of BCDR is

now a 5-tuple, which defines a temporally feasible plan based on the input TPN. It

may also include continuous relaxations for some temporal constraints, and domain

relaxations for some variables, if necessary.

Definition 20. The solution to a relaxable TPN with domain constraints is a 5-tuple

⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑑, 𝐸
′⟩, where:

∙ 𝐴 is a complete set of assignments to variables in 𝑃 ;

∙ 𝑆 is a set of additional assignments that defines a total ordering over activities in

the TPN;

∙ 𝑅𝑒 is a set of continuous temporal relaxations for some episodes in 𝑅𝐸.
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∙ 𝑅𝑑 is a set of domain relaxations for some variables in 𝑃 ;

∙ 𝐸 ′ is a set of episodes that encodes the traversal activities between locations, gener-

ated by the routing function. Each 𝑒′ ∈ 𝐸 ′ encodes the traversal time associated with

an agent’s movement between locations specified in 𝐴, following the order defined

by 𝑆.

For example, in the evening outing trip example, BCDR relaxes the cuisine con-

straint of the restaurant from Chinese to Korean in order to find a feasible solution.

In addition to the new domain values, domain relaxation may also introduces new

episodes into the problem, such as the travel times to and from the new restaurant.

In this thesis, we discuss the application of BCDR to travel problems with location-

tagged activities, since the temporal durations of these additional episodes in these

scenarios are straightforward to compute. Generating episode for domain relaxations

in some other domains can be very difficult, and it is not the focus of this thesis.

2.6 Chapter Summary

In this chapter, we presented the problem statement for resolving over-subscribed

temporal plans. The input to the BCDR algorithm is a Temporal Plan Network that

encodes all alternative plans and temporal requirements. The outputs are a grounded

plan, and a set of discrete, continuous, risk-bounded and domain relaxations that is

necessary to make it temporally feasible. In the following chapters, we will discuss the

BCDR algorithm in details, and how it coordinates the different relaxation techniques

to generate these relaxations for resolving conflicts in over-subscribed temporal plans.
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Chapter 3

Conflict-Directed Relaxation for

Temporal Plans

In this chapter, we present the Best-first Conflict-Directed Relaxation algorithm for

detecting and resolving conflicts in over-subscribed temporal plans, and its application

for generating discrete relaxations. Building upon prior work on diagnosis (de Kleer

& Williams, 1987; Williams & Ragno, 2002), BCDR is capable of handling over-

subscribed temporal plans with continuous variables and constraints. Instead of likely

failure modes, it extracts conflicting choices and episodes to explain the cause of

failure in a plan, and enumerates preferred resolutions in best-first order.

In recent literature, several approaches have been developed to solve over-constrained

scheduling and planning problems, which are often framed as over-constrained CSPs

(for over-constrained scheduling problems) and optimal planning problems (for over-

subscribed planning problems). The major challenge in solving these problems is the

enormous search space. In fact, the problem of finding all resolutions to an over-

subscribed planning problem is NP-Complete (O’Sullivan, Papadopoulos, Faltings, &

Pu, 2007), assuming that a polynomial algorithm exists that can check if a temporal

plan is executable. On the other hand, in many of the over-subscribed scenarios, the

users are often expecting a quick response and would like the algorithm to be very

efficient in coming up with a resolution.

Many techniques, especially the techniques developed to solve CSPs, have been
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implemented to speed up the search for resolutions, including standard and domain

specific ones. For over-constrained scheduling problems, the techniques include for-

ward checking, conflict-directed back jumping, Dualize & Advance (Bailey & Stuckey,

2005), removal of subsumed variables (Moffitt & Pollack, 2005b) and semantic branch-

ing (Armando, Castellini, & Giunchiglia, 1999). One other approach is to give up the

requirement of completeness and use a local search algorithm, like (Beaumont et al.,

2001). This approximate approach usually runs much faster than the systematic

methods, however, it cannot guarantee the optimality or completeness of the results.

For over-subscribed generative planning problems, they have often been framed as de-

terministic oversubscription planning (OSP) in literature (Domshlak & Mirkis, 2015).

Optimal planning has been the primary approach for OSPs, in which the objective is

reformulated as finding a plan to achieve a subset of the goals with higher rewards.

One additional issue with these over-subscribed problems are the large numbers

of resolutions: facing thousands or even millions of resolutions, it is difficult for us

humans to select the best one from them. This imposes a big challenge on resolving

problems through simple and efficient communication. An effective approach must

only present a few preferred ones to the user, and provide the rationale behind their

relaxations, in order to let the user make an informed decision. In (O’Sullivan et al.,

2007), an approach is presented to reduce the amount of resolutions by computing

representative plan relaxations. It is based on the notion of representative set, in

which all resolutions generated cannot be dominated by any other resolutions in the

set.

We designed BCDR to take Temporal Plan Networks as input, and produce pre-

ferred relaxations that enable temporally feasible plans for each individual agent.

This model is more general than the simple temporal problem formulations used in

many prior works on temporal relaxation, and provides supports for multi-agent co-

ordination and activity sequencing. In over-subscribed situations that no temporally

feasible plans can be found, we would like to find preferred resolutions using alterna-

tives for both activities and timing, and preserve as much flexibility as possible for

the users. However, BCDR requires complete plans as input and focuses on restor-
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ing temporal feasibility. This makes BCDR’s relaxation problem strictly simpler than

over-subscribed generative planning problems, which is left for future work to address.

Introduced in (Yu & Williams, 2013), BCDR was the first algorithm for learning

hybrid conflicts in conditional temporal problems and enumerating preferred contin-

uous temporal relaxations. It was later extended to handle uncertain durations (Yu

et al., 2014), chance constraints (Yu et al., 2015), multi-agent vehicle routing prob-

lems (Yu et al., 2016b) and relaxable domain descriptions (Yu et al., 2016a). In this

chapter we focus the basic configuration of BCDR that computes discrete relaxations.

Section 3.1 describes the algorithm, and Section 3.2 presents how BCDR incorporates

user feedbacks for improving solutions. The extensions for alternative conflict learning

and relaxation generation techniques will be introduced in the following chapters.

3.1 Computing Discrete Relaxations for Over-subscribed

Temporal Plans

In this section, we present the design and implementation of BCDR for resolving

over-subscribed temporal plans. Given an abstract travel plan that encodes all re-

quirements from the users, BCDR fills in the details by computing feasible sequences

of activities, adding contingencies for likely delays during transit and generating al-

ternatives for the temporal and destination requirements, if necessary. BCDR takes

in a TPN, a set of agent models and a routing function as inputs, and produces a

plan, as well as suspensions of some episodes if necessary.

BCDR leverages ideas from (Williams & Ragno, 2002) for efficient conflict detec-

tion and resolution, and generalizes methods from the Dualize & Advance algorithm

(DAA, (Gunopulos, Khardon, Mannila, & Sharma, 2003)) for incrementally discov-

ering conflicts and enumerating relaxations in best-first order. We first present an

overview of BCDR, including its inputs, outputs, and key procedures; then discuss in

details the two key features of the algorithm: computing relaxations for conflicts, and

activity sequencing for each agent. Algorithm 1 presents the pseudo code of BCDR’s
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main function.

Input: A relaxable TPN 𝑇𝑝 = ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩, a set of agent
models 𝐴𝑔, and a routing function 𝑓𝑟.

Output: A solution, ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ that maximizes

∑︀
𝑖(𝑓𝑝𝑖 − 𝑓𝑒𝑖).

1 𝐶𝑎𝑛𝑑← ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟⟩ // first candidate;

2 𝑆𝑒𝑞 ←GetSeqVariables(𝑃 ) // the activity sequence variables;
3 𝑃𝑎𝑡ℎ← 𝑛𝑒𝑤 PATH(𝑃, 𝑆𝑒𝑞) // path constraint over all activities;
4 𝑄𝑢𝑒𝑢𝑒← {𝐶𝑎𝑛𝑑} // a priority queue of candidates;
5 𝐶 ← {} // the set of all known conflicts;
6 𝑈 ← 𝑃 ; //the list of unassigned controllable variables;
7 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
8 𝐶𝑎𝑛𝑑←Dequeue(𝑄𝑢𝑒𝑢𝑒);
9 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ←UnresolvedConflicts(𝐶𝑎𝑛𝑑,𝐶);

10 if 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
11 if isComplete?(𝐶𝑎𝑛𝑑, 𝑈) then
12 𝑛𝑒𝑤𝐶𝐹𝑇 ←PropagatePATH(𝐶𝑎𝑛𝑑, 𝑃𝑎𝑡ℎ);
13 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
14 AddRoutes(𝐶𝑎𝑛𝑑);
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝐶𝑎𝑛𝑑);

16 endif
17 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
18 return 𝐶𝑎𝑛𝑑;
19 else
20 𝐶 ← 𝐶 ∪ {𝑛𝑒𝑤𝐶𝐹𝑇};
21 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝐶𝑎𝑛𝑑};
22 endif

23 else
24 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnVariable(𝐶𝑎𝑛𝑑, 𝑈);
25 endif

26 else
27 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ ExpandOnConflict(𝐶𝑎𝑛𝑑, 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 );
28 endif

29 end
30 return 𝑛𝑢𝑙𝑙;

Algorithm 1: The BCDR algorithm for computing discrete relaxations

The Conflict-Directed A* (CD-A*) enumerates the best solutions to finite-domain

CSPs according to an objective function, and guides the search using conflicts learned

from inconsistent sets of assignments. Once detected, a conflict is used to prune the

search space by extending each partial candidate with alternative resolutions. Like

CD-A*, BCDR takes an A* search strategy by evaluating each partial candidate
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using an admissible heuristic function and expanding the search tree in best-first

order. Hence the first relaxation found is guaranteed to be the best one.

Consistency
Tester

Candidate
Generator

User Feedback

Conflicts Candidate
Solutions

Conflicts

PropagatePATH()
TemporallyFeasible?()

ExpandOnVariable()
ExpandOnConflict()

a.Rejection of 
assignments

b.Rejection of 
constraint 
suspensions.

Figure 3-1: The generate and test architecture used by BCDR

As presented in Chapter 1, the generate-and-test approach includes two key com-

ponents: consistency tester and candidate generator (Figure 3-1). The tester is im-

plemented as Function PropagatePATH (Line 12) and TemporallyFeasible?

(Line 15), which ensure that the candidates enable consistent plans that meet the tem-

poral requirement. If not, they learn conflicting constraints from the over-subscribed

plans and feed them to the candidate generator. The generator is implemented

as Function ExpandOnVariable (Line 24) and ExpandOnConflict (Line 27),

which explore the search space and generate new candidate solutions using two types

of expansions: Expand on an unassigned variable and Expand on an unresolved con-

flict. The first expansion guides the search into unexplored regions, and the second

expansion keeps the search away from known infeasible regions in the search space.

BCDR starts with an empty candidate in the queue (Line 1). A candidate, 𝐶𝑎𝑛𝑑,

is a 5-tuple ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟⟩ with goal assignments 𝐴, sequential assignments 𝑆,

constraint suspensions 𝑅𝑒, additional episodes 𝐸
′ and resolved conflicts 𝐶𝑟, all being

empty lists in the first candidate. BCDR continues looping until the first candidate

is found that makes the input problem consistent (Line 17). If BCDR does not find

a consistent candidate and the queue is exhausted, it returns null indicating that no

relaxation exists for the input problem (Line 30).
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Within each loop, BCDR first dequeues the best partial candidate, 𝐶𝑎𝑛𝑑 (Line

8). It checks if 𝐶𝑎𝑛𝑑 resolves all known conflicts (Line 9). If not, an unresolved

conflict 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 will be returned by function UnresolvedConflicts, which

compares the resolved conflicts 𝐶𝑟 in 𝐶𝑎𝑛𝑑 with all known conflicts 𝐶. 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇

is then used for expanding 𝐶𝑎𝑛𝑑 by function ExpandOnConflict (Line 27). The

child candidates of 𝐶𝑎𝑛𝑑 will then be queued. For example, assume that we need to

expand a partial candidate {𝑅𝑇=PE} (Panda Express for restaurant) with conflict

𝑀𝑉=NN (Norm of the North for Movie), BCDR will create two child candidates

that extend the partial candidate using the alternative assignments of variable 𝑀𝑉 ,

JY (Joy), and suspension of the temporal constraint on arriving home (Figure 3-2b).

The expanded candidates will be added back to 𝑄𝑢𝑒𝑢𝑒.

If 𝐶𝑎𝑛𝑑 resolves all known conflicts, BCDR then checks if it is complete, which

means that no more variables can be assigned, by comparing its assignments and

all unassigned variables in the problem (Line 11). If 𝐶𝑎𝑛𝑑 is incomplete, BCDR

will expand it using the assignments to one unassigned variable through function

ExpandOnVariable (Line 24). For example, assume again that we need to expand

a partial candidate {𝑅𝑇=PE}, but with variable 𝑀𝑉 :{𝐽𝑉 ,𝑁𝑁}. This time, we

simply create two candidates that extends the partial candidate using the two possible

assignments of 𝑀𝑉 (Figure 3-2a).

RT=PE

ROOT

RT=MW

MV=NN MV=JY

(a)

RT=MW

ROOT

RT=PE

MV=JY ArriveHome[0,210]=OUT

MV=NN

(b)

Figure 3-2: Examples of expanding on variable and conflict

If 𝐶𝑎𝑛𝑑 is complete, BCDR proceeds to check its consistency using function Tem-

porallyFeasible? (Line 15). If no conflict is detected, 𝐶𝑎𝑛𝑑 will be returned as

the best solution for the input problem (Line 18). If a new conflict, 𝑛𝑒𝑤𝐶𝐹𝑇 , is de-
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tected by TemporallyFeasible?, BCDR will record it in 𝐶 and put 𝐶𝑎𝑛𝑑 back to

the queue for future expansions (Line 20,21), since it now has one unresolved conflict.

To support activity sequencing, we introduce a global constraint, 𝑃𝐴𝑇𝐻, into

BCDR to ensure that each agent gets a consistent route from their origins to their

destinations (Kilby & Shaw, 2006). 𝑃𝐴𝑇𝐻 is commonly used in modeling vehicle

routing problems: it is one of the global constraints over discrete variables that ensures

the vehicle visits all locations following a valid sequence. A valid path contains no

break point in the middle, such that there is one and only one arrival and departure

route to each intermediate waypoint. In addition, the first and final locations must be

the origin and destination of the agent’s trip. For BCDR’s multi-agent vehicle routing

problems, we define the 𝑃𝐴𝑇𝐻 constraint (Line 3) over the activity sequence variables

(Line 2) for each agent, that is, the ‘what to do next’ variable for each activity.

In order to check candidate plans against 𝑃𝐴𝑇𝐻 constraint, we add an additional

PropagatePATH function before the temporal feasibility checking function (Line

12). This function (Algorithm 2) is implemented based on the propagation techniques

introduced in (Francis & Stuckey, 2014), which decomposes the 𝑃𝐴𝑇𝐻 constraint into

two constraints in conjunctions: 𝐴𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 and 𝑁𝑜𝑆𝑢𝑏𝑡𝑜𝑢𝑟. The function checks

their feasibility separately (Line 2 and 4), and returns a conflicting set of assignments

if either of these checks fail. This approach is efficient in identifying invalid activity

sequence, returning conflicting assignments and signaling BCDR to backtrack and try

alternative orders. The addition of 𝑃𝐴𝑇𝐻 constraints and its propagation function

allows BCDR to enumerate not only alternative options for activities, but also feasible

ordering of them.

In addition, BCDR only computes a route and estimates the traversal time when

necessary, instead of requiring all routes to be specified in the input problems. In

BCDR, TemporallyFeasible? is the function that evaluates temporal feasibil-

ity for a candidate plan. Therefore, we add an additional function, AddRoutes

(Algorithm 3), right before TemporallyFeasible?. At this step (Line 15 in Algo-

rithm 1), BCDR has a candidate with a complete set of assignments to all activities,

which is ensured by function IsComplete?, and a total ordering of them for each
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Input: A candidate 𝐶 : ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟⟩.

Output: A conflict over a subset of assignments in 𝑆, the activity sequencing
assignments in 𝐶.

1 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡← 𝑛𝑢𝑙𝑙 // the initial conflict variable;
2 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡←AllDifferent(𝑆);
3 if 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 == 𝑛𝑢𝑙𝑙 then
4 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡←CheckSubtour(𝑆);
5 endif
6 return 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡;

Algorithm 2: Propagate function for the PATH constraint

agent. The AddRoutes function iterates through each sequence assignment in the

candidate, executes the routing function between the locations it connects, and cre-

ates a traversal episode that encodes the route and time. The routing function is

implemented using an open source navigation package, GraphHopper (Graphhopper,

2015), with road data from OpenStreetMap (Haklay & Weber, 2008). Note that the

basic configuration of BCDR uses a consistency model when checking temporal con-

sistency, which only evaluates if a solution is consistent with one of the values within

the bounds. In Chapter 5, We will discuss a few extensions for BCDR that generate

more robust solutions subject to temporal uncertainty.

Input: A candidate 𝐶 : ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟⟩, a routing function 𝑓𝑟(𝑂,𝐷,𝑚) and an

agent 𝑖.
1 for 𝑠 in 𝑆 do

// Compute route given the origin and destination specified by 𝑠,
// and the mode of travel for the agent.

2 𝑟𝑜𝑢𝑡𝑒← 𝑓𝑟(Origin(𝑎),Destination(𝑠),𝑚𝑖));
// Create a travel activity using the route, and add to 𝐸 ′.

3 𝐸 ′ ← 𝐸 ′∪CreateEpisode(𝑠, 𝑟𝑜𝑢𝑡𝑒);

4 end
Algorithm 3: BCDR’s Routing function

3.2 Incorporating User Inputs

As demonstrated in the example, the user can add additional inputs given an unsat-

isfying solution, or requirements he/she forgot to encode in the original plan. BCDR

will incorporate inputs into its search process and respect them in all future solutions.

80



Given a solution, two types of inputs can be accepted by BCDR while computing dis-

crete relaxations:

∙ Rejection of an assignment, such as ‘I do not want to visit Panda Express for

dinner’.

∙ Rejection of the suspension of an episode, such as ‘The arrival time requirement

cannot be removed’.

BCDR utilizes the conflict-directed approach to efficiently adapt to these inputs.

Instead of modifying the input problem and restarting the search process from the

beginning, it will record the input as a new conflict and add it to the known conflicts

list. The above two types of inputs will be recorded as following:

∙ Rejection of an assignment 𝑋 = 𝑎: a new conflict 𝑋 = 𝑎 will be created and

added to BCDR’s conflict collection, such that it will not appear again in any

future solution.

∙ Rejection of a suspension of constraints. For relaxation 𝑒𝑖 = 𝑂𝑈𝑇 , a new

conflict 𝑒𝑖 = 𝑂𝑈𝑇 will be added to BCDR’s conflict collection, such that all

future attempt for suspending 𝑒𝑖 will not be allowed.

The pseudo code of this implementation, called Reactive BCDR, is presented in

Algorithm 4. Note that the BCDR algorithm presented earlier is wrapped inside the

function BCDR. Reactive BCDR starts with querying BCDR for a solution to the

given problem (Line 4). If no solution can be found to the problem, the algorithm will

signal failure and terminate (Line 6). Otherwise, the first solution will be presented

to the user. If the user accepts it, Reactive BCDR will return the solution and

terminate (Line 9). If the user rejects it, it will prompt the user for additional inputs,

and encode them into conflicts using the two rules (Line 12). Note that the current

solution will also be put back to the queue, since it now has an unresolved conflict.

If no input is provided, BCDR will move on to find the next best solution, and the

current solution is discarded.
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Input: A TPN 𝑇𝑝, a set of agent models 𝐴𝑔, and a routing function 𝑓𝑟.
Output: 𝑆𝑜𝑙: A valid relaxation, or 𝑛𝑢𝑙𝑙 is none exists for the input problem.
1 𝐶 ← {} // the set of all known conflicts kept by BCDR;
2 𝑄𝑢𝑒𝑢𝑒← {} // the priority queue for candidate relaxations kept by BCDR;
3 while 𝑡𝑟𝑢𝑒 do
4 ⟨𝑆𝑜𝑙, 𝐶,𝑄𝑢𝑒𝑢𝑒⟩ ←BCDR(𝑇𝑝,𝐴𝑔, 𝑓𝑟);
5 if 𝑆𝑜𝑙 == 𝑛𝑢𝑙𝑙 then
6 return 𝑛𝑢𝑙𝑙;
7 else
8 if Accepted?(𝑆𝑜𝑙) then
9 return 𝑆𝑜𝑙;

10 else
11 if 𝑈𝑠𝑒𝑟𝐼𝑛𝑝𝑢𝑡𝑠 ̸= 𝑛𝑢𝑙𝑙 then
12 𝐶 ← 𝐶∪ParseInputs{𝑈𝑠𝑒𝑟𝐼𝑛𝑝𝑢𝑡𝑠};
13 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ 𝑆𝑜𝑙

14 endif

15 endif

16 endif

17 end
Algorithm 4: Reactive BCDR for computing discrete relaxations

3.3 Chapter Summary

In this chapter, we presented the first contribution of the thesis: the Best-first

Conflict-Directed Relaxation (BCDR) algorithm. BCDR is the basic framework for

all relaxation techniques presented in this thesis, and in this chapter we present its

application to computing discrete relaxations. Compared to prior work on gener-

ating relaxations for over-subscribed problems, BCDR is capable of incrementally

discovering conflicts and enumerating relaxations in best-first order, while providing

rationales for each relaxation generated based on the conflicts detected.
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Chapter 4

Continuous Relaxation for Temporal

Constraints

In this chapter, we present the continuous relaxation extension to BCDR for resolving

over-subscribed temporal plans. As presented in Chapter 1, over-subscribed situations

that involve only temporal constraints have often been modeled by inconsistent tem-

poral scheduling problems. A temporal problem is inconsistent if no schedule (Dechter

et al., 1991), or execution strategy (Vidal & Fargier, 1999) for problems with uncer-

tain durations, can be found that satisfies all its constraints. For chance-constrained

probabilistic temporal problems (Fang et al., 2014), inconsistency means that no

strategy for executing its activities exists such that the chance of violating any tem-

poral constraints is lower than the threshold of the chance constraint. To repair an

over-constrained temporal problem, one can identify its conflicting constraints, sim-

ilar to past work on diagnosis, and resolve the conflicts by relaxing one or more of

them such that the feasibility of the problem is restored. In addition, since accept-

able risk levels may be negotiable in some situations, we can restore the feasibility

of chance-constrained problems by identifying constraints that cause the probability

of failure to exceed the chance constraint, and increasing the level of accepted risk

accordingly.

Several methods have been developed to solve over-constrained temporal problems.

In (Beaumont et al., 2001), partial constraint satisfaction techniques were applied to
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find a subset of satisfiable constraints. Later, disjunctive constraints and optimality

were added in the context of over-constrained Disjunctive Temporal Problems with

Preferences (DTPPs) (Peintner et al., 2005). In a DTPP, the disjuncts of every con-

straint are assigned a preference function that maps the temporal constraint to a

cost value. The optimal partial solution is obtained by enumerating consistent sub-

problems using Branch & Bound, as well as other optimization techniques introduced

in (Khatib et al., 2001). Most of the prior work has focused on restoring consis-

tency through complete suspension of constraints, however, in real-world scenarios,

the users often want to preserve as much of the schedule as possible to minimize the

perturbation.

Consistency
Tester

Candidate
Generator

 Hybrid 
Conflicts

Continuous 
Relaxations

Continuous
Relaxations

User
Feedback

Hybrid
Conflicts

Continuous
Temporal 

Relaxations

Figure 4-1: Continuous relaxation extensions to BCDR

In Chapter 3, we discussed how BCDR leverages prior work on diagnosis (de Kleer

& Williams, 1987; Williams & Ragno, 2002) to compute discrete relaxations. In this

chapter, we present the extensions (Figure 4-1) to it for diagnosing conflicts between

episodes, and computes continuous temporal relaxations, instead of suspensions, to

resolve these conflicts. The key idea behind continuous relaxation is to generalize the

discrete conflicts and relaxations, to hybrid conflicts and relaxations, which denote

minimal inconsistencies and minimal relaxations to both discrete and continuous re-

laxable constraints. BCDR is able to generate the most preferred relaxation faster

than other state-of-the-art algorithms, and enumerates multiple preferred relaxations
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in best-first order, rather than just computing the most preferred relaxation.

The continuous relaxation extension preserves BCDR’s iterative approach to dis-

covering conflicting constraints and computing relaxations. We start this chapter

with an overview of the continuous relaxation extension, and how it was integrated

as part of BCDR’s conflict resolution function in Section 4.1. Then in Section 4.2 we

discuss the encoding of user feedbacks as hybrid conflicts.

4.1 Computing Continuous Temporal Relaxations

The continuous relaxation extension was first presented in (Yu & Williams, 2013) for

enumerating the relaxations to over-constrained temporal problems in best-first order.

Once a conflict in a TPN is detected, BCDR uses it to prune the search space by

extending each partial candidate with alternative choices, and continuous relaxations

for the temporal bounds of episodes in it. An overview of the BCDR algorithm with

the continuous relaxation extension is given in Algorithm 5. We will first discuss the

changes required in its work flow, then discuss the extensions to the conflict learning

and resolution functions in detail.

Similar to the discrete relaxation version presented in Chapter 3, BCDR for con-

tinuous relaxation also starts with an empty candidate in the queue (Line 4). A

candidate, 𝐶𝑎𝑛𝑑, is now a 6-tuple ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩ with assignments 𝐴, se-

quential assignments 𝑆, continuous temporal relaxations 𝑅𝑒, additional episodes 𝐸
′,

resolved conflicts 𝐶𝑟 and continuously resolved conflicts 𝐶𝑐𝑜𝑛𝑡 ⊆ 𝐶𝑟, all being empty

lists in the first candidate. The addition of 𝐶𝑐𝑜𝑛𝑡 allows BCDR to track conflicts that

are resolved by continuous relaxations in each candidate. BCDR continues looping

until the first relaxation is found that makes the input TPN consistent (Line 18). If

BCDR does not find a consistent relaxation until the queue is exhausted, it returns

null, indicating that no relaxation exists for the input TPN (Line 30).

Within each loop, BCDR first dequeues the best partial candidate, 𝐶𝑎𝑛𝑑 (Line

8). It checks if 𝐶𝑎𝑛𝑑 resolves all known conflicts (Line 9). If not, an unresolved con-

flict 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 will be returned by function ResolveKnownConflicts?, which
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Input: A continuously relaxable TPN 𝑇𝑝 = ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩.
Output: A solution with continuous relaxation ⟨𝐴, 𝑆,𝑅𝑒, 𝐸

′⟩ that maximizes∑︀
𝑖(𝑓𝑝𝑖 − 𝑓𝑒𝑖).

1 𝐶𝑎𝑛𝑑← ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩; //the first candidate;

2 𝑆𝑒𝑞 ←GetSeqVariables(𝑃 ) // the activity sequence variables;
3 𝑃𝑎𝑡ℎ← 𝑛𝑒𝑤 PATH(𝑃, 𝑆𝑒𝑞) // path constraint over all activities;
4 𝑄𝑢𝑒𝑢𝑒← {𝐶𝑎𝑛𝑑}; //a priority queue that records candidates;
5 𝐶 ← {}; //the set of all known conflicts;
6 𝑈 ← 𝑃 ; //the list of unassigned controllable variables;
7 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
8 𝐶𝑎𝑛𝑑←Dequeue(𝑄𝑢𝑒𝑢𝑒);
9 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ←UnresolvedConflicts(𝐶𝑎𝑛𝑑, 𝐶);

10 if 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
11 if isComplete?(𝐶𝑎𝑛𝑑, 𝑈) then
12 𝑛𝑒𝑤𝐶𝐹𝑇 ←PropagatePATH(𝐶𝑎𝑛𝑑, 𝑃𝑎𝑡ℎ);
13 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
14 AddRoutes(𝐶𝑎𝑛𝑑);
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝐶𝑎𝑛𝑑);

16 endif
17 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
18 return 𝐶𝑎𝑛𝑑;
19 else
20 𝐶 ← 𝐶 ∪ {𝑛𝑒𝑤𝐶𝐹𝑇};
21 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝐶𝑎𝑛𝑑};
22 endif

23 else
24 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnVariable(𝐶𝑎𝑛𝑑, 𝑈);
25 endif

26 else
27 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnConflict(𝐶𝑎𝑛𝑑, 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 );
28 endif

29 end
30 return 𝑛𝑢𝑙𝑙;

Algorithm 5: The BCDR algorithm

compares the resolved conflicts 𝐶𝑟 in 𝐶𝑎𝑛𝑑 with all known conflicts 𝐶. 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇

is then used for expanding 𝐶𝑎𝑛𝑑 by function ExpandOnConflict (Line 27). The

child candidates of 𝐶𝑎𝑛𝑑, which includes both discrete and continuous relaxations

for the known conflicts, will then be enqueued. For example, assume that we apply

BCDR to the example presented in Figure 2-5. When expanding on a partial candi-

date {𝐴𝑀=𝐵} with conflict 𝑀𝑆=𝑋, BCDR will create three child candidates that

86



extends the partial candidate using the two alternative assignments of 𝑀𝑆, 𝑌 and

𝑍 and a temporal relaxation to the upper bound of 𝐶17 (Figure 4-2). All expanded

candidates will then be added back to 𝑄𝑢𝑒𝑢𝑒.

AM=A

ROOT

AM=B

MS=Y MS=Z UB(C17)=185

MS=X

Figure 4-2: Examples of expanding on conflict with continuous relaxation

Finally, BCDR is sound in that every solution returned passes the temporal fea-

sibility check, hence they are guaranteed to be valid. On the other hand, the com-

pleteness of BCDR, which indicates if BCDR never misses a valid solution if there

exists one, is not as straightforward to prove. It relies on the feasibility checking func-

tion to return valid conflicts at all times. We present the detailed proof for BCDR’s

completeness on computing continuous relaxations in Appendix B.

4.1.1 Conflict Learning From Consistency Checking

Conflict learning is the key for resolving over-subscribed temporal plans. They ex-

plain the cause of failure and provide guidance for computing necessary relaxations.

Previous approaches (Effinger & Williams, 2005; Li & Williams, 2005), including the

discrete relaxation version of BCDR presented in Chapter 3, only extract the set of

conflicting episodes and their guard assignments as discrete conflicts.

Definition 21. A discrete conflict is a pair ⟨𝐸𝑝𝑠,𝐺𝑢𝑎𝑟𝑑𝑠⟩, where:

∙ 𝐸𝑝𝑠 is a set of conflicting episodes in the TPN;

∙ 𝐺𝑢𝑎𝑟𝑑𝑠 is the set of guards assignments for all episodes 𝐸𝑝𝑠;
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For example, the discrete conflict from the TPN in Figure 2-5 can be encoded as

the following:

Eps: {𝐶17:𝐸-𝑆 ∈ [0, 180]; 𝐶7:𝐵𝐴-𝑆 ∈ [30, 50]; 𝐶2:𝐵𝐿-𝐵𝐴 ∈ [45, 60];

𝐶15:𝑌𝐴-𝐵𝐿 ∈ [21, 25]; 𝐶4:𝑌𝐿-𝑌𝐴 ≥ 65; 𝐶9:𝐸-𝑌𝐿 ∈ [30, 32]}

Guards: {𝐴𝑀=𝐵; 𝑀𝑆=𝑌 }

While computing continuous temporal relaxations, BCDR needs conflicts of higher

resolution, since it tries to resolve the conflict by weakening the temporal bounds to

the minimal extent. With the discrete relaxation representation, we can only learn

about the episodes that are involved in the conflicts, but not the amount of deviation

required for their temporal bounds in order to resolve the conflict. Therefore, we

define a new representation of conflicts, called hybrid conflicts, over the temporal

bounds in episodes and their guard assignments.

Definition 22. A hybrid conflict is a pair ⟨𝑁𝐶𝑦𝑐𝑙𝑒𝑠,𝐺𝑢𝑎𝑟𝑑𝑠⟩, where:

∙ 𝑁𝐶𝑦𝑐𝑙𝑒𝑠 is a set of linear expressions defined over temporal bounds of episodes,

that forms a negative cycle in the equivalent distance graph of the TPN;

∙ 𝐺𝑢𝑎𝑟𝑑𝑠 is the set of guards assignments for all episodes in 𝑁𝐶𝑦𝑐𝑙𝑒𝑠;

Each negative cycle in the 𝑁𝐶𝑦𝑐𝑙𝑒𝑠 set is represented by a linear expressions. It

represents a necessary constituent of the conflict, and is defined over the lower and

upper temporal bounds of episodes, with integer coefficients. BCDR learns new con-

flicts iteratively from grounded TPNs with different choices made. Given a complete

candidate that assigns all active discrete variables, Function TemporallyFeasi-

ble? checks the consistency of all activated temporal constraints. The function

implements the Bellman-Ford algorithm (Bellman, 1956; Ford, 1956) for checking

temporal consistency. If the candidate plan is temporally inconsistent, the algorithm

will return a simple negative cycle as the cause of failure. We can extract the minimal

inconsistent set of episodes, also called minimal conflict (Liffiton, Moffitt, Pollack, &

Sakallah, 2005), using this simple negative cycle. For example, Figure 4-3 shows a

simple negative cycle detected in the TPN presented in Figure 2-5: the mission time

is too tight for both tasks at site 𝐵 and 𝑌 .
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Figure 4-3: A negative cycle in Rich’s mission TPN (the guard assignments for each
constraint are shown below them)

Given the negative cycle, we can encode a hybrid conflict for it as:

NCycles: {UB(𝐶17) - LB(𝐶7) - LB(𝐶2) - LB(𝐶15) - LB(𝐶4) - LB(𝐶9);}

Guards: {𝐴𝑀=𝐵; 𝑀𝑆=𝑌 }

In summary, BCDR learns a hybrid conflict from temporally inconsistent candi-

date plans, which is composed of the temporal bounds of episodes involved in negative

cycles and the guard assignments of these episodes. Each negative cycle is encoded

by a linear expression over the temporal bounds. Therefore, given the original values

of these temporal bounds, the value of this expression must evaluate to negative.

4.1.2 Generalized Conflict Resolutions

Given a hybrid conflict detected in a TPN, we can compute their resolutions and use

them to expand our search tree, such that future expansions of the candidates will

not enter the infeasible region represented by this hybrid conflict again. This is the

core principle behind conflict-directed search. Previous approaches generate discrete

relaxations by either flipping the assignments to the discrete variables (Williams &

Ragno, 2002; Bailey & Stuckey, 2005) or suspending temporal constraints (Moffitt &

Pollack, 2005b). BCDR generalizes the conflict resolution to include both discrete

and continuous relaxations: the discrete relaxations deactivate episodes in conflicts

by flipping their guard assignments, while the continuous relaxations weakens the

temporals bounds of them in order to resolve the conflicts.
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Input: A candidate to expand 𝐶𝑎𝑛𝑑 ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩ and a minimal

conflict 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 .
Output: A set of expanded candidates 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠.
1 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠← {} //collection of newly generated candidates;
2 𝐶𝐹𝑇𝑠← 𝐶𝑐𝑜𝑛𝑡 ∪ {𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇} //conflicts to be resolved continuously;
3 𝐴𝑎𝑙𝑡𝑒𝑟 ← {} //collection of alternative assignments for the ones in 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ;
4 for 𝑎 ∈ 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 do
5 𝐴𝑎𝑙𝑡𝑒𝑟 = 𝐴𝑎𝑙𝑡𝑒𝑟∪GetAlternatives(𝑎);
6 for 𝑎𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑎) do
7 𝐴𝑎𝑙𝑡𝑒𝑟 = 𝐴𝑎𝑙𝑡𝑒𝑟∪GetAlternatives(𝑎𝑙);
8 end

9 end
10 for 𝑎𝑒𝑥𝑡𝑒𝑛𝑑 ∈ 𝐴𝑎𝑙𝑡𝑒𝑟 do
11 if notCompeting(𝐴, 𝑎𝑒𝑥𝑡𝑒𝑛𝑑) then
12 𝐶𝑎𝑛𝑑𝑛𝑒𝑤 ← ⟨𝐴 ∪ {𝑎𝑒𝑥𝑡𝑒𝑛𝑑}, 𝑆, 𝑅𝑒, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩;
13 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠← 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠 ∪ {𝐶𝑎𝑛𝑑𝑛𝑒𝑤};
14 end

15 end
16 𝐸𝑟𝑒𝑙𝑎𝑥 ←ExtractConstraints(𝐶𝐹𝑇𝑠);
17 𝑓𝑜𝑏𝑗 ←

∑︀
𝑒∈𝐸𝑟𝑒𝑙𝑎𝑥

𝑓𝑒(∆𝑒);

18 𝑅𝑛𝑒𝑤 ←Optimize(𝑓𝑜𝑏𝑗, ⟨𝐸𝑟𝑒𝑙𝑎𝑥 ≥ 0⟩);
19 if 𝑅𝑛𝑒𝑤 ̸= 𝑛𝑢𝑙𝑙 then
20 𝐶𝑎𝑛𝑑𝑛𝑒𝑤 ← ⟨𝐴, 𝑆,𝑅𝑛𝑒𝑤, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩;
21 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠← 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠 ∪ {𝐶𝑎𝑛𝑑𝑛𝑒𝑤};
22 end
23 return 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠;

Algorithm 6: Function ExpandOnConflict for hybrid conflicts

Problem 1 (Conflict resolution).

min
𝑙𝑏′𝑖,𝑢𝑏

′
𝑖

|𝑅𝐸|∑︁
𝑖=1

𝑓𝑒(𝑙𝑏
′
𝑖) + 𝑓𝑒(𝑢𝑏

′
𝑖); (4.1)

𝑠.𝑡. 𝑙𝑏′𝑖 − 𝑙𝑏𝑖 ≤ 0, 𝑢𝑏′𝑖 − 𝑢𝑏𝑖 ≥ 0; (4.2)

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡1 ≥ 0; 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡2 ≥ 0; ... 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑚 ≥ 0 (4.3)

Given a candidate and a hybrid conflict, we extend Function ExpandOnCon-

flict to include two stages in computing resolutions. The first stage is the same as

before, which generates resolutions for the conflict by negating variable assignments
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(Line 4-15). In the second stage, we compute the optimal continuous relaxation to

the relaxable temporal bounds that can resolve the conflict (Line 16-22). We for-

mulate the relaxation as an optimization problem with linear constraints (Line 16)

and linear/quadratic objective function (Line 17). The objective function is the min-

imization over the sum of the relaxation costs of all relaxable temporal bounds, as in

(4.1). The variables in this optimization problem are 𝐿𝐵′
𝑖 s and 𝑈𝐵′

𝑖 s, which are the

relaxable temporal bounds for each episode in the conflicts. The relaxed temporal

bounds must be no tighter than the original bounds, as in (4.2). The conflict resolu-

tion constraints in (4.3) are added to ensure that all known conflicts are repaired by

the resulting continuous relaxations. Given 𝑚 conflicts, the same number of resolu-

tion constraints will be added, each representing the negation of one linear expression

in a conflict.

For example, the conflict in (Figure 4-3) involves six temporal bounds. Among

them, three are relaxable (𝐶17, 𝐶2, 𝐶4) that can be weakened. We define the following

optimization problem for computing the optimal continuous relaxations to resolve

this conflict:

𝑚𝑖𝑛(𝑓𝑒(𝑢𝑏
′
𝐶17) + 𝑓𝑒(𝑙𝑏

′
𝐶2) + 𝑓𝑒(𝑙𝑏

′
𝐶4));

s.t. 𝑢𝑏′𝐶17 − 𝑢𝑏𝐶17 ≥ 0; 𝑙𝑏′𝐶2 − 𝑙𝑏𝐶2 ≤ 0; 𝑙𝑏′𝐶4 − 𝑙𝑏𝐶4;≤ 0

𝑢𝑏′𝐶17 − 𝑙𝑏𝐶7 − 𝑙𝑏′𝐶2 − 𝑙𝑏𝐶15 − 𝑙𝑏′𝐶4 − 𝑙𝑏𝐶9 ≥ 0;

The lower bound of 𝐶17 and the upper bounds of 𝐶2 and 𝐶4 are omitted from

the objective function, since they are not part of any constraints in the optimization

problem. The solution to the problem is a set of relaxed bounds of 𝐶17, 𝐶2, and 𝐶4

that resolves the conflict while minimizing the cost. In this case, the best relaxation

is: set 𝑙𝑏′𝐶4 to 50 and 𝑢𝑏′𝐶17 to 185. The cost is 27.5. In fact, this problem can also

be viewed as a Simple Temporal Problem with Preferences. (Khatib et al., 2001)

demonstrates that finding the optimal solution to a STPP with semi-convex prefer-

ences is tractable. In real world applications, we may substitute different optimization

algorithms, depending on the preference functions, to improve efficiency.

In this example, BCDR will generate three constituent relaxations for the hybrid
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conflict: two new assignments derived from flipping guard assignments, and one set of

continuous relaxations for the temporal bounds. They are used to extend the partial

candidates so that future extensions of it will not run into the same conflict again, as

demonstrated in Figure 4-2.

4.2 Incorporating User Inputs as Continuous Con-

flicts

As demonstrated in Chapter 3, the user can add additional inputs given an unsatisfy-

ing solution, or requirements he/she forgot to encode in the original problem. BCDR

with the continuous relaxation extension can incorporate them into its search process

as a hybrid conflict, such that all future candidate solutions will respect them. In

total, given a solution, two types of inputs can be accepted by BCDR:

∙ Rejection of an assignment, such as "I do not want to visit the methane seeps

site X".

∙ Rejection of a continuous temporal relaxation, such as "The mission duration

must be within 4 hours".

BCDR utilizes the conflict-directed approach to efficiently adapt to these inputs.

Instead of modifying the input problem and restarting the search process from the

beginning, it will record the input as a new conflict and add it to the known conflicts

list. The above two types of inputs will be recorded as the following conflicts:

∙ Rejection of an assignment 𝑋 = 𝑎: same as presented in Chapter 3, a new

conflict 𝑋 = 𝑎 will be created and added to BCDR’s conflict collection, such

that it will not appear again in any future solutions.

∙ Rejection of a temporal relaxation 𝑙𝑏′𝑖 = 𝑎 or 𝑢𝑏′𝑖 = 𝑏: a new hybrid conflict with

linear expression 𝑙𝑏′𝑖 − 𝑎 ≥ 0 or 𝑏 − 𝑢𝑏′𝑖 ≥ 0 will be added to BCDR’s conflict

collection, such that all future relaxations for 𝑙𝑏′𝑖 or 𝑢𝑏′𝑖 will be bounded by 𝑎

and 𝑏, respectively.
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4.3 Chapter Summary

In this chapter, we presented the second contributions of the thesis: continuous tem-

poral relaxations for over-subscribed temporal plans. The key of our continuous

relaxation capability is to generalize the discrete conflicts and relaxations, to hybrid

conflicts and relaxations, which denote minimal inconsistencies and minimal relax-

ations to both discrete and continuous relaxable episodes. Our approach resolves

conflicts by weakening the temporal bounds to the minimal extent. With the imple-

mentation of an incremental conflict learning and resolution strategy, the algorithm

is also able to incorporate user inputs during the process.
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Chapter 5

Continuous Temporal Relaxation

Under Uncertainty

In this chapter, we present the risk-bounded relaxation extension to BCDR for re-

solving over-subscribed temporal plans with uncertainty. Instead of weakening the

bounds for controllable variables, this extension also resolves conflicts by bounding

the outcomes of uncontrollable variables. More specifically, BCDR is able to learn

the source of risk through grounding probabilistic temporal durations to set-bounded

uncertain duration using risk allocation, and applying controllability checking algo-

rithms to identify conflicting episodes from the grounded plan. Resolutions to these

conflicts can then guide us to find feasible relaxations for temporal constraints and/or

relaxations for the chance constraint. With the risk-bounded relaxation extension,

BCDR is capable of handling temporal plans with the following three types of tem-

poral durations:

∙ Simple temporal constraints where the duration between lower and upper bounds

are controllable. This type is often used for modeling requirements between tem-

poral events. For example, to get home in 40 minutes, given that the subway

takes 35 minutes, we know for sure that the requirement can be met.

∙ Set-bounded uncertain durations, also called contingent constraints (Vidal &

Fargier, 1999), involving uncontrolled durations, represented by interval bounds.
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Compared to simple temporal constraint, it models the temporal duration as a

random variable. The modeler makes a commitment to a degree of robustness

by specifying the interval of outcomes to be handled. For example, to get home

in 40 minutes, given that the subway takes anytime between 30 and 45 minutes.

Unlike the previous example, there is no guarantee that the requirement can be

met due to the uncertainty in the subway time: there is a chance that the ride

may take more than 40 minutes.

∙ Probabilistic temporal durations (Tsamardinos, 2002) with information on the

likelihood of outcomes. This type is more complex compared to the other two

since the uncertainty in duration is accurately modeled using a probability dis-

tribution instead of a pair of temporal bounds. In addition, it also allows explicit

representation of requirements on risk taken through a chance constraint. For

example, we can specify a 95% guarantee that you’ll be home in an hour, given

that the subway takes a mean time of 30 minutes, with a standard deviation of

5 min.

This chapter is organized as follows. In Section 5.1, we present the extension to

the BCDR algorithm that can handle temporal plans with set-bounded uncertain du-

rations (Figure 4-1). We name the extended algorithm BCDR-U, which incorporates

a new conflict learning procedure for discovering conflicts with set-bounded uncer-

tain durations. The extension in BCDR-U allows it to restore the controllability, in

addition to consistency, of over-subscribed temporal plans. We present two version

of the extension, namely BCDR-U(SC) and BCDR-U(DC), for use with strong and

dynamic controllability models.

In Section 5.2, we present another extension to BCDR for resolving chance-

constrained temporal plans with probabilistic uncertain durations. We name the

extension BCDR-C, in which ’C’ represents chance constraints. The key idea is to

resolve over-subscribed plans by allowing the risk bound, as well as the temporal con-

straints, to be relaxed continuously. The extension introduced by BCDR-C is a new

conflict resolution procedure for handling chance constraints: in addition to relax-
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Figure 5-1: Risk-bounded relaxation extensions to BCDR

ing temporal constraints during conflict resolution, it also weakens the risk bounds,

which is expressed in the chance constraints. This new conflict resolution step al-

lows BCDR-C to handle overly risky situations by deciding to accept more risk, and

achieve a good balance between the risk taken and the temporal requirements for the

users. Similar to BCDR-U, we also present two versions of the extension for different

controllability models: BCDR-C(SC) for strong controllability and BCDR-C(DC) for

dynamic controllability.

Finally in Section 5.3, we discuss a new greedy conflict resolution technique for

speeding up BCDR’s run-time performance on problems with certain structures. They

are essential for the deployment of BCDR in user-facing applications and solving real-

world problems of large scale, and are compatible with not only the consistency-based

BCDR algorithm, but also its two extensions, BCDR-U and BCDR-C.

5.1 Computing Relaxations for Restoring Controlla-

bility

For plans with set-bounded uncertain durations, such as TPNUs, the consistency-

based approach cannot find relaxation that is robust to all possible outcomes of

the uncertainty. Here, we present the extension for conflict learning and resolution
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procedures that accounts for uncontrollable duration, which allows BCDR-U to enu-

merate strongly and dynamically controllable relaxations for TPNUs. The changes

are highlighted in Algorithm 7. First, TemporallyFeasible? checks either strong

or dynamic controllability, depending on the type of solution required, and returns a

conflict if the candidate fails the test. The key is to learn conflicts from strong and

dynamic controllability checking algorithms, and the conflict could be a mixed set of

temporal bounds from controllable and uncertain durations. Second, Function Ex-

pandOnConflict is extended to handle conflicts with uncertain durations, whose

resolution may involve both relaxing controllable temporal bounds and tightening the

outcomes handled over uncertain durations.

Similar to BCDR, every solution returned by BCDR-U passes the strong or dy-

namic controllability check, hence it is easy to demonstrate its soundness. The proof

for the completeness of BCDR-U is not as straightforward, since it also relies on the

strong and dynamic controllability checking function to return valid conflicts. The

detailed proof for BCDR-U’s completeness is presented in Appendix B.

5.1.1 Conflict Learning For Strong Controllability

For TPNs, a conflict is an inconsistent set of temporal bounds from episodes. It can

be detected by negative loop detection algorithms: a negative cycle in the equivalent

distance graph of a grounded TPN can be mapped to a set of conflicting temporal

bounds from episodes. This is because of the one-to-one mapping between the distance

edges and the lower/upper temporal bounds of episodes. However, this method does

not apply to controllability checking algorithms. Due to the reduction procedures in

both strong and dynamic controllability checking, the one-to-one mapping property

is not preserved: during reductions, new distance edges are created and added to the

graph, and the weights of some edges are modified. We cannot extract the sets of

conflicting temporal bounds from the negative loops in reduced graphs directly.

The key to solve this issue is to understand what controllable and uncertain dura-

tion contributed to each distance edge in the reduced graph. We name these episodes

the supporting constraints. The supporting constraints for an edge include the source
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Input: A relaxable TPNU 𝑇𝑝 = ⟨𝑃,𝑄, 𝑉, 𝑉𝑟, 𝐸, 𝐸𝑢, 𝑅𝐸,𝑅𝐸𝑢, 𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩.
Output: Assignments and relaxations ⟨𝐴,𝑆,𝑅𝑒, 𝑅𝑢, 𝐸

′⟩ that maximizes∑︀
𝑖(𝑓𝑝𝑖 − 𝑓𝑒𝑖).

1 𝐶𝑎𝑛𝑑← ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑢, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩; //the first candidate;

2 𝑆𝑒𝑞 ←GetSeqVariables(𝑃 ) // the activity sequence variables;
3 𝑃𝑎𝑡ℎ← 𝑛𝑒𝑤 PATH(𝑃, 𝑆𝑒𝑞) // path constraint over all activities;
4 𝑄𝑢𝑒𝑢𝑒← {𝐶𝑎𝑛𝑑}; //a priority queue that records candidates;
5 𝐶 ← {}; //the set of all known conflicts;
6 𝑈 ← 𝑃 ; //the list of unassigned controllable variables;
7 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
8 𝐶𝑎𝑛𝑑←Dequeue(𝑄𝑢𝑒𝑢𝑒);
9 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ←UnresolvedConflicts(𝐶𝑎𝑛𝑑, 𝐶);

10 if 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
11 if isComplete?(𝐶𝑎𝑛𝑑, 𝑈) then
12 𝑛𝑒𝑤𝐶𝐹𝑇 ←PropagatePATH(𝐶𝑎𝑛𝑑, 𝑃𝑎𝑡ℎ);
13 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
14 AddRoutes(𝐶𝑎𝑛𝑑);
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝐶𝑎𝑛𝑑);

16 endif
17 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
18 return 𝐶𝑎𝑛𝑑;
19 else
20 𝐶 ← 𝐶 ∪ {𝑛𝑒𝑤𝐶𝐹𝑇};
21 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝐶𝑎𝑛𝑑};
22 endif

23 else
24 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnVariable(𝐶𝑎𝑛𝑑, 𝑈);
25 endif

26 else
27 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnConflict(𝐶𝑎𝑛𝑑, 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 );
28 endif

29 end
30 return 𝑛𝑢𝑙𝑙;

Algorithm 7: BCDR-U for solving TPNUs

constraint and the constraints that modify the weight of the edge during reduction.

We extend the polynomial time algorithm in (Vidal & Fargier, 1999) with addi-

tional procedures for recording supporting constraints during reductions (Algorithm

8). This extension enables the algorithm to extract a conflict from a negative loop

in the reduced graph. The input to it is a grounded TPNU without any unassigned

variables. There are three major steps in this algorithm:
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∙ Map the grounded TPNU to its equivalent distance graph and record the sup-

porting constraints of each distance edge in the graph with its source (Line 1),

which is either an upper or lower bound of a temporal constraint.

∙ Reduce all non-contingent edges that start (Line 14) or end (Line 5) at an un-

controllable node using the triangular reduction rule. If constraint A is reduced

to C through B, the supporting constraints of C will be updated to the union of

the supporting constraints of A and B (Line 11, 20). A review of the triangular

reduction algorithm is presented in Appendix C.

∙ After the reductions, we run the Bellman-Ford algorithm on the reduced graph

(Line 24). If a negative loop is detected, we collect the supporting constraints

of all its edges into a set (Line 25) and return it as a conflict that makes the

problem uncontrollable. Otherwise, the function returns null to indicate that

the input TPNU is strongly controllable.

We demonstrate this process using a temporal network with four constraints (Fig-

ure 5-2a): A and B are uncertain durations; C and D are controllable temporal con-

straints. First, we map the network to its equivalent distance graph (Figure 5-2b).

Each distance edge in the graph is labeled with its weight and supporting constraints.

The subscript after the constraint name, either U or L, specifies if the distance edge

is generated from the upper or lower bound of the constraint.

E1

E2

S1

S2

D: 
≥4

C: 
≥0

A:[5,10]

B:[1,2]

(a)

E1

E2

S1

S2

0:-CL 

10:AU

-5:-AL

2:BU

-1:-BL

-4:-DL 

(b)

E1

E2

S1

S2

-2:-CL-BU

10:AU

-5:-AL

2:BU

-1:-BL

-4:-DL 

(c)

E1

E2

S1

S2

3:-CL-BU+AL

10:AU

-5:-AL

2:BU

-1:-BL

-4:-DL 

(d)

Figure 5-2: Supports recording during the triangular reduction for checking strong
controllability

There are two non-contingent edges in the graph, S2-S1 and E1-E2, and E1-E2

starts and ends at received nodes (denoted by squares in the graph). We first reduce it

using edge S2-E2, a contingent edge that shares the same end node with E1-E2. The
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Input: A grounded TPNU 𝑇𝑝 = ⟨𝑉,𝐸,𝐸𝑢, 𝐿𝑒, 𝐿𝑝⟩.
Output: A conflict ⟨𝑁𝐶𝑦𝑐𝑙𝑒𝑠,𝐺𝑢𝑎𝑟𝑑𝑠⟩ that makes 𝑇𝑝 uncontrollable
1 𝐷𝐺←GetDistanceGraph(𝑇𝑝);
2 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄←NonContingentEdges(𝐷𝐺);
3 while 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄 ̸= ∅ do
4 𝛼←Dequeue(𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄);
5 if End(𝛼) is uncontrollable then
6 𝛽 ← ContingentEdgeEndAt(End(𝛼)) //retrieve the contingent

edge that ends at the end node of edge 𝛼;
7 𝛼′ ← Reduce(𝛼, 𝛽);
8 𝛾 ←GetEdge(Start(𝛼),Start(𝛽));
9 if Weight(𝛼′) <Weight(𝛾) then

10 𝛾 ← 𝛼′;
11 Supports(𝛾)← Supports(𝛼, 𝛽);
12 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄 ∪ 𝛾;

13 endif

14 else if Start(𝛼) is uncontrollable then
15 𝛽 ← ContingentEdgeStartAt(Start(𝛼)) //retrieve the contingent

edge that ends at the start node of edge 𝛼;
16 𝛼′ ← Reduce(𝛼, 𝛽);
17 𝛾 ←GetEdge(End(𝛽),End(𝛼));
18 if Weight(𝛼′) <Weight(𝛾) then
19 𝛾 ← 𝛼′;
20 Supports(𝛾)← Supports(𝛼, 𝛽);

21 endif

22 endif

23 end
24 𝑁𝐶𝑦𝑐𝑙𝑒←Bellman-Ford(𝐷𝐺);
25 return GetSupports(𝑁𝐶𝑦𝑐𝑙𝑒);

Algorithm 8: Strong controllability checking algorithm

result is a new edge E1-S2 with weight -2 and supporting constraints 𝐶𝐿, 𝐵𝑈 , which

are the union of the supporting constraints of E1-E2 and S2-E2 (Figure 5-2c). Since

E1-S2 starts at an received node, we can further reduce it using E1-S1. The result is

edge S1-S2 with weight 3 and supporting constraints 𝐶𝐿, 𝐵𝑈 , 𝐴𝐿 (Figure 5-2d).

It can be seen from the reduced graph that there is a negative cycle of two edges:

S1-S2 and S2-S1. The negative cycle indicates that the original STNU is not strongly

controllable, and the supporting constraints of these two edges, {𝐴𝐿, 𝐵𝑈 , 𝐶𝐿, 𝐷𝐿}, are

in conflict and cause the failure. The linear expression in the 𝑁𝐶𝑦𝑐𝑙𝑒𝑠 component of

this conflict is −𝐿𝐵(𝐷)− 𝐿𝐵(𝐶)− 𝑈𝐵(𝐵) + 𝐿𝐵(𝐴), whose value is evaluated to -1
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without any relaxations to the temporal bounds.

Using this algorithm for checking strong controllability and extracting conflicts

does not add much overhead: it takes the same order of magnitude in time compared

to consistency checking algorithms. Given a network with 𝑉 events and 𝐸 temporal

constraints, there will be at most 2𝐸 reductions and support constraint recordings.

The time complexity of strong controllability is thus the same order of magnitude as

consistency checking: both are dominated by the 𝑂(𝑉 𝐸) negative cycle detection.

5.1.2 Conflict Learning For Dynamic Controllability

Our approach for learning conflicts from dynamic controllability checking algorithm

is similar to that for strong controllability. We extend the fastDCcheck algorithm

in (Morris, 2006) with additional steps in its reduction procedures to record the

supporting constraints of reduced edges. A review of the original fastDCcheck

algorithm is presented in Appendix C. Here we present the pseudo code of our

revised algorithm that extracts conflicts from uncontrollable problems (Algorithm 9).

As proved in (Morris, 2006), a grounded TPNU, which is equivalent to an STNU if

we only consider the temporal constraints from episodes, is dynamically controllable

if and only if it does not have a semi-reducible negative cycle. The fastDCcheck

algorithm is designed based on this theorem. It converts the STNU to an equivalent

distance graph of normal form (Line 1) and identifies all negative paths that start

with a lower-case edge (Morris & Muscettola, 2005), called moat paths, through prop-

agations (Line 6). The input STNU is determined to be dynamically controllable if

none of these negative paths leads to a semi-reducible negative cycle (Line 3, 17).

The check requires at most 𝐾 iterations (Line 2), where 𝐾 is the number of lower

case edges in the equivalent distance graph of the STNU.

During the reduction of moat paths, we record the supporting constraints for each

reduced edge (Line 9). If the AllMaxConsistent function, which implements the

Bellman-Form algorithm on all non-lower case edges, captures a negative cycle in the

reduced graph, it will return a conflict that collects the supporting constraints of all

edges in the cycle. There are five types of reductions in this procedure (Morris &
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Input: A grounded TPNU 𝑇𝑝 = ⟨𝑉,𝐸,𝐸𝑢, 𝐿𝑒, 𝐿𝑝⟩.
Output: A conflict ⟨𝑁𝐶𝑦𝑐𝑙𝑒𝑠,𝐺𝑢𝑎𝑟𝑑𝑠⟩ that makes 𝑇𝑝 uncontrollable
1 𝐷𝐺←GetNormalDistanceGraph(𝑇𝑝);
2 for 1 to K do
3 𝑁𝐶𝑦𝑐𝑙𝑒←AllMaxConsistent(𝐷𝐺);
4 if 𝑁𝐶𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙 then
5 for 𝐸 in LowerCaseEdges(𝐷𝐺) do
6 𝑚𝑜𝑎𝑡𝑃𝑎𝑡ℎ𝑠←Propagate(𝐸);
7 for 𝑃𝑎𝑡ℎ in 𝑚𝑜𝑎𝑡𝑃𝑎𝑡ℎ𝑠 do
8 𝐸 ′ ←Reduce(𝐸,𝑃𝑎𝑡ℎ);
9 Supports(𝐸 ′)← Supports(𝐸,𝑃𝑎𝑡ℎ);

10 AddToGraph(𝐸 ′, 𝐷𝐺)

11 end

12 end

13 else
14 return GetSupports(𝑁𝐶𝑦𝑐𝑙𝑒);
15 endif

16 end
17 𝑁𝐶𝑦𝑐𝑙𝑒←AllMaxConsistent(𝐷𝐺);
18 return GetSupports(𝑁𝐶𝑦𝑐𝑙𝑒);
Algorithm 9: Modified fastDCcheck algorithm for learning conflicts from un-
controllable networks (changes are highlighted in bold)

Muscettola, 2005; Morris, 2006), and the support recording process is demonstrated

for each of them in Figure 5-3.

Upper-Case: adds
B:x y B:(x+y)
SCA SDC SCA U SDC

A C D A D

Lower-Case: adds
x c:y x+y

SCA SDC SCA U SDC
A C D A D if x<0

Cross-Case: adds
B:x c:y B:(x+y)
SCA SDC SCA U SDC

A C D A D if x<0, B≠C

No-Case: adds
x y x+y

SCA SDC SCA U SDC
A C D A D

Label-Removal: adds
B:x x
SCA SCA

A C A C if x≥0

Figure 5-3: Record supporting constraints during the fastDCcheck reductions

Next, we demonstrate the conflict learning process using a simple dynamic con-

trollability checking example (Figure 5-4). There are three events, E1, E2 and E3,

in this example STNU. These events are connected by two constraints A and B: A
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is an uncertain duration with a bound of [10,15], while B is a simple temporal con-

straint with a bound of [1,1]. The first step of controllability checking is to map the

STNU to a normalized form (Morris & Muscettola, 2005), which decouples the lower

bounds from each uncertain duration (Figure 5-5). We can then generate the equiva-

lent distance graph using the normalized STNU. Note that each distance edge in the

graph, including conditional edges, is labeled with a linear expression over constraint

bounds. The expression encodes the source of an distance edge’s weight value, such

as the example in Figure 5-6.

E2E1
[10,15]

E3
[1,1]

A B

Figure 5-4: The original STNU

E2E1'
[0,5]

E3
[1,1]

E1
[10,10]

Figure 5-5: The normalized STNU

E2E1' E3E1 10:AL

-10:-AL

5:AU-AL

0

-1:-BL

1:BU

(e2) 0

(E2) -5:AL-AU

Figure 5-6: The equivalent distance graph of the STNU

The next step is to identify and reduce all moat paths in the distance graph using

the iterative method introduced in (Morris, 2006). In this example, there is only one

valid moat path: 𝐸1′ → 𝐸2 → 𝐸3. This path has a negative weight, starts with a

lower-case edge, and can be reduced to a single edge using a lower-case reduction.

The reduced edge (represented by a dotted arrow in Figure 5-7) of the moat path

has a weight of -1, and is supported by a linear expression, −𝐵𝐿, that combines the

expressions of all edges in the moat path.

After all applicable reductions, the final step is to run AllMaxConsistent

check on the resulting graph, which checks the consistency of the graph without
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E2E1' E3E1 10:AL

-10:-AL

5:AU-AL

0

-1:-BL

1:BU

(e2) 0

(E2) -5:AL-AU

-1:-BL

Figure 5-7: The distance graph with a reduced edge

the lower-case edges. It will reveal any negative cycle in the reduced graph, whose

existence indicates that the STNU is not dynamically controllable. In this example,

one negative cycle can be detected that contains edge 𝐸3 → 𝐸2, 𝐸2 → 𝐸1′, and

the reduced edge 𝐸1′ → 𝐸3. From this cycle, we can identify the linear expression

that caused this conflict from all distance edges in the cycle: 𝑈𝐵(𝐵) + 𝐿𝐵(𝐴) −

𝑈𝐵(𝐴) − 𝐿𝐵(𝐵) ≤ 0. In addition, there is another subtle but necessary element

of this conflict: the reduction that adds edge 𝐸1′ → 𝐸3. The negative cycle would

not exist without this reduced edge. Therefore, the expression that supports the

reduction, −𝐿𝐵(𝐵) ≤ 0, which guarantees a negative weight for the moat path, is

included in the conflict. The conflict we can extract from the STNU’s negative cycle

is a conjunction of two linear expressions, {𝐵𝑈 + 𝐴𝐿 − 𝐴𝑈 − 𝐵𝐿;−𝐵𝐿}. Making any

one of them non-negative will resolve this conflict.

In summary, learning conflicts from dynamic controllability checking with fast-

DCcheck requires recording the supporting expression for each distance edge and

reduction. Once a negative cycle is detected, we can extract a conflict by collecting

(1) the expressions for each edge in the cycle; and (2) the expressions required by

the reductions that added edges to the cycle. The conflict is a conjunction of these

linear expressions, which are all negative and defined over the temporal bounds of

constraints.

Currently, extracting conflicts from dynamic controllability checking is signifi-

cantly harder than that for strong controllability, even though the extra time and

space required by recording supports during reductions does not increase the overall

complexity of the algorithm. The fastDCcheck algorithm is currently the second

fastest DC checking algorithm with a complexity of 𝑂(𝑁4), which is an order of mag-
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nitude higher than checking strong controllability. To improve run-time efficiency,

the algorithm can be terminated and return true after a no-reduction iteration. This

is similar to the implementation in (Morris & Muscettola, 2005) and will not affect

the correctness of the results. The integration of BCDR with a cubic DC checking

algorithm from (Morris, 2014), is expected to further improve performance and is

part of our future work to explore.

5.1.3 Resolving Conflicts with Uncontrollable Durations

As described in the beginning of this subsection, both BCDR-U(SC) and BCDR-

U(DC) algorithms use the resolutions to unresolved conflicts to expand the search

tree. For TPNUs, there are three options for resolving its hybrid conflicts, which may

include both controllable constraints and uncertain duration:

∙ Flipping the guard assignments to deactivate episodes.

∙ Relax the temporal bounds of episodes with controllable constraints.

∙ Tighten the temporal bounds of episodes with uncertain durations.

The conflict resolution process for TPNUs, similar to the one for TPNs, is sep-

arated into two stages. The first stage is identical to that for TPNs: we look for

alternative assignments that can deactivate one or more episodes in the conflict, and

use them to generate new candidates.

The second stage implements option 2 and 3. We compute the continuous relax-

ations to the relaxable temporal bounds in the conflicts. The linear expressions in

each conflict’s negative cycles provide guidance for ExpandOnConflict to resolve

them. A conflict is eliminated if any of its linear expressions is made non-negative. For

example, we can resolve the conflict in Figure 5-7 using the following two approaches:

∙ Set 𝐵𝑈 + 𝐴𝐿 − 𝐴𝑈 −𝐵𝐿 ≥ 0, e.g. increasing 𝐴𝐿 to 15.

∙ Set −𝐵𝐿 ≥ 0, e.g. lowering 𝐵𝐿 to 0.
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Intuitively, to resolve a conflict we can directly require the weight of a previously

negative cycle to be non-negative, or we can make sure the reduction which adds an

edge never occurs. This choice in conflict resolution is unique to dynamic controlla-

bility conflicts: a hybrid conflict from consistency or strong controllability checking

only introduces one linear expression. This choice provides more flexibility in conflict

resolution, although it also increases the complexity of the problem: to compute the

optimal resolutions, BCDR-U(DC) may need to evaluate all possible repairs for all

conflicts. The search branches each time BCDR-U(DC) expands on a conflict. If a

quick response is desired by the user, BCDR-U(DC) should be implemented with an

anytime search strategy.

Once an expression is selected for each conflict, we can again formulate a constraint

optimization problem and compute the resolutions using an optimization solver in

polynomial time, assuming that the objective function remains semi-convex. There

are two categories of variables in the optimization problem: relaxed lower and upper

temporal bounds for episodes with controllable constraints (𝑙𝑏′𝑖 and 𝑢𝑏′𝑖) and tightened

lower and upper bounds for episodes with uncertain durations (𝑙𝑏′𝑢𝑗 and 𝑢𝑏′𝑢𝑗). These

are given in Problem 2.

Problem 2 (Conflict resolution with set-bounded uncertain durations).

min
𝑙𝑏′𝑖,𝑢𝑏

′
𝑖,𝑙𝑏

′
𝑢𝑗 ,𝑢𝑏

′
𝑢𝑗

|𝑅𝐸∖𝑅𝐸𝑢|∑︁
𝑖=1

𝑓𝑒(𝑙𝑏
′
𝑖) + 𝑓𝑒(𝑢𝑏

′
𝑖) +

|𝑅𝐸𝑢|∑︁
𝑗=1

𝑓𝑒(𝑙𝑏
′
𝑢𝑗) + 𝑓𝑒(𝑢𝑏

′
𝑢𝑗); (5.1)

𝑠.𝑡. 𝑙𝑏′𝑖 − 𝑙𝑏𝑖 ≤ 0, 𝑢𝑏′𝑖 − 𝑢𝑏𝑖 ≥ 0; (5.2)

𝑙𝑏′𝑢𝑗 − 𝑙𝑏𝑢𝑗 ≥ 0, 𝑢𝑏′𝑢𝑗 − 𝑢𝑏𝑢𝑗 ≤ 0, 𝑢𝑏′𝑢𝑗 − 𝑙𝑏′𝑢𝑗 ≥ 0; (5.3)

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡1 ≥ 0; 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡2 ≥ 0; ... 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑚 ≥ 0; (5.4)

The constraints in the optimization problem enforce the necessary properties. For

TPNUs, we have an additional set of constraints: for lower and upper temporal bound

variables of uncertain durations, their value must be within the range defined by the

original bounds, and the new lower bound is smaller than the new upper bound,
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encoded by (5.3). For example, given the conflict in Figure 5-4, the relaxed bounds

for uncertain duration 𝐴, 𝑙𝑏′𝑢𝐴 and 𝑢𝑏′𝑢𝐴, must follow 10 ≤ 𝑙𝑏′𝑢𝐴 ≤ 𝑢𝑏′𝑢𝐴 ≤ 15.

5.2 Computing Risk-bounded Relaxations

Finally, we present the third continuous relaxation extension to the BCDR algo-

rithm, called BCDR-C, that allows it to resolve over-subscribed cc-pTPNs. The

extension leverages ideas from (Fang et al., 2014) for grounding probabilistic Simple

Temporal Problems (pSTPs) into deterministic STNUs, and uses the conflict-directed

framework for efficient conflict detection and resolution. Given a cc-pTPN, BCDR-

C enumerates feasible solutions in best-first order: a solution is a complete set of

assignments, a collection of relaxations for temporal bounds of episodes and chance

constraint. Each resolution supports a grounded TPNU whose probability of failure

is bounded by the relaxed chance constraint. This requires the conflict-directed ap-

proach to support both relaxation and risk allocation: given the grounded TPNU of

a cc-pTPN that represents a specific set of choices and risk allocation, BCDR-C will

identify the conflicts between episodes and use their resolutions to guide the search

towards feasible risk allocation and constraint relaxations. The two key modifications

from BCDR-U to BCDR-C are the following:

∙ First, an additional step of risk-allocation is required for grounding the input

cc-pTPN to a TPNU. This allows us to check the feasibility and extract conflicts

between episodes using the algorithms developed for TPNUs.

∙ Second, in addition to flipping assignments and relaxing temporal bounds, the

conflict resolution step can also adjust risk allocation over uncertain durations

in order to resolve all known conflicts while maintaining the risk taken. Note

that this step may require a non-linear optimization solver if the probabilistic

distribution of any uncertain duration is non-linear.

We first present an overview of the algorithm that highlights the modifications,

then discuss the risk-allocation and chance constraint relaxation procedures in detail.
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Input: A cc-pTPN 𝑇𝑝 = ⟨𝑃,𝑄, 𝑉, 𝑉𝑟, 𝐸, 𝐸𝑑, 𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒,∆𝑡, 𝑟∆𝑡, 𝑓Δ⟩.
Output: A solution ⟨𝐴, 𝑆,𝑅𝑒,∆

′
𝑡, 𝑁𝑎𝑙𝑙𝑜𝑐, 𝐸

′⟩ that maximize
∑︀

𝑖(𝑓𝑝𝑖 − 𝑓𝑒𝑖 − 𝑓Δ).
1 𝐶𝑎𝑛𝑑← ⟨𝐴, 𝑆,𝑅𝑒,∆𝑡, 𝑁𝑑𝑒𝑓𝑎𝑢𝑙𝑡, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩; //the first candidate with the
default risk allocation;

2 𝑆𝑒𝑞 ←GetSeqVariables(𝑃 ) // the activity sequence variables;
3 𝑃𝑎𝑡ℎ← 𝑛𝑒𝑤 PATH(𝑃, 𝑆𝑒𝑞) // path constraint over all activities;
4 𝑄𝑢𝑒𝑢𝑒← {𝐶𝑎𝑛𝑑}; //a priority queue that records candidates;
5 𝐶 ← {}; //the set of all known conflicts;
6 𝑈 ← 𝑃 ; //the list of unassigned controllable variables;
7 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
8 𝐶𝑎𝑛𝑑←Dequeue(𝑄𝑢𝑒𝑢𝑒);
9 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ←UnresolvedConflict(𝐶𝑎𝑛𝑑,𝐶);

10 if 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
11 if isComplete?(𝐶𝑎𝑛𝑑, 𝑈) then
12 𝑛𝑒𝑤𝐶𝐹𝑇 ←PropagatePATH(𝐶𝑎𝑛𝑑, 𝑃𝑎𝑡ℎ);
13 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
14 AddRoutes(𝐶𝑎𝑛𝑑);
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝐶𝑎𝑛𝑑);

16 endif
17 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
18 return 𝐶𝑎𝑛𝑑;
19 else
20 𝐶 ← 𝐶 ∪ {𝑛𝑒𝑤𝐶𝐹𝑇};
21 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝐶𝑎𝑛𝑑};
22 endif

23 else
24 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnVariable(𝐶𝑎𝑛𝑑, 𝑈);
25 endif

26 else
27 𝑄𝑢𝑒𝑢𝑒←

𝑄𝑢𝑒𝑢𝑒∪ExpandOnConflictAndAllocateRisk(𝐶𝑎𝑛𝑑, 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 );
28 endif

29 end
30 return 𝑛𝑢𝑙𝑙;

Algorithm 10: BCDR-C algorithm for solving cc-pTPNs

The pseudo code of BCDR-C is presented in Algorithm 10. Similar to BCDR-U,

we implement BCDR-C with a priority queue for enumerating resolutions in best-

first order. The algorithm starts with an empty candidate (Line 1) that has no

assignments or relaxations, and an empty set of resolved conflicts (𝐶𝑟 and 𝐶𝑐𝑜𝑛𝑡). The

candidate is associated with a default risk allocation over all probabilistic uncertain
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durations, which is represented by a grounded TPNU (𝑁𝑑𝑒𝑓𝑎𝑢𝑙𝑡). The initial allocation

is computed from a non-linear solver and is conservative enough to satisfy the chance

constraint. The initial candidate is the only element in the queue before search starts

(Line 4).

Within the main loop, BCDR-C first dequeues the best candidate (Line 8) and

checks if it resolves all known conflicts (Line 9). If not, a conflict 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 will be

returned by function UnresolvedConflict. The unresolved conflict is then used

for expanding 𝐶𝑎𝑛𝑑 (Line 27). All child candidates returned by function ExpandOn-

ConflictAndAllocateRisk resolve 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 while satisfying the chance con-

straints. The function also computes the risk allocation over episodes with proba-

bilistic temporal durations for each candidate, which is added back to the queue for

future evaluation and expansion.

If 𝐶𝑎𝑛𝑑 resolves all known conflicts, BCDR-C will proceed to check the control-

lability of its grounded TPNU (function TemporallyFeasible?, Line 15). BCDR-

C(SC) implements this function with a strong controllability checking algorithm,

while BCDR-C(DC)’s function implements dynamic controllability checking. If the

grounded network passes the check, 𝐶𝑎𝑛𝑑 will be returned as the best resolution to

the cc-pTPN (Line 18). Otherwise, a new conflict will be returned by this function

and recorded for expanding candidates (Line 20). 𝐶𝑎𝑛𝑑 will also be added back to

𝑄𝑢𝑒𝑢𝑒 since it now has an unresolved conflict (Line 21).

Similar to BCDR and BCDR-U, every solution returned by BCDR-C is valid in

that they have a feasible risk-allocation and pass the strong or dynamic controllabil-

ity check, hence it is easy to prove the algorithm’s soundness. On the other hand,

unlike BCDR and BCDR-U, BCDR-C is not a complete algorithm in that it may

fail to return a solution for some cc-pTPNs that do have feasible relaxations. This

is a result of its conservative risk allocation procedure. We take a union bound ap-

proach when calculating the total risk taken across the temporal bounds allocated

for all probabilistic uncertain durations. It guarantees that the solution returned will

operate within the specified risk-bound. However, the conservation causes BCDR-C

to overestimate the risk taken. As a result, it may not be able to find a feasible risk
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allocation for problems with tight risk-bounds, even if one may exist. We will discuss

more details on this issue in the following section.

5.2.1 Risk Allocation and Constraint Relaxation

Conflicts provide guidance for BCDR-C to resolve temporally infeasible plans. Given

a set of conflicts, we formulate a constrained optimization problem and compute the

continuous relaxations using a non-linear optimization solver. To resolve a conflict we

can require the weight of any of its linear expressions to be non-negative. There are

three categories of variables in the optimization problem: relaxations for temporal

bounds of controllable durations (𝑙𝑏′𝑖 and 𝑢𝑏′𝑖), relaxations for chance constraint (∆
′
𝑡),

and the allocation of lower and upper bounds for probabilistic uncertain durations

(𝑙𝑏′𝑝𝑗 and 𝑢𝑏′𝑝𝑗). Each category of variables represents a type of conflict resolution:

re-allocating risk over probabilistic durations, relaxing the chance constraint, and

relaxing controllable temporal constraints. These are given in Problem 3.

Problem 3 (Conflict resolution with chance constraints and probabilistic durations).

min
Δ′

𝑡,𝑙𝑏
′
𝑖,𝑢𝑏

′
𝑖

𝑓Δ(∆′
𝑡 −∆𝑡) +

|𝑅𝐸|∑︁
𝑖=1

𝑓𝑒(𝑙𝑏
′
𝑖) + 𝑓𝑒(𝑢𝑏

′
𝑖); (5.5)

𝑠.𝑡. 𝑙𝑏′𝑝𝑗 − 𝑢𝑏′𝑝𝑗 < 0 (5.6)

𝑙𝑏′𝑖 − 𝑙𝑏𝑖 ≤ 0, 𝑢𝑏′𝑖 − 𝑢𝑏𝑖 ≥ 0; (5.7)

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡1 ≥ 0; 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡2 ≥ 0; ... 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑚 ≥ 0; (5.8)∑︁
𝑒𝑑∈𝐸𝑑

Risk(𝑙𝑏′𝑝𝑗, 𝑢𝑏
′
𝑝𝑗) ≤ ∆′

𝑡, ∆′
𝑡 ∈ [∆𝑡, 1) (5.9)

The constraints in the optimization problem enforce the necessary properties. For

lower and upper bound variables of probabilistic durations, their value can be assigned

as long as the lower bound is smaller than the upper bound, encoded by (5.6). For

relaxable temporal bounds of controllable durations, their new temporal bounds must
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be no tighter than the original bounds, as in (5.7). For controllable durations that are

not relaxable, their temporal bounds remain unchanged (omitted from the encoding).

The resolution constraints in (5.8) are added to ensure that all known conflicts are

resolved by the relaxations, similar to those in Problems 1 and 2. Given 𝑚 conflicts,

the same number of resolution constraints will be added, each representing one linear

expression in each conflict. Finally, we add a risk allocation constraint to ensure that

the risk taken meets the chance constraint. This constraint is defined over the lower

and upper bound variables of all probabilistic durations. Given distributions of each

probabilistic duration and the uncertainty bounds chosen, the Risk function com-

putes the probability mass of the regions outside the uncertainty bounds. BCDR-C

uses the union bound to upper-bound the total risk taken across all uncertain dura-

tions, as this does not rely on assumptions of independence. If the chance constraint

is relaxable, we further require that the relaxed chance constraint is lower bounded by

the original chance constraint, and upper bounded by 1. This gives us the flexibility

to make trade-offs between risk and performance, if no solution can be found that

resolves all conflicts while meeting the current chance constraint. These are described

by (5.9).

The objective function, given in (5.5), is defined over 𝑓Δ and 𝑓𝑒 for minimizing the

cost of temporal and chance constraint relaxations. In the optimization problem, all

domain and conflict resolution constraints are linear, while the chance constraint may

be non-linear depending on the probabilistic distributions. BCDR-C uses the SNOPT

optimization package (Wächter & Biegler, 2006) to solve Problem 3 and compute op-

timal constraint relaxations and risk allocations. If a solution is returned by SNOPT,

function ExpandOnConflict will construct a new candidate with its relaxations

for temporal and chance constraints, and the risk allocations. This candidate will

then be added as a new branch to BCDR-C’s search tree, similar to the process in

Algorithms 5 and 7.

Finally, we would like to mention one limitation of BCDR-C on resolving cc-

pTPNs. In many real-world scenarios, people may want to impose different chance

constraints over different subsets of uncertain durations. The current implementation
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of BCDR-C, especially the risk-bounded relaxation procedure, only supports a single

chance constraint. It is unable to impose different risk bounds on different sets of

episodes while computing new relaxations and risk allocations. Episodes covered

by different risk bounds may appear in the same conflict, and it is not clear how

to distribute the risk to multiple chance constraints during conflict resolution. The

solutions to these issues are part of our future work to explore.

5.3 Implementation Issues and Suggestions

Finally, we discuss two issues revealed during our experiments with BCDR’s con-

tinuous relaxation extension, and present our solutions to them that will improve

the robustness and run-time performance of BCDR for similar types of relaxation

problems. The first issue is a numerical instability problem that may cause BCDR

to become stuck on a certain conflict: the relaxation generator thinks a conflict has

been resolved, while the temporal feasibility checker disagrees and keeps returning

the same conflict. Our solution is a parameterized negative cycle detection function

whose sensitivity can be lowered to match that of the relaxation generator.

The second issue is that the default conflict resolution procedure may be very

inefficient for highly over-subscribed temporal plans (plans with a large number of

conflicts). As the number of conflicts to resolve increases, the conflict relaxation

procedure slows down due to the increasing number of constraints to satisfy. However,

much of the computation is not very useful, since the relaxations from a previous

iteration become useless when a new conflict is discovered: we have to execute the

expensive optimization procedure again with more constraints. Our solution is a

mixed greedy-optimal relaxation procedure that uses discrete relaxation when more

conflicts are likely to be discovered, and only runs the continuous relaxation procedure

if it is likely that no more conflicts may be discovered.

These issues and resolutions may be of particular interest to readers who are

applying BCDR to real-world problems with a large set of constraints and highly

connected structure. Note that our experimental results of BCDR will be discussed
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in the following section: here we focus on the source of these issues and the rationale

behind the modification to get BCDR working properly.

5.3.1 Numerical issues in continuous relaxation

The conflict-directed framework used by BCDR and all its extensions follows a gen-

erate and test approach, which coordinates the generator (for computing continuous

relaxations) and the tester (for checking temporal feasibility) to work together until a

relaxation that resolves every conflict is found. When the checker discovers a conflict

𝑐, it requires the linear expression 𝑐𝑒 of the conflict to be made non-negative. In

order to minimize the cost function 𝑓𝑒, the continuous relaxations generated by the

optimizer often makes 𝑐𝑒 = 0. However, in some rare cases, after the arithmetic for

the reduction process of checking controllability, the value of 𝑐𝑒 becomes 0− 𝜖, where

𝜖 is a very small number. This causes the checker to re-discover the same conflict: the

relaxation generator believes that the conflict can be resolved, hence it will not signal

failure and tell BCDR to terminate; while its relaxation never satisfies the checker,

which causes BCDR to become stuck.

The problem was observed when BCDR-U(DC) ran into an infinite loop. The

number of ExpandOnConflict operation counts kept growing as if there is an

infinite set of conflicts to resolve. A further investigation into this issue revealed

that in these non-terminating scenarios, the conflicts learned by the controllability

checking algorithm beyond a certain point are all identical. The continuous relaxation

generated by the ExpandOnConflict procedure does not resolve the new conflict,

causing the checker to re-discover it again and again. This problem is more often

observed on problems with highly connected constraints, which require a large amount

of reduction during DC checking and increases the chance of numerical precision

issues.

We use the example from 5-7 to demonstrate this problem. Recall that the conflict

extracted from dynamic controllability checker for this TPNU has two linear expres-

sions: {𝐵𝑈 +𝐴𝐿 −𝐴𝑈 −𝐵𝐿;−𝐵𝐿}. Assume that the relaxation generator decided to

increase 𝐴𝐿 to 15.0, which effectively eliminates the uncertainty in it, we will get the
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relaxed problem in Figure 5-8. Next, the plan with the relaxation is passed back to

the controllability checker for verification. The checker executes the same reduction

procedures shown in Figure 5-3, and gets a reduced network (Figure 5-9). However,

during the reduction, some of the arithmetic operations may introduce errors and the

resulting edge in the network has the incorrect weight of -0.0000000001, instead of 0.

As can be seen from the graph, the same negative cycle of Edge 𝐸3 → 𝐸2,𝐸2 → 𝐸 ′
1

and 𝐸 ′
1 → 𝐸3 will be detected by the checker, and hence the same conflict will be re-

turned by it, which puts BCDR-U(DC) into an infinite battle with an already resolved

conflict.

E2E1
[15,15]

E3
[1,1]

A B

Figure 5-8: The TPNU with a relaxed lower bound for uncertain duration 𝐴
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Figure 5-9: The reduced graph with additional edges

There are several options to resolve or reduce the chance of running into this

numerical issue: we may slightly relax the sensitivity of the controllability checker,

set the continuous relaxation generator to over-relax a bit, or switch to rational

numbers which eliminates the numerical issue completely. We took the first approach

since it provides the most intuitive configuration and the flexibility to work in all

situations: the over-relaxation approach does not apply to problems whose solution

space is very small, such as the RCPSPs in (Cui, Yu, Fang, Haslum, & Williams,

2015); the rational number approach requires an approximation step to scale up

the temporal bounds and rounding, whose impact on the correctness of BCDR is

difficult to estimate. As mentioned in earlier sections, all temporal feasibility checking

functions (consistency, strong controllability and dynamic controllability) depend on a
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negative cycle detection function implemented based on the Bellman-Ford algorithm,

and the key in our approach is to loosen the criteria for a negative loop. Therefore,

we modified the condition for distance updates in Bellman-Ford, and the changes are

highlighted in Algorithm 11.

Input:
𝐺: ⟨𝑉,𝐸, 𝑠⟩, a weighted directed graph with vertices 𝑉 , edges 𝐸 and source 𝑠;
𝜖: the sensitivity settings for negative cycle detection.
Output: 𝐶𝑦𝑐𝑙𝑒: a collection of edges in 𝐸 that forms a negative cycle.
Initialization:
1 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← []; the array for storing minimal distances from source to each
vertex.;

2 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝐸𝑑𝑔𝑒← []; the array for storing predecessor edge for each vertex;
3 // Initialize distance and predecessor array;
... ...

4 // Update distances from source to each vertex, only if the distance decreased
by at least 𝜖;

5 for 𝑖 ∈ [1,Length(𝑉 )− 1] do
6 for 𝑒 ∈ 𝐸 do
7 if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[From(𝑒)] +weight(𝑒) + 𝜖 < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[To(𝑒)] then... ...
8 endif

9 end

10 end
11 // Extract negative cycle, if exists;
12 for 𝑒 ∈ 𝐸 do
13 if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[From(𝑒)] +weight(𝑒) + 𝜖 < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[To(𝑒)] then... ...
14 return 𝐶𝑦𝑐𝑙𝑒;

15 endif

16 end
17 return null;
Algorithm 11: Bellman-Ford algorithm with relaxed criteria on distance updates

There are three steps in the Bellman-Ford Algorithm: initialization of distance

and predecessor for vertices, updating the shortest distances to each vertex from

source, and detecting and extracting any negative cycles. The key modification we

made is the introduction of a non-negative sensitivity parameter 𝜖, which is used

during the updates of vertex distances (Line 7) and the extraction of negative cycle

(Line 13). It requires the new distance to be 𝜖-less than the original distance, instead

of just being smaller, effectively making it more difficult for updates to take place.
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As a result, no negative cycle with value larger than −𝜖 in the original graph will

be detected, since such small differences will not be captured during the distance

updates. This parameter can be tuned for different applications to eliminate the

possibility of numerical issues while maintaining a good precision and reliability. In

our experiments, we set 𝜖 to 10−9 and found it to be sufficient to completely eliminate

the numerical issues.

5.3.2 Delayed conflict resolutions

Computing continuous relaxations is the most expensive procedure in BCDR. On the

other hand, most of the relaxation computation is not directly contributing to the

final solution: we compute relaxations to all known conflicts so that a new candidate

can be generated to help find new conflicts. For example, when solving a simple over-

subscribed TPN from the train dispatching domain (discussed in the next section)

with 417 events and 672 constraints, 381 continuous relaxation operations were exe-

cuted by BCDR in order to discover the 381 conflicts and find the optimal solution.

Out of the 17.01 seconds run-time, 13.14 seconds were consumed by computing con-

tinuous relaxations, and the one we are mostly interested in is the last one when we

have learned all conflicts. The process is visualized in Figure 5-10, in which we plot

the cumulated runtime against the number of conflicts discovered, and the continu-

ous relaxation computation time against the number of conflicts it is resolving. To

improve the efficiency of this procedure, the key is to discover new conflicts without

incurring so many expensive operations for computing optimal continuous relaxations,

such that the run time does not increase as fast when discovering new conflicts.

Therefore, we developed a greedy approach for resolving conflicts during search:

picking the relaxable episodes with the lowest relaxation cost in a conflict, and relax-

ing their lower or upper temporal bounds to the extent that the linear expression of

the conflict is non-negative. The exact continuous relaxation procedure only needs

to be called to refine the relaxations when a consistent set of greedy relaxations is

found: during the search we may use the greedy approach for a new candidate that

can push BCDR to discover new conflicts. It takes very little time compared to the
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Figure 5-10: Profile of Continuous Relaxations in BCDR Runtime

exact optimal relaxation, since it does not require calling the optimizer. The alterna-

tive approach has significantly improved BCDR’s runtime performance on large-scale

and highly constrained problems. For the same over-subscribed plan, this greedy re-

laxation approach reduces the runtime to 7.2 seconds, within which only 0.89 second

were spent on conflict resolution. The same relaxation time and plot are shown in

Figure 5-11. Each point in Figure 5-11b represents the discovery of one conflict. The

closer it is to the x-axis, the less time was spent on computing continuous relaxations

after discovering the conflict. As can be seen in the graph, less than ten exact relax-

ations were computed to refine the greedy relaxations on this problem, which greatly

reduces BCDR’s run time: greedy relaxations were used in most situations to discover
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new conflicts. The downside is that we discovered more conflicts than before (566 vs

381), which may not be necessary for generating the optimal relaxation.
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Figure 5-11: Profile of Combined Greedy/Exact Relaxations in BCDR Runtime

The greedy approach requires very minimum modification to BCDR: instead of

formulating and solving the optimization problem in ExpandOnConflict, we com-

pute the greedy relaxations here. Inside ExpandOnConflict, Line 16 to Line 22

(Algorithm 6) are replaced with a new procedure that only looks at the new con-

flict 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 (Algorithm 12), instead of all conflicts that were previously resolved

continuously. The greedy relaxation procedure iterates through all constraints in the

conflict and checks if any constraints involved are relaxable (Line 16-17). If such a

constraint is identified, it will relax its bounds, either lower or upper, to the maxi-
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mum extent or to the extent that the conflict is eliminated, whichever is smaller (Line

18). The initial value of the conflict’s linear expression is captured by the variable

𝑂𝑓𝑓𝑠𝑒𝑡, and the conflict is resolved once the variable is made zero or negative. If

one constraint cannot provide enough deviation, the procedure will move on to the

next one, until 𝑂𝑓𝑓𝑠𝑒𝑡 is made zero or less. If the loop completes but the offset is

still positive, it means that no continuous relaxation is available for resolving the new

conflict, and the continuous relaxation candidate will not be generated.

... ...
𝑂𝑓𝑓𝑠𝑒𝑡← 0 - EvalExp(𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ); amount of relaxation that need to be
applied for resolving the conflict continuously;
... ...

16 for 𝑐 ∈ 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 do
17 if isRelaxable(𝑐) then
18 𝑟 = Min(𝑂𝑓𝑓𝑠𝑒𝑡,RelaxationLimit(𝑐));
19 𝑅𝑛𝑒𝑤 ← 𝑅𝑛𝑒𝑤 ∪ {⟨𝑐,LB(𝑐)− 𝑟, 0⟩} or {⟨𝑐, 0,UB(𝑐) + 𝑟⟩};
20 𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑂𝑓𝑓𝑠𝑒𝑡− 𝑟;

21 end
22 if 𝑂𝑓𝑓𝑠𝑒𝑡 ≤ 0 then
23 𝐶𝑎𝑛𝑑𝑛𝑒𝑤 ← ⟨𝐴, 𝑆,𝑅𝑛𝑒𝑤, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩;
24 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠← 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠 ∪ 𝐶𝑎𝑛𝑑𝑛𝑒𝑤;
25 break;

26 end

27 end
28 return 𝑛𝑒𝑤𝐶𝑎𝑛𝑑𝑠;
Algorithm 12: Modifications to Function ExpandOnConflict (Algorithm 6)
for handling candidates with greedy relaxation

The optimal relaxation procedure is moved outside of ExpandOnConflict, and

to the main loop of BCDR. Once BCDR has verified the feasibility of a candidate

solution, instead of retuning it, an additional procedure will be executed to check if

the candidate contains any greedy relaxations (Line 17, Algorithm 13). If true, it will

refine the relaxations using the optimization procedure and generate a new candidate.

The new candidate will be put back to the queue for further verification, since it may

not be the best or consistent candidate after the updates to its continuous relaxation.

This approach works very well on non-conditional plans, whose search tree has

one single branch. However, it may not save time on conditional ones. To enumerate
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... ...
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝑐𝑎𝑛𝑑);
16 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
17 if HasGreedyRelaxation(𝑐𝑎𝑛𝑑) then
18 𝑐𝑎𝑛𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ← RefineRelaxation(𝑐𝑎𝑛𝑑);
19 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝑐𝑎𝑛𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙};
20 else
21 return 𝐶𝑎𝑛𝑑;
22 end

23 end
... ...

Algorithm 13: Modifications to the BCDR algorithm (Algorithm 5) for greedy
continuous relaxation

candidate solutions in best-first order, BCDR needs an accurate estimation for the

cost of relaxation in order to prioritize candidates. In order to keep the heuristic

function admissible, the cost for all greedy relaxation are set to zero. This is because

the greedy relaxations will all have larger than optimal cost, and we have no idea

how much the ‘minimal cost’ will be. Hence, setting the cost to be zero retains the

admissible property and still allows BCDR to do a best-first enumeration. However, if

we stick to the greedy relaxations, the utility estimation for candidates may be off by

a large margin, causing BCDR to waste a lot of time examining candidate solutions

that are far from the optimal.

Therefore, we propose a mixed greedy-optimal relaxation approach to achieve a

good balance between efficiency and accuracy. The new approach uses greedy relax-

ation when more conflicts are likely to be discovered, and only runs the continuous

relaxation procedure if we are confident that no more conflicts will be discovered, or

we have been applying greedy relaxation for more than 𝑁 times consecutively. If a

candidate is found to be consistent, or has more than 𝑁 greedy relaxations, the exact

relaxation procedure will be used. The parameter 𝑁 is a non-negative integer, and if

𝑁 is too large then the utility estimation may be off by too much. Therefore, in our

experiments we have been using 𝑁 = 5 to achieve a good balance between the time

saving and the risk of creating a huge difference in heuristic and actual costs.
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5.4 Chapter Summary

In this chapter, we presented the third contributions of the thesis: risk-bounded relax-

ations under uncertainty. We demonstrated how BCDR’s temporal feasibility checker

and relaxation generator can be extended to handle plans with temporal uncertainty,

either expressed as set-bounded uncertain durations, or probabilistic durations with

chance constraints. The two variants, BCDR-U and BCDR-C, are able to diagnose

the source of uncertainty in an over-subscribed temporal plan, and enumerate pre-

ferred continuous relaxations with bounded risk. The temporal and chance constraint

relaxations generated by BCDR resolve conflicts by trading off safety margins with

performance, which provides more flexibility for risk management in real world sce-

narios.
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Chapter 6

Domain Relaxation for Parameterized

Variables

In this chapter, we present the final contribution of the thesis: computing domain

relaxations for over-subscribed temporal plans. The domain relaxation extension

(Figure 6-1) enables BCDR to resolve conflicts by weakening the domain constraints

on variables, hence allowing additional values to be added to the variable domains.

In addition, we introduce a semantic similarity model generated by the word2vec

(Mikolov et al., 2013a) and the SemanticMemory (Raiman, 2016) packages to guide

the weakening of domain constraints. The similarity model uses high-dimension vector

representations of concepts trained on a large corpus of Natural Language data. It

has been shown to carry semantic meanings when comparing concepts (Mikolov et al.,

2013b), and allows BCDR to prioritize the relaxations for domain constraints.

This chapter is organized as follows. In Section 6.1 we introduce the extension

to BCDR for computing domain relaxations for conflicts in over-subscribed temporal

plans. In section 6.2 we describe how BCDR interacts with the relaxation generator

and semantic similarity model to enumerate domain relaxations in best-first order.
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Figure 6-1: Domain relaxation extensions to BCDR

6.1 Computing Domain Relaxations

Given a TPN that encodes all activities and constraints from the users, BCDR fills

in the details by computing a set of temporally feasible choices of activities, adding

contingencies for likely delays during transit and compute relaxations for the tempo-

ral and domain constraints, if necessary. As presented in Chapter 3, BCDR leverages

ideas from conflict-directed diagnosis and relaxation algorithms in the literature: it

uses the conflict-directed framework from (Williams & Ragno, 2002) for efficient con-

flict detection and resolution, and generalizes methods from the continuous temporal

relaxation techniques in Chapter 4, for enumerating both discrete and continuous

relaxations simultaneously. We first present an overview of BCDR with the domain

relaxation extension, then discuss in details the two new features: computing and

enumerating domain relaxations.

Algorithm 14 presents the pseudo code of BCDR’s main function, which introduces

the following modifications from BCDR in Chapter 4 to support domain relaxation

(highlighted in bold):

∙ First, in addition to temporal relaxations, the conflict resolution step (Line 30,

ExpandOnConflit) was extended to also compute possible domain relaxations

to variables in the conflict.

∙ Second, an additional step of relaxation expansion is added for candidates with par-

tially initiated domain relaxations (Line 9, ExpandDomainRelaxation). Dur-
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Input: A domain relaxable TPN 𝑇𝑝 = ⟨𝑃,𝑄, 𝑉,𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒, 𝑃𝑠, 𝐿𝑠⟩.
Output: A solution, ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑑, 𝐸

′⟩ that maximizes 𝑓𝑝 − 𝑓𝑒.
1 𝐶𝑎𝑛𝑑← ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑑, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩; //the first candidate;
2 𝑆𝑒𝑞 ←GetSeqVariables(𝑃 ) // the activity sequence variables;
3 𝑃𝑎𝑡ℎ← 𝑛𝑒𝑤 PATH(𝑃, 𝑆𝑒𝑞) // path constraint over all activities;
4 𝑄𝑢𝑒𝑢𝑒← {𝐶𝑎𝑛𝑑}; //a priority queue that records candidates;
5 𝐶 ← {}; //the set of all known conflicts;
6 𝑈 ← 𝑃 ; //the list of unassigned controllable variables;
7 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
8 𝐶𝑎𝑛𝑑←Dequeue(𝑄𝑢𝑒𝑢𝑒);
9 if ExpandDomainRelaxation(𝐶𝑎𝑛𝑑,𝑄𝑢𝑒𝑢𝑒) then

10 Continue;
11 endif
12 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 ←UnresolvedConflicts(𝐶𝑎𝑛𝑑, 𝐶);
13 if 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
14 if isComplete?(𝐶𝑎𝑛𝑑, 𝑈) then
15 𝑛𝑒𝑤𝐶𝐹𝑇 ←PropagatePATH(𝐶𝑎𝑛𝑑, 𝑃𝑎𝑡ℎ);
16 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
17 AddRoutes(𝐶𝑎𝑛𝑑);
18 𝑛𝑒𝑤𝐶𝐹𝑇 ←TemporallyFeasible?(𝐶𝑎𝑛𝑑);

19 endif
20 if 𝑛𝑒𝑤𝐶𝐹𝑇 == 𝑛𝑢𝑙𝑙 then
21 return 𝐶𝑎𝑛𝑑;
22 else
23 𝐶 ← 𝐶 ∪ {𝑛𝑒𝑤𝐶𝐹𝑇};
24 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒 ∪ {𝐶𝑎𝑛𝑑};
25 endif

26 else
27 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnVariable(𝐶𝑎𝑛𝑑, 𝑈);
28 endif

29 else
30 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪ExpandOnConflict(𝐶𝑎𝑛𝑑, 𝑘𝑛𝑜𝑤𝑛𝐶𝐹𝑇 );
31 endif

32 end
33 return 𝑛𝑢𝑙𝑙;

Algorithm 14: An overview of BCDR with domain relaxation extension

ing conflict resolution, BCDR only computes partial domain relaxation candidates,

which are not initiated until being dequeued. It allows BCDR to delay the knowl-

edge base queries and semantic similarity comparison, which are computationally

expensive operations.
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BCDR is also capable of handling uncertain temporal durations in the problem,

using an alternative temporal conflict learning and resolution functions presented in

Chapter 5. When configured with the corresponding controllability checking and con-

flict extraction functions for TemporallyFeasible?, such as strong and dynamic

controllability, BCDR is able to check controllability and compute risk-bounded re-

laxations for plans with uncertain durations.

6.1.1 Resolving Conflicts using Domain Relaxation

ExpandOnConflict (Algorithm 15) expands the search tree using new candidates

computed from the resolutions to known conflicts. Two options have been used by

prior approaches in this procedure: (1) flipping the assignments to deactivate episodes

(Chapter 3), and (2) relaxing the temporal bounds of episodes (Chapter 4). For

(1), GetAlternatives collects all alternative domain values for assignments in

the conflict, and uses the ones that are not competing with any existing assignments

(NotCompeting) to generate new candidates. For (2), ContinuouslyRelax eval-

uates the temporal bounds in the conflict, and weakens some relaxable ones to resolve

it. The domain relaxation extension introduces a third option: enlarge the variable

domain using similar values. This requires an additional step in the conflict resolution

function (Line 5-7): if the discrete variable involved in the conflict has a relaxable

domain, a special assignment for the variable, called 𝑆𝑡ℎ𝐸𝑙𝑠𝑒 (something else), will

be added in addition to alternatives already encoded in its domain. This special as-

signment serves as a placeholder that resolves the conflict, and will be expanded with

grounded values later to create new candidates.

When BCDR dequeues a candidate, Function ExpandDomainRelaxation (Al-

gorithm 16) will first check if it has any such special assignment (Line 2). If so, it will

iterate through all relaxable triples in the variable’s domain constraint (Line 3), and

extract alternative objects from the knowledge base for them (Line 4). Next, given all

alternative options (𝑄𝑎𝑙𝑡) for a triple, Function GetSimilar selects the one that has

the highest similarity score to the original one, but have not been used before in 𝑅𝑑.

BCDR then queries the knowledge base with the new triple 𝑞𝑠𝑖𝑚, and generates new
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domain assignment 𝑎𝑟 and constraints 𝐸𝑟 for each of the additional values. Finally,

a new candidate is created from each new assignment and then added to the queue

(Line 8).

Input: A candidate 𝑐𝑎𝑛𝑑: ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑑, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩ and an unresolved conflict

𝑐𝑢𝑟𝑟𝐶𝐹𝑇 .
Output: A set of candidates 𝐶𝑎𝑛𝑑𝑠 that resolves 𝑐𝑢𝑟𝑟𝐶𝐹𝑇 .
1 𝐶𝑎𝑛𝑑𝑠← {};
2 for 𝑎 ∈ 𝐴 do
3 𝐴𝑎𝑙𝑡𝑒𝑟 = 𝐴𝑎𝑙𝑡𝑒𝑟∪GetAlternatives(𝑎);
4 𝐴𝑎𝑙𝑡𝑒𝑟 = 𝐴𝑎𝑙𝑡𝑒𝑟∪GetAlternatives(𝑔𝑢𝑎𝑟𝑑(𝑎));
5 if IsRelaxable(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑎)) then
6 𝐴𝑎𝑙𝑡𝑒𝑟 = 𝐴𝑎𝑙𝑡𝑒𝑟∪{𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑎) = 𝑆𝑡ℎ𝐸𝑙𝑠𝑒};
7 end

8 end
9 for 𝑎𝑎𝑙𝑡 ∈ 𝐴𝑎𝑙𝑡𝑒𝑟 do

10 if NotCompeting(𝐴, 𝑎𝑎𝑙𝑡) then
11 𝑐𝑎𝑛𝑑𝑛𝑒𝑤 ← ⟨𝐴 ∪ {𝑎𝑎𝑙𝑡}, 𝑅𝑒, 𝑅𝑑, 𝐸

′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩;
12 𝐶𝑎𝑛𝑑𝑠← 𝐶𝑎𝑛𝑑𝑠∪{𝑐𝑎𝑛𝑑𝑛𝑒𝑤};
13 end

14 end
15 𝐶𝑎𝑛𝑑𝑠← 𝐶𝑎𝑛𝑑𝑠∪ {ContinuouslyRelax(𝑐𝑎𝑛𝑑, 𝐶𝑐𝑜𝑛𝑡 ∪ {𝑐𝑢𝑟𝑟𝐶𝐹𝑇})};
16 return 𝐶𝑎𝑛𝑑𝑠;

Algorithm 15: Function ExpandOnConflict

We demonstrate this procedure using the travel example from Section 2.5. One

conflict in Simon’s plan is that he cannot go to restaurant Magic Wok and watch Joy

at AMC 16 while arriving home before 9:30pm (Figure 6-2). ExpandOnConflict

generates four new candidates from resolutions to this conflict: two from alternative

domain assignments in variable 𝐷𝑖𝑛𝑛𝑒𝑟 and 𝑀𝑜𝑣𝑖𝑒, one from continuous relaxation

for the trip duration, and one from domain relaxation for variable 𝐷𝑖𝑛𝑛𝑒𝑟. After

BCDR has evaluated all other candidates and found them to be infeasible or rejected

by the users, it dequeues the domain relaxation candidate 𝐷𝑖𝑛𝑛𝑒𝑟 ← 𝑆𝑡ℎ𝐸𝑙𝑠𝑒 and

computes grounded options for it. ExpandDomainRelaxation takes in this spe-

cial assignment and extracts the relaxable triple of cuisine in the variable’s domain

constraint. It then identifies the most similar alternative object, Korean, for the orig-

inal triple with Chinese. Finally, using the new cuisine triple, three new options for
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Input: A candidate 𝑐𝑎𝑛𝑑: ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑑, 𝐸
′, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩, and the search queue

𝑄𝑢𝑒𝑢𝑒.
Output: A boolean value indicating if special assignment 𝑆𝑡ℎ𝐸𝑙𝑠𝑒 was detected.
Algorithm:
1 for 𝑎 ∈ 𝐴 do
2 if 𝑎 == 𝑆𝑡ℎ𝐸𝑙𝑠𝑒 then
3 for 𝑞 ∈RelaxableTriples(𝑣𝑎𝑟(𝑎)) do
4 𝑄𝑎𝑙𝑡 ← GetOptions(𝑞, 𝑣𝑎𝑟(𝑎));
5 𝑞𝑠𝑖𝑚 ← GetSimilar(𝑄𝑎𝑙𝑡, 𝑣𝑎𝑟(𝑎), 𝑅𝑑);
6 for ⟨𝑎𝑟, 𝐸𝑟⟩ ∈QueryKB(𝑣𝑎𝑟(𝑎), 𝑞𝑠𝑖𝑚) do
7 𝑐𝑎𝑛𝑑𝑛𝑒𝑤 ← ⟨𝐴 ∖ {𝑎} ∪ {𝑎𝑟}, 𝑅𝑒, 𝑅𝑑 ∪ {𝑞𝑠𝑖𝑚}, 𝐸 ′ ∪ 𝐸𝑟, 𝐶𝑟, 𝐶𝑐𝑜𝑛𝑡⟩;
8 𝑄𝑢𝑒𝑢𝑒← 𝑄𝑢𝑒𝑢𝑒∪{𝑐𝑎𝑛𝑑𝑛𝑒𝑤};
9 end

10 end
11 return 𝑇𝑟𝑢𝑒;

12 end

13 end
14 return 𝐹𝑎𝑙𝑠𝑒;

Algorithm 16: Function ExpandDomainRelaxation

𝐷𝑖𝑛𝑛𝑒𝑟, Sunny Bowl (𝑆𝐵), Bimbibowl (𝐵𝑏) and Jang Su Jang (𝐽𝑆𝐽) were found by

querying the knowledge base, and used to resolve the conflict and further expand the

search tree.

Dinner←MW; Movie←JY;
UBDuration-UBAMC16→Home-UBJoy-UBMW→AMC16-UBMW-UBOffice→MW<0

Dinner←PE

Movie←NN

UBDuration=274

Dinner←SthElse

Cuisine CHINESE → KOREAN RESTAURANT

FILTER (?c = <http://rdf.freebase.com/ns/[m.01xw9→m.048vr]>)

Dinner←SB Dinner←Bb Dinner←JSJ

Figure 6-2: Expansion with temporal and domain relaxations

One domain constraint relaxation may be used multiple times for resolving con-

flicts detected on different branches of the search tree. Instead of querying the knowl-

edge base each time we need to relax the variable’s domain, we record the computed

relaxations, organize them in an array, and reuse them instead of generating new ones.
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The pseudo code of this procedure, which is implemented as part of the relaxation

expansion function, is presented in Algorithm 16.

6.1.2 Integration with Knowledge Base

BCDR integrates with a large-scale knowledge base to access the world knowledge,

such as restaurants, movies and showtimes, for computing domain relaxations. This

knowledge base is constructed from a combination of data sources of content using an

ingestion pipeline (Noessner, Martin, Yeh, & Patel-Schneider, 2015). It transforms

the raw content into RDF triples and performs entity resolution to merge duplicate

entities across different content sources. The resulting knowledge base can be viewed

as a very large knowledge graph where the nodes represent entities and the edges

represent semantic relations between these entities. The entities are typed, and a

proprietary subsumption hierarchy is used to organize these types. The semantic

relations have domain and range constraints, and also capture inverse relationships.

This knowledge graph can be efficiently accessed and queried via SparQL.

Due to the size of the knowledge base, it is deployed on a dedicated server and

BCDR communicates with it through a web API. On average, one query takes 500 ms

to complete, which is very significant compared to computing temporal relaxations.

While implementing BCDR with domain relaxation extension, it is important to delay

the expansion of domain relaxation candidate as much as possible. Therefore, we only

do the expansion (ExpandDomainRelaxation) after a candidate is dequeued.

6.2 Prioritizing Domain Relaxations

Given a set of alternative constraints, GetSimilar in Algorithm 16 calculates the

similarity scores between them and the object in the original constraint, and then

returns the most similar one. For example, given that no Chinese restaurant fulfills

both Simon and Christian’s requirement, we would like to try Korean cuisine first

instead of Mexican or American, since Korean and Chinese are both Asian cuisines

and more likely to be preferred. BCDR measures the similarity using a vector repre-
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sentation of words, first proposed in (Mikolov et al., 2013a): each object (represented

by its Freebase MID) is associated with a 1000-dimension vector of numbers. The

vector representations are learned by neural network model based on a large corpus

of natural language data, which has been shown to capture semantic properties well

(Mikolov et al., 2013b). The similarity score between two objects is computed using

the cosine similarity between their vectors: higher scores mean they are more sim-

ilar. The vector model of BCDR is trained by the continuous skip-gram algorithm

in the word2vec package with a Google News dataset (Word2Vec, 2013). For ex-

ample, Figure 6-3 presents the semantic similarity scores between a few alternative

cuisines and movie genres in Simon’s problem. Out of four alternative cuisines to

Chinese, Korean and Thai are closer in distance, with similarity scores of 0.7140 and

0.6945, while Mexican and American cuisine are further away with scores of 0.5169

and 0.3183, respectively. With the semantic similarity measurement, BCDR is able

to explore the domain relaxations in best-first order, like prior approaches did for

temporal relaxations.

Cuisine CHINESE
m.01xw9

KOREAN
m.048vr
0.7140

THAI
m.07hxn
0.6945

MEXICAN
m.051zk
0.5169

AMERICAN
m.01z1zf2
0.3183

Genre COMEDY
m.05p553

DRAMA
m.02822
0.5940

ROMANCE
m.02l7c8
0.3652

WAR
m.082gq
0.3069

DOCUMENTARY
m.0jtdp
0.3287

Figure 6-3: Semantic distances between cuisines and genres

The accuracy of word2vec’s distance measurement is dependent on the amount

of data used in training: it is often more reliable for domains that are commonly

encountered in web contents and publications. In addition, the distance measurement

is an indication of commonsense, and does not reflect the difference in individuals’

perceptions. For example, some people may find Vietnamese food are very different

from French food due to the geographic separation of the two countries, while some

may find them to be quite similar due to the French influence on Vietnamese cuisine.

The word vector model currently used by BCDR only covers about 1.4 million out
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of 50 million topics in Freebase due to the corpus used in training. When asked to

compare with an object with an undefined vector, the similarity measurement will

return zero, which greatly reduces the chance that this object will be considered in

relaxation. This limitation was observed during our experiments, and we are working

on a backup measure with better coverage to address this issue.

Finally, as the cost functions defined over temporal relaxations and domain relax-

ations are not compatible (weighted linear cost vs. cosine distance and conditional

probability), we normalized the cosine distance by computing its inverse (1/distance)

and used it as the cost for domain relaxations.

6.2.1 Alternative Preference Model for Single-Valued Domains

In some scenarios, the activities specified by the users may not be a collection of

candidates. Instead, they want to visit a specific restaurant or grocery store. For

example, in Simon’s evening trip example, he may only prefer to visit the restaurant

Magic Wok, instead of any Chinese restaurant. In this case, the domain constraints

for the variable 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 will simply be one equality relation, such as the following

SparQL query:

∙ Chinese Restaurant: SELECT ?r WHERE{

?r ns:type.object.type ns:dining.restaurant.

FILTER (?r = <Magic Wok>).}

In such situations, the word2vec model is not able to help prioritize alternative

relaxations, since it was trained only on general concepts representing the classes of

candidates, not on individual instances. Therefore, to support the relaxation for such

domains, we integrated an alternative preference model, called Semantic Memory,

which operates on individual instances and supports the comparison of them. First

presented in (Raiman, 2016), Semantic Memory uses an ontology to keep track of

historical user behavior and rank candidates using the discovered preference. Seman-

tic Memory works directly with the description of individual instances, whether it

is a restaurant, grocery store or a gas station. It builds an ontology, called a User
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Profile, over the candidate options from categorized (e.g. rating, cuisine, genre) and

uncategorized language data (e.g. reviews). It also supports model updates through

interactions with the users, reasoning about preferences hierarchically, and dynamic

acquisition of new choices.

The implementation of Semantic Memory includes two components:

∙ Reader Module: the Reader Module uses a novel topic model, also presented in

(Raiman, 2016), to obtain vector representations of choices from their associated

textual descriptions and categorized metadata. The resulting vectors are used

to build and update the User Profile.

∙ Memory Module: the Memory Module builds the User Profile, an ontology

for each user the system keeps track of. The ontology is constructed as a

weighted tree with all possible options available for a variable domain as leaves.

The relationship between child and parent nodes in the ontology follow an is-a

relationship: neighbors and parents are thereby semantically similar. At each

leaf node a label holding the user’s preference can be in three states: likes,

dislikes, unknown. The Semantic Memory uses these labels to rank the options

for BCDR during relaxation.

To support the update of User Profile, BCDR will also forward the rejection from

the users on a candidate solution to the Semantic Memory package. The update

allows the User Profile for the user to be updated for future use, which will order the

candidates differently the next time BCDR gets into the same situation (Figure 6-4).

We use the same example from Section 4.2 to demonstrate the behavior of BCDR

working with Semantic Memory (Figure 6-5). Assume that there are four additional

restaurants available for selection, in addition to Magic Wok, which does not meet

Simon and Christian’s requirements. Semantic Memory organizes them into a tree

using their vector representations. It then computes the commute distance from

the other four restaurants to Magic Wok using the inference procedures described in

(Kemp & Tenenbaum, 2008). First presented to model humans’ structural learning of

concepts, the commute distance is defined on graphs for making predictions about the
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Figure 6-4: The interactions between BCDR and Semantic Memory

similarity between concepts: given that leaf node X is in category A, it indicates how

likely is leaf node Y also in category A. It takes into account of not only the distance

between graph nodes, but also the number of different paths connecting them. Here,

the concept of being in a category represents being preferred by Simon. We set the

node representing Magic Wok to have value 1 (given that he asked for it from the

beginning). Using the tree+diffusion model from (Kemp & Tenenbaum, 2008), we

can compute the covariance matrix corresponding to the tree, which can then help us

estimate the likelihood that the states of the other four leaf nodes being 1. As shown

in the figure, having both A and B to be preferred by Simon is more likely than the

other three restaurants.

Magic Wok Panda Exp.

A B C D E

JSJ Sunnybowl Bb

A

B

C

D

E

P(A,B|S) = 0.5300 
P(A,C|S) = 0.5018

Figure 6-5: Domain Relaxation with Semantic Memory (S represents the matrix that
encodes the tree structure)

Compared to word2vec, which has a very wide coverage with a model trained

on a large corpus, Semantic Memory requires a much smaller but detailed training

133



set. It has a limited coverage, while in return, provides much higher resolution of

the recommendations, and is designed to be personalized for different users. It is a

good complement for the word2vec model in uncommon domains or domains with too

many candidates. On the other hand, the distance measure returned from Semantic

Memory is a conditional probability, which is not the same as the cosine distance

from word2vec, even though they are in the same range. The integration of the two

different types of distance measure is part of our future work to explore.

6.3 Chapter Summary

In this chapter, we presented the fourth and final contribution of this thesis: com-

puting domain relaxations for over-subscribed temporal plans. In addition to contin-

uously relaxing temporal bounds, we extend the BCDR algorithm to also compute

relaxations for variable domains. Domain relaxation allow more options to be added

to the plan for resolving conflicts. BCDR is able to simultaneously enumerate both

temporal and domain relaxations in best-first order, and has been integrated with

a knowledge base and a semantic similarity calculator for finding good relaxation

candidates.
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Chapter 7

Uhura: An Advisory System for

Resolving Over-Subscribed Travel

Plans

Finally, we discuss the design and implementation of Uhura, a dialog-based travel

plan assistant that builds upon BCDR and its extensions. Uhura is able to handle

over-subscribed plans involving multiple agents, interrelated goals, and efficiently

compute continuous temporal, risk-bounded and domain relaxations. Uhura is akin

to Siri and Google Now, two of the popular mobile personal assistants that have been

used by many people for their day-to-day activities. For example, we use them to

send messages, check weather, and find restaurants. Many of these assistants support

both verbal and visual communications to make the interaction simpler. However,

their functions are limited to simple commands and information retrieval tasks. None

of them can understand user requests involving multiple goals and activities, which

require planning and scheduling capabilities to properly fulfill. In addition, they lack

the capability of identifying and managing uncertainty in planning the activities, or

find alternative plans if the current one does not work any more.

There has been much research on building advanced end-to-end personal assis-

tants, but most of these assistants also do not support planning. For example, (Yorke-

Smith, Saadati, Myers, & Morley, 2012) reports an end-to-end personal assistant
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framework, with a focus on proactivity and task management. (Yeh, Ramachandran,

Douglas, Ratnaparkhi, Jarrold, Provine, Patel-Schneider, Laverty, Tikku, Brown,

Mendel, & Emfield, 2015) and (Liu, Cyphers, Pasupat, McGraw, & Glass, 2012) re-

port end-to-end personal assistants for TV program discovery, which is able to process

user requests involving single goal and activity. (Freed, Carbonell, Gordon, Hayes,

Myers, Siewiorek, Smith, Steinfeld, & Tomasic, 2008) describe a personal assistant

that helps reduce email overload, and the human-machine collaborative planning pro-

totype system developed by (Allen & Ferguson, 2002) supports planning for a small

set of temporal and spatial constraints.

Uhura is able to work with temporal plans of much larger scale and compute

relaxations if the plan is over-subscribed. As demonstrated in previous chapters,

Uhura provides the following features to make the plan resolution process much easier

for the users: 1) natural language communication; 2) mixed initiative goal-directed

interaction; 3) support for multiple activities and constraints; and 4) being robust to

temporal uncertainty. These capabilities are supported by a coordinated system of

three major components, and its architecture is shown in Figure 7-1. The three core

components of Uhura are Dialog Manager, BCDR, and Knowledge Base. The dialog

manager handles the interactions with users through natural language understanding

and generator components, and elicits their goals and requirements as a TPN. It also

takes the domain constraints expressed by the user as well as the temporal and spatial

constraints, and formulates queries for the Knowledge Base. The results of these

queries ground the activities in the TPN with additional episodes and constraints.

Finally, the expanded TPN is sent to BCDR, which produces temporally feasible

plans and relaxations that best meet the users’ requirements.

All reasoning components of Uhura, including BCDR, the knowledge base and

the semantic similarity calculator, are implemented as web services. Each time a user

provides a new trip related activity or constraint, the dialog manager will decode it,

query the knowledge base’s API for grounded options, and incorporates them into a

TPN for the user’s trip. Once the user finishes providing trip information, the dialog

manager send a plan query containing the TPN to BCDR, which will then search
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for alternative plans and relaxations that best meet the requirements in the TPN.

Once a feasible plan and set of relaxation is found, it will be sent back to the dialog

manager and presented to the user, both using verbal description of the choices and

relaxations made.

Dialog 
Manager

Knowledge 
Base

BCDR

Freebase

Restaurants

Movie Showings

Map & Rounting 
Function

User:

Plan &
Relaxations

NLU

NLG

TPN

Expanded TPN

Semantic 
Similarity Model

Expanded TPN
& User Feedbacks

Domain 
Values

Semantic 
Queries

Routes Domain 
Relaxation
Candidates

Figure 7-1: The architecture graph of Uhura

In the rest of this chapter, we will focus on the explanation of how we integrate

the dialog manager with the BCDR and the knowledge base, to support Uhura’s

capabilities. The dialog manager and knowledge base presented in our discussions

are implemented based on (Ortiz & Shen, 2014) and (Noessner et al., 2015), respec-

tively. But with minimal changes to the input and output languages, the interfaces

we introduced can be used for integrating BCDR with other dialog management and

point-of-interest database systems.

7.1 Architecture for Integration

As can be seen from the architecture graph (Figure 7-1), the three major components

of Uhura have different responsibilities and applications. The key to an effective

integration is to decompose the overall problem properly, assign the subproblem

to the component that has the right reasoning capability, and supply them with the

right set of data. Inside Uhura, the dialog manager is responsible for interacting with

the users and capturing the planning problems from them. It creates and assigns

subproblems that require temporal and spatial reasoning to BCDR, and subproblems
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that require semantic reasoning to the knowledge base. In this section, we present

the interfaces between three components for creating the temporal plans, evaluating

their temporal feasibility and generating relaxations.

7.1.1 BCDR/Dialog Manager – Knowledge Base Interface

Both dialog manager and BCDR need access to background knowledge in order to

ground the various activities that meet user’s descriptions so that BCDR can gen-

erate a satisfactory activity plan for the user. BCDR accepts TPNs with domain

constraints specified in arbitrary semantic queries, the dialog manager encodes all

the event constraints in first-order logic represented by a semantic graph, while the

knowledge base used by us accepts only SparQL as its query language. As presented

in Chapter 6, BCDR is able to work with domains specified SparQL while computing

relaxations. However, the semantic graph generated by the dialog manager cannot be

mapped to SparQL queries directly. Additionally, the semantic graph encodes only

the constraints that the user has expressed so far, while the SparQL query required

by the knowledge base needs to be very specific and complete with regard to all the

information to be returned. For example, in Figure 7-2, the green part shows the

original semantic graph generated by the dialog manager that is equivalent to the

user request for “an animated movie”. However, it says nothing about the theater

where the movie is shown, or the date and time of the showing. The acquisition of

this information is essential for BCDR to successfully plan for the movie going activ-

ity. In order for the two components to talk to each other, we need to bridge these

two discrepancies.

Two auxiliary components are added between the dialog manager and the knowl-

edge base to address these issues. Based on the activity information from the dialog

manager’s activity library, a simple query reasoner expands the original semantic

graph with new query target nodes representing any missing information to be re-

trieved from the knowledge base in order to completely ground the requested events.

It is also responsible for filling in default information such as date, time, location if

user does not specify them. After the original semantic graph is augmented, a FOL
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to SparQL translator then maps the FOL predicates that encode various constraints

into SparQL relations so that a valid knowledge base query can be generated.

When the knowledge base returns a list of results that meet all the constraints

specified in the query, the dialog manager in turn needs to integrate these grounded

event instances into its semantic graph. Figure 7-2 shows an example of the expanded

semantic graph that integrated the two ground instances of the showing of an ani-

mated movie. This expanded semantic graph is also the base for which a TPN is

generated so that BCDR can step in and find a valid activity plan for the user. This

integration step is discussed in detail in the next section.

m2: movie

m3: animation

(objectDisplayed m1 m2)

(cwGenre m2 m3)

m1

DISJUNCTION

w15 w19

w16: 19:30
w20: 20:00

w7: Hotel Transylvania 2
w17: The Peanuts Movie

w11: AMC 20w8: AMC 16

w9

+37.325562 -121.014685 +37.389133 -121.982857

w7

(timeOfDayOfEvent w19 w20)

(equals DISUJNCTION w19)

(objectDisplayed w19 w17)

(eventsOccursAt w19 w11)

(inLocation w11 w7)

(longitude w7)(latitude w7)

(equals DISUJNCTION w15)

(timeOfDayOfEvent w15 w16)

(latitude w9) (longitude w9)

(inLocation w8 w9)

(eventsOccursAt w15 w8)

(objectDisplayed w15 w7)

(OR m1 DISUJNCTION)

(cwGenre w17 m3)

(cwGenre w7 m3)

Figure 7-2: Semantic graph with grounded activities

7.1.2 Dialog Manager – BCDR Interface

The dialog manager passes TPNs to BCDR after grounding the activities with options

returned from the knowledge base. BCDR then evaluates different choices in the
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TPNs, and generates plans and relaxations that best meet the users’ requirements.

The output from the dialog manager is a set of first order logic expressions encoded

in a semantic graph, while the input to BCDR is a set of activities and temporal

constraints encoded as a TPN. We need to find the mapping between them such

that (1) each activity’s temporal and spatial requirements can be extracted from

the semantic graph and encoded in the TPN; and (2) the choices and relaxations in

BCDR’s output can be mapped back to the nodes in the semantic graph, such that

the dialog manager can present them to the user.

Input: The root of a branch in the semantic graph: 𝑅𝑜𝑜𝑡.
a TPN ⟨𝑃,𝑄, 𝑉,𝐸, 𝐿𝑒, 𝐿𝑝, 𝑓𝑝⟩.
Output: An episode-graph node map 𝑀𝑎𝑝⟨𝐸,𝑁⟩.
1 𝑀 ← {};
2 𝑝←CreateVariable(𝑅𝑜𝑜𝑡);
3 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒←GetChildNode(𝑅𝑜𝑜𝑡);
4 for 𝑐ℎ𝑜𝑖𝑐𝑒𝐸𝑑𝑔𝑒 in GetOutEdges(𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒) do
5 𝑜𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒←toNode(𝑐ℎ𝑜𝑖𝑐𝑒𝐸𝑑𝑔𝑒);
6 𝑞 ←CreateAssignment(𝑜𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒, 𝑝);
7 𝑄𝑢𝑒𝑢𝑒← {𝑜𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒};
8 while 𝑄𝑢𝑒𝑢𝑒 ̸= ∅ do
9 𝑛𝑜𝑑𝑒← Dequeue(𝑄𝑢𝑒𝑢𝑒);

10 for 𝑒𝑑𝑔𝑒 in GetOutEdges(𝑛𝑜𝑑𝑒) do
11 𝑙𝑎𝑏𝑒𝑙←Label(𝑒𝑑𝑔𝑒);
12 𝑡𝑜𝑁𝑜𝑑𝑒←toNode(𝑒𝑑𝑔𝑒);
13 if 𝑙𝑎𝑏𝑒𝑙 ==timeOfDayOfEvent then
14 GetTime(𝑡𝑜𝑁𝑜𝑑𝑒, 𝐸, 𝑞, 𝐿𝑒,𝑀);
15 else if 𝑙𝑎𝑏𝑒𝑙 ==eventsOccursAt then
16 GetLocation(𝑡𝑜𝑁𝑜𝑑𝑒, 𝐸, 𝑞, 𝐿𝑒,𝑀);
17 else if 𝑙𝑎𝑏𝑒𝑙 ==InLocation then
18 GetPosition(𝑡𝑜𝑁𝑜𝑑𝑒, 𝐸, 𝑞, 𝐿𝑒,𝑀);
19 else if 𝑙𝑎𝑏𝑒𝑙 ==objectDisplayed then
20 GetEventName(𝑡𝑜𝑁𝑜𝑑𝑒, 𝐸, 𝑞, 𝐿𝑒,𝑀);
21 else
22 𝑄𝑢𝑒𝑢𝑒←𝑄𝑢𝑒𝑢𝑒 ∪ 𝑡𝑜𝑁𝑜𝑑𝑒;
23 endif

24 end

25 end
26 𝑄← 𝑄 ∪ {𝑞}
27 end
28 𝑃 ← 𝑃 ∪ {𝑝}; return 𝑀 ;

Algorithm 17: Breadth-first exploration of semantic graph
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We take a breadth-first approach to explore the branch in a semantic graph for

an activity, and extract any temporal and spatial information about it. The pseudo

code is presented in Algorithm 17. The algorithm starts from the root of the branch,

such as the m1 node in Figure 7-2, which represents the activity specified by the

users. It then iterates through all child nodes of the root to search for any grounded

candidates returned from the knowledge base, which are connected to the root node

through a 𝐷𝐼𝑆𝐽𝑈𝑁𝐶𝑇𝐼𝑂𝑁 node (Line 3 and 4). We create an activity variable for

the root (Line 2), and the child nodes under 𝐷𝐼𝑆𝐽𝑈𝑁𝐶𝑇𝐼𝑂𝑁 , which are grounded

options for the activity, are encoded as domain assignments (Line 5). Next, we explore

the sub-branches under each of the child node to extract details about the grounded

option (Line 7). Every time the algorithm sees an edge with certain labels, such as

eventOccursAt and inlocation, it will initiate a corresponding function to extract the

data (Line 12-18). The data is then associated with the episode for the candidate,

either as name, location, or temporal constraints. Note that during the encoding

process of a TPN from a semantic graph, a map is created from each TPN element

to the corresponding semantic graph node (𝑀 , Line 13-19). It is stored and used by

the dialog manager to interpret BCDR’s solutions later.

For example, Figure 7-3 shows a branch of the semantic graph for a movie activity.

This branch encodes two movie showing that meets the description animation movie.

They are in different theaters, and starts at different times. The equivalent TPN,

shown at the bottom of the figure, encodes the two alternative options. Each of

the movie showing is modeled by an episode, with theaters and their locations. In

addition, the episodes connect to the start event of each episode encodes the start

time of the movie showing, relative to the trip start time (6pm). In addition, we

keep a record of the mapping between the nodes in the branch and the constraints

in the TPN. This is represented by the node IDs tagged to the episodes’ names,

locations, and durations. Once a solution is generated, we can use the mapping

to convert BCDR’s choices, such as selecting the episode with 𝑤11, 𝑤12, 𝑤17, to a

natural language expression, ‘You can watch The Peanuts Movie at AMC 20 for the

movie activity’.
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Figure 7-3: The TPN generated from a semantic graph branch

Currently, this Dialog Manager-BCDR interface can handle constraints related to

the position, duration, start, and end times of an activity. The timing information

is used by BCDR to evaluate temporal feasibility, while the positions are used by

its routing function to estimate travel times between locations. As demonstrated in

the example, each candidate option for an activity is mapped to a unique assignment

and a set of episodes in the TPN. There are a few types of constraints over discrete

variables that cannot be handled by the interface, such as the sequence requirements

between activities. They are being processed separately using a set of predefined

templates and added to TPNs directly.
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7.2 Chapter Summary

In this chapter, we introduced the design and implementation of Uhura, an advisory

system that can help users plan by integrating a dialog manager, BCDR and a knowl-

edge base. As part of future work, we are actively working to expand Uhura’s range

of applications, and address the limitations that surfaced in the user study (presented

in Chapter 8). These include better use of user preferences and common sense rea-

soning in Uhura’s plan elicitation and relaxation process, which should provide higher

quality solutions for the users.
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Chapter 8

Applications and Empirical

Evaluations

In this chapter, we discuss the four applications of BCDR with continuous and do-

main relaxation extensions, in the domains of deep-sea mission planning, transit ve-

hicle scheduling, resource-constrained project scheduling and urban travel planning.

Within each of the applications, we present the modeling of the problems, the con-

figurations of BCDR for solving them, and the experiments for evaluating BCDR’s

performance compared to alternative approaches. These problems are of very differ-

ent structure and scale, and through these experiments, we explore the strength and

weakness of BCDR.

All experiments presented in this section were conducted on a desktop computer

with an Intel Core i5-3470 processor and 16GB of RAM. The SNOPT optimizer we

used is version 7.2, and the Gurobi optimizer is version 6.5.1.

8.1 Managing Deep-sea Exploration Missions

As presented in the beginning of this thesis, BCDR has been incorporated as part of a

mission advisory system for helping ocean scientists schedule autonomous underwater

vehicle tasks in deep-sea expeditions. Their missions are usually weeks long, and

involve the operations of several AUVs. Each vehicle usually performs ten to fifteen
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dives in a mission, and a dive may last between 6 to 16 hours. During each dive, a

vehicle is tasked with a set of survey locations on the sea floor: the vehicle needs to

traverse between each location, take samples and images, and return before running

out of power. Due to unexpected ocean currents and incomplete terrain data, the

traversal time between survey sites is highly uncertain and difficult to estimate. It

is almost impossible for the scientists to correctly assess the uncertainty of each dive

and plan tasks accordingly to meet the risk bound and a large set of operational

constraints.

The advisor can check the feasibility of a mission plan and search for valid risk

allocations that meet the risk requirement. If no such allocation can be found, the

decision aid will explain the cause of failure using the conflicts detected during the

search, and propose preferred relaxations to resolve the over-subscribed plan. If the

users are not satisfied with the results, they can ask the mission advisor to adjust the

solutions given their new inputs.

We examined the performance of BCDR on problems generated from this domain,

with different sizes and complexity. The test cases were created using a mission simu-

lator for underwater expeditions. Given a set of target locations on a map, the simu-

lator generates survey tasks around them and connects these locations with traversal

activities. Each test case describes the operations of multiple AUVs over several dives,

and each vehicle’s dive may contain multiple survey tasks. In addition, the traver-

sals are represented by probabilistic durations, while the survey times and battery

restrictions are modeled by simple temporal constraints. The operational risk limit

is specified by the chance constraints in the cc-pTPNs. Multiple underwater robots

may be deployed and working in parallel during a dive: each robot may have differ-

ent speed and power storage. Depending on the distance and vehicles, probabilistic

durations of different traversals and robots have different distributions.

These test problems have a very unique relay type structure: resources are being

used repeatedly for different tasks, with constraints restricting the start times, end

times or durations of the tasks. In addition to deep-sea exploration, this structure is

also shared by problems in many other domains, such as scheduling vehicle usage in
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a car-sharing network.

8.1.1 Setup

The randomly generated mission cc-pTPNs have a similar structure to the example

presented in Chapter 2. To make it more complex, we extended the problems to

include multiple vehicles and dives: there is always another scientist waiting for the

shared vehicle following each dive; and there are multiple vehicles that are operating

in parallel. We use the following control parameters in the mission problem generator

to characterize the complexity of a test case:

∙ 𝑁𝑑: number of dives per vehicle. 1 ≤ 𝑁𝑑 ≤ 5.

∙ 𝑁𝑟: number of autonomous underwater vehicles available. 1 ≤ 𝑁𝑟 ≤ 12.

∙ 𝑁𝑎𝑐𝑡: number of activities per dive. 1 ≤ 𝑁𝑎𝑐𝑡 ≤ 4.

∙ 𝑁𝑜𝑝𝑡: number of alternatives per activity. 2 ≤ 𝑁𝑜𝑝𝑡 ≤ 6.

The total number of discrete variables in a test case is 𝑁𝑑 × 𝑁𝑟 × 𝑁𝑎𝑐𝑡, and the

domain size of each variable is determined by its 𝑁𝑜𝑝𝑡. Each problem is constructed

as follows. We randomly sample locations from a region in Northern Pacific, within a

10km radius of (33.251, -121.555). The traversal times are computed using an average

speed randomly selected between 10 and 20 kilometers per hour. The survey length

at each location and the dive duration, 𝑇𝑎𝑐𝑡 and 𝑇𝑑𝑖𝑣, are randomly sampled in [10, 90]

and [60, 960] (minutes), respectively. These durations are encoded as episodes with

relaxable temporal bounds. We define linear preference functions over these relaxable

episodes with gradient (cost per minute) sampled between 0 and 10. The reward

for each variable assignment, denoting a location selection for each survey activity,

ranges from 0 to 1000. For example, Figure 8-1 presents an overview for the structure

of a test case with 2 vehicles and each carries our two activities during their dives.

In total, we created 2400 test cases using randomly generated numbers of vehicles,

risk bounds, survey locations and mission length. For each test case, we run BCDR

with the following five configurations:
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A. Consistency: determine and restore the feasibility of the test cases using BCDR.

This algorithm is denoted as ‘BCDR’. The cc-pTPNs are treated as TPNs by

this configuration: the uncertain durations are assigned lower and upper bounds

equal to their mean [𝜇, 𝜇].

B. Strong Controllability: using BCDR-U with a strong controllability model to

determine and restore the feasibility of the test cases. This algorithm is de-

noted as ‘BCDR-U(SC)’. The cc-pTPNs are treated as TPNUs: the uncertain

durations are assigned lower and upper bounds computed from their mean and

variance [𝜇− 3𝜎, 𝜇 + 3𝜎].

C. Dynamic Controllability: using BCDR-U with a dynamic controllability model

to determine and restore the feasibility of the test cases. This algorithm is

denoted as ‘BCDR-U(DC)’. The cc-pTPNs are treated as TPNUs: the uncertain

durations are assigned lower and upper bounds computed from their mean and

variance [𝜇− 3𝜎, 𝜇 + 3𝜎].

D. Chance-constrained Strong Controllability: using BCDR-C to find a grounded

TPNU of the cc-pTPN that is strongly controllable while meeting the chance

constraint, or a set of relaxations for the cc-pTPN that will enable such a TPNU.

This algorithm is denoted as ‘BCDR-C(SC)’.

E. Chance-constrained Dynamic Controllability: using BCDR-C to find a grounded

TPNU of the cc-pTPN that is dynamically controllable while meeting the chance

constraint, or a set of relaxations for the cc-pTPN that will enable such a TPNU.

This algorithm is denoted as ‘BCDR-C(DC)’.

8.1.2 Results

In this experiment, we benchmarked BCDR and its variants on each problem us-

ing the five aforementioned configurations. We use SNOPT as the linear optimizer

for consistency and controllability based tests, and non-linear optimizer for chance-

constrained tests with probabilistic durations. In each test run, the time consumption
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until the first solution returned, numbers of conflicts detected, as well as the utility

of the solution, were recorded. The timeout for each run was set to be 30 seconds,

which is usually the maximum duration scientists are willing to wait for.

First, we present the results for Configuration A, B and C, which are BCDR,

BCDR-U(SC) and BCDR-U(DC). The runtime performance of the three algorithms

are presented in Figure 8-2. Each dot in the graphs represents the cumulative num-

ber of instances solved on problems that contains equal or less number of constraints,

which are indicated by the x-axis. In total, BCDR with temporal consistency checker

solves 1589 problems within 30 seconds, while the number for BCDR-U(SC) and

BCDR-U(DC) are only 430 and 695, respectively. As can be seen from the fig-

ures, BCDR with consistency assumption is able to solve problems with up to 1000

constraints, while the other two algorithms never succeeded with problems beyond

500 constraints. This is the result of the different handling of uncertain durations:

due to the consideration of all possible outcomes from each uncertain duration,

both controllability-based BCDR-U algorithms are more restrictive compared to the

consistency-based BCDR, which treats uncertain durations as controllable and may

only satisfy one of its many outcomes. Hence the number of conflicts detected and

resolved by both BCDR-U(SC) and BCDR-U(DC) are much higher than that of

BCDR (Figure 8-3, 8-4 and 8-5), which significantly impacts their performance on

large problems.

In addition, checking strong and dynamic controllability are also more expensive

operations than checking consistency, which contributed to their lower runtime perfor-

mance. As presented in Chapter 4, we use the Bellman-Ford algorithm for consistency

checking and negative loop extraction (𝑂(𝑁2𝑙𝑜𝑔𝑁)). We add another layer of trian-

gular reduction (𝑂(𝑁2)) on top of it for checking strong controllability. For dynamic

controllability, we use the fastDCCheck algorithm 𝑂(𝑁4) from (Morris, 2006). It is

interesting to observe that BCDR-U(DC) out-performs BCDR-U(SC), as there is an

order-of-magnitude difference in their checking algorithms’ runtime complexity. This

is likely the result of the smaller amount of conflicts that were resolved by the dynamic

controllability version, as shown in Figure 8-4 and 8-5. Dynamic controllability allows
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Figure 8-2: Cumulative number of instances solved by BCDR (in 30 seconds)

more flexibility than strong controllability in that it does not require a static schedule

to accommodate all constraints and uncertain durations. The runtime of BCDR-U is

dominated by conflict resolution for over-subscribed plans, hence the less time spent

on conflict resolution compensated for the additional time on controllability checking.
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Figure 8-3: Conflicts detected by BCDR (Consistency)

Next, we discuss the results of BCDR-C(SC) and BCDR-C(DC) (Configuration D

and E), the two chance-constrained relaxation algorithms with strong and dynamic

controllability checker. They were used to restore the feasibility of cc-pTPNs through

both temporal and chance constraints relaxations. The results is shown in Figure 8-6.
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Figure 8-4: Conflicts detected by BCDR-U(SC)
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Figure 8-5: Conflicts detected by BCDR-U(DC)

In total, 269 of 2400 tests were solved by BCDR-C(SC) in 30 seconds, while

the number for BCDR-C(DC) is 328 of 2400. Similar to the BCDR-U experiment,

the dynamic controllability version performs better than the strong controllability

version due to the smaller number of conflicts. BCDR-C solves fewer problems than

BCDR-U and BCDR within the same time limit. This is mainly due to BCDR-

C’s chance-constrained conflict resolution procedure: it adds a non-linear constraint

for risk allocation to the optimiation problem, which makes it significantly harder

to solve than the linear optimization problem required by BCDR and BCDR-U. As
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Figure 8-6: Cumulative number of instances solved by BCDR-C (in 30 seconds)

can be seen in Figure 8-7 and 8-8, the number of conflicts detected by BCDR-C

are not larger than those detected by BCDR-U (Figures 8-4 and 8-5). Solving the

optimization problems for conflict resolution is the most expensive operation in the

BCDR algorithm, which takes up to 90% of the total computation time. Hence the

extra computation was mainly due to the expensive non-linear optimization process.
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Figure 8-7: Conflicts detected by BCDR-C(SC)

BCDR performs much better on problems with set-bounded uncertainty models,

since all constraints are linear during conflict resolution. On the other hand, non-

linear models, such as a normal distribution, is better for describing the uncertainty
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Figure 8-8: Conflicts detected by BCDR-C(DC)

in some real world activities (e.g. the timing of natural phenomena). Even though

it requires much more computation time, BCDR-C was able to resolve most of the

problems with less than 200 constraints in 30 seconds. This is enough for modeling a

10-hour survey mission of several underwater vehicles working in parallel. In general,

the algorithm configuration and modeling should be different from one application to

another. The choice of uncertainty and controllability model to use is thus application

dependent. In addition, results from this experiment also suggest that tractability

must be considered when selecting these models.

8.2 Optimizing Dispatching Strategies for Maintain-

ing Headways on Transit Routes

In this section, we discuss a different application of BCDR in the domain of transit

system management. Due to unexpected delay in travel and dwelling, transit vehicles

sometimes cannot operate on schedule and maintain their designated headways. If a

vehicle is delayed and operating off schedule, the gap between it and an earlier vehicle

will increase, causing it to carry more passengers, spend more time at each station for

dwelling and get delayed even more. In some extreme scenarios, passengers waiting

at a station may see two or more vehicles along the same route arrive together, and
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find an overcrowded vehicle followed by near-empty ones. This problem is often called

bunching or platooning in public transportation, and is a major challenge for reliable

transit service.

This problem has been investigated by many researchers in operation research, and

more details can be found in (Bellei & Gkoumas, 2010). Here we present a simple

example, constructed based on an SBS Transit article on bus bunching1, to explain

this problem. Assume that three three vehicles are running in 8-minute intervals and

demand along the route is constant (Figure 8-9).

Vehicle #3 Vehicle #2 Vehicle #1

8 min 8 min
60 pax. 60 pax. 60 pax.

Figure 8-9: Regular headways between vehicles

Vehicle #1 and #3 did not experience any delay in its operation and was able to

keep to schedule. Vehicle #2 encountered some issues while dwelling at a previous

station. Hence, the headway between Vehicle #1 and #2 was lengthened, while the

headway between Vehicle #2 and #3 was shortened (Figure 8-10).

Vehicle #3 Vehicle #2 Vehicle #1

4 min 12 min
40 pax. 80 pax. 60 pax.

Figure 8-10: Uneven headways and passenger load due to delayed Vehicle #2

By taking more than its share of passengers Vehicle #2 slowed down as a result,

while Vehicle #3 picked up fewer passengers. As this continues, Vehicle #2 would

eventually bunch up with Vehicle #3. To a passenger waiting for Vehicle #2, he

would have waited for 6 minutes, and it would seem that Vehicle #2 was crowded

while Vehicle #3 was relatively empty.

Current approaches for preventing vehicle bunching heavily rely on the operators’

experience and intuition: they have to respond quickly enough to any irregular op-

erations before they propagate to the entire route. In addition, the operators have a

1’Sometimes, two buses of the same service arrive at the same time with one bus being over-
crowded and the other almost empty. Why?’, http://www.sbstransit.com.sg/doyouknow/facts_
bus.aspx.
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very limited set of actions to take, such as asking the delayed buses to skip stations

or urge the passengers to wait for the next bus. Both may cause inconvenience for

passengers either on board or waiting at stations.

Here, we present a dynamic scheduling approach for managing a transit route to

address this problem. Given the schedule of an existing transit route and historical

performance data, we use BCDR to compute a robust dispatching strategy for the

vehicles on this route, such that the headways between buses/trains can be better

maintained. It builds in additional buffer time for vehicles to wait at each station

based on the uncertainty, which allows a dynamically controllable dispatching strategy

to be generated. The dispatching strategy, represented as an execution policy for

events in the scheduling problem, provides real-time guidance for pausing vehicles at

each station in order to maintain headways along the route. For the passengers, it

means that the frequency of services is more regular, such that they are less likely

to wait for an extended period of time for the service, or board an overly crowded

vehicle.

Our approach is similar to the frequency-based method proposed in (Bartholdi &

Eisenstein, 2012), which has each bus observe the preceding and following ones, and

strategically delay themselves at stations to maintain regular headways. As presented

in the same paper, this method has been shown to outperform prior work in controlling

the university bus system at Georgia Institute of Technology. The major difference

between it and our scheduling based approach is that we used a centralized algorithm

and pre-compute the strategy based on historical data. It allows us to coordinate all

vehicles along the route simultaneously, and restore from service interruptions quickly

without waiting for the bus delays to propagate from one to another. However, the

trade-off is that the dynamic policy requires more computation time to generate, and

the policy itself may become invalid if any travel or dwell time along the route falls

outside the set-bounds for uncertain durations.

The objective of this experiment is to explore different problems that BCDR with

the continuous relaxation extension can solve and benchmark its scalability. The

results have not been compared to other approaches in the field. We have not verified
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this approach on any real transit routes, though we would very much like to share it

and evaluate this approach in a real-world system.

8.2.1 Setup

We selected the Red Line subway 2 in Boston for this experiment. It is the busiest mass

transit route in the city, carrying more than 250,000 passengers per day. The agency

operating Red Line, the Massachusetts Bay Transit Authority, has been publishing

performance data for every train operation since June 30, 2015. Using their API, we

were able to retrieve the travel times of each train between stops, and the amount

of time the train dwelled at every stop. Combined with the published schedule, we

constructed a TPNU for modeling the operation of the Red Line. To simplify the

problem, our model covers only the inbound direction trains from Alewife station to

JFK/UMass station (before the line branches into two directions).

The travel time of each train between stations and dwell times are represented

by uncertain durations, while the scheduled headways are encoded as episodes with

controllable temporal constraints. Figure 8-11 is cropped from the visualization of the

problem, which shows a small portion of the TPNU that presents all basic elements:

dwell, wait for departure, and traversal to the next station. Given a train ride, the

three elements are repeated for each station pair. The collection of constraints for one

train ride are then repeated for all 167 trains during a peak day along the inbound

direction. Between neighboring trains, the headway constraints are added between

their their arrival events at a station. The temporal bounds of these constraints

are defined using the scheduled headway: [𝐻𝑒𝑎𝑑𝑤𝑎𝑦 − 1,𝐻𝑒𝑎𝑑𝑤𝑎𝑦 + 1]. We slightly

weakened the headway requirements from the schedule by ±1 minutes to allow some

flexibility for handling uncertainty, such that more efficient solutions can be generated.

The bounds for the uncertain durations, travel times, and dwell times are esti-

mated using the historical performance data: given a train ride between station A

and B, we retrieve train operation data between the same stations in history and

compute a lower and upper bound to cover them. For example, for a train ride that

2http://www.mbta.com/schedules_and_maps/subway/
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Figure 8-11: Basic elements in the TPNU for Red Line trains

leaves station Alewife at 5pm, we will retrieve all records for previous trains that left

between 4:30pm to 5:30pm during weekdays, and collect their travel times between

stations and dwell times. For its uncertain duration, the lower bound is defined using

the smallest travel time in the collection, while the upper bound is chosen such that

98% of all data points are covered between the lower and upper bounds.

Given the uncertain durations, there is no execution policy that meets all con-

straints in the TPNU. The objective of this experiment is to restore the dynamic

controllability of the over-subscribed TPNU, by building in the minimal amount of

wait times at each station. We can then compute a dispatching strategy that is robust

against all uncertain travel and dwell times can be found from the relaxed TPNU.

Therefore, the only relaxable elements in the TPNU are the upper bounds of the

wait times at each station. The values of the upper bounds are initialized to be 0.01

minute, and associated with a linear cost function with gradient 1 to penalize any

excessive delays.

8.2.2 Results

In this experiment, we solved the over-subscribed plans using two approaches: conflict-

directed relaxation with BCDR-U(DC), and a MIP encoding with Gurobi. We se-

lected Gurobi instead of SNOPT for this experiment due to the integer variables

in the MIP encoding. For BCDR-U(DC), we use Gurobi as its sub-solver to com-

pute optimal relaxations for learned conflicts. For the MIP encoding approach, we

use Gurobi directly to solve the complete problem. The MIP encoding we used was

first introduced in (Wah & Xin, 2007) for checking dynamic controllability, and later
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modified by (Cui et al., 2015) to evaluate the robustness of schedules for resource-

constrained project scheduling problems. The objective function for both approaches

are set to find the minimum cost relaxations, which correspond to the minimum de-

lays that have to be built into each station, and makes the TPNU for the transit

route a dynamically controllable network.

Different from the AUV mission planning problems, the transit operation prob-

lem’s temporal network is highly connected due to the headway constraints. They

create many more cycles in the network, which result in more conflicts between con-

straints. The larger number of conflicts makes the problems significantly more difficult

to solve. Therefore, given the limited computing resources and experiment time, we

do not expect both approaches to solve the complete problem with 169 trains and

around 10,000 constraints. To benchmark and compare the performance of two ap-

proaches, we generated a set of smaller test problems by capturing only a subset of

the trains and stations. Each of the 48 test problems contains N (2 ≤ N ≤ 7) trains

and M (2 ≤ M ≤ 9) stops. In this experiment, we set the timeout of each test run to

be 10 minutes.

7 182.62 x x x x x x x

6 87.051 x x x x x x x

5 27.012 314.55 x x x x x x

4 7.1596 120.48 370.16 x x x x x

3 1.9395 18.362 57.251 162.20 424.35 x x x

2 0.62508 3.2241 9.7885 19.904 51.379 80.885 200.97 346.31

���������Trains
Stops

2 3 4 5 6 7 8 9

Table 8.1: Runtime of BCDR-U with Gurobi as sub-solver (in seconds)

The results are shown in Table 8.1 for BCDR-U(DC), and Table 8.2 for Gurobi

with MIP encoding. Rows indicate the number of trains captured by the test prob-

lems, while columns indicate the number of stops. The run-times of each approach

for solving the test problem are the averaged results from five test runs. Within the

time limit, BCDR-U(DC) solved 20 out of 48 problems with up to 7 trains/2 stops

and 2 trains/9 stops, while Gurobi only solved 5 problems with less than 3 trains and
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Figure 8-12: Number of conflicts resolved by BCDR-U before finding the optimal
relaxations

7 x x x x x x x x

6 x x x x x x x x

5 x x x x x x x x

4 x x x x x x x x

3 30.399 x x x x x x x

2 2.7040 12.569 76.568 340.29 x x x x

���������Trains
Stops

2 3 4 5 6 7 8 9

Table 8.2: Runtimes of Gurobi with MIP encoding (in seconds)

5 stops. For the problems that both methods solved in the time limit (2 Trains with

2, 3, 4, and 5 stops, and 3 Trains with 2 stops), BCDR-U(DC) is roughly one order

of magnitude faster than Gurobi with MIP encoding. Similar to the results from the

first experiment, the runtime of BCDR-U(DC) on an over-subscribed plan is largely

determined by the number of conflicts in it. As can be seen in Figure 8-12, problems

that require longer runtime for BCDR-U(DC) to solve often contain more conflicts.

The results demonstrate the advantage of BCDR-U’s conflict-directed approach:

it allows the solver to only deal with the conflicts instead of the complete problem,

which significantly reduces the number of constraints and variables it has to consider.

Although BCDR-U’s conflict learning step requires a significant amount of compu-
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tation, overall the procedure is still worth the effort, especially for large problems

like the transit route optimization. Even for Gurobi, which is commonly regarded as

a state-of-the-art MIP and LP optimizer, BCDR-U is still able to significantly im-

prove its performance on the relaxation problems when compared to the direct MIP

encoding approach.

8.3 Robustness Analysis of Resource-constrained Project

Schedules

Finally, we present the application of BCDR to evaluating the robustness of resource-

constrained project schedules. First presented by (Cui et al., 2015), the objective

of this experiment is very different from the previous two experiments: instead of

over-subscribed temporal plans, BCDR is given a feasible plan and a partial-order

schedule for it, and is asked to find the maximum uncertainty that can be built

into the durations of some activities, while maintaining the controllability of the

problem. It is like finding a configuration of temporal problems that pushes them to

the boundary of feasibility.

A partial-order schedule (POS) consists of a set of time constraints between ac-

tivities such that any realization that meets these constraints is also resource feasible.

In the deterministic case, where the duration of each activity 𝑖 is a constant 𝑑𝑖, the

POS can be represented as an STN with time points 𝑡𝑠𝑖 and 𝑡𝑒𝑖 for the start and

end, respectively, of each activity. Assuming the duration of each activity can vary

within some bounds, [𝑙𝑠𝑖,𝑒𝑖 , 𝑢𝑠𝑖,𝑒𝑖 ], the schedule can be modeled as an STNU where

the link 𝑒𝑠𝑖𝑒𝑖 from each activity’s start to its end is contingent, while remaining time

constraints are requirement links. Thus, given a POS, our measure of robustness

is defined as the maximum deviation (i.e., width of the contingent bound) on any

activity at which the STNU is dynamically controllable. It can also be viewed as a

guarantee on the minimal amount of uncertainty that a POS can handle without any

rescheduling.
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8.3.1 Setup

To compute the maximum deviation allowed in a POS, we will need to slightly modify

the BCDR-U algorithm and problem formulation. First, we initialize the upper bound

of all activity durations to +∞, which is the maximum possible uncertainty we can

build in. It makes the schedule over-constrained, and allows BCDR-U to start from

here to iteratively discover conflicts and restore the controllability of the schedule.

Second, we modify the objective function used by BCDR-U (Equation 5.5) to be

defined over the range of uncertain durations (Equation 8.1). Instead of minimizing

the costs of weakening relaxable constraints, this modification allows BCDR-U to

maximize the minimum deviation among all activity durations.

max min
𝑢𝑏′𝑖

(𝑢𝑏′𝑖 − 𝑙𝑏𝑖); (8.1)

Figure 8-13 presents a simple example that demonstrates the modification and the

expected output from BCDR-U. Given a feasible schedule over two activities (Figure

8-13a), we first increase the upper bounds of the activities to +∞ (Figure 8-13b).

The change effectively applies the maximum possible deviation to the schedule, but

also makes it over-subscribed in most scenarios. Then we apply BCDR-U(DC) on the

problem, asking it to extract conflicts introduced by the modification, resolve them

by lowering the upper bound according to the new objective function, and restore the

dynamic controllability of the problem (Figure 8-13c).

As test cases, we use 325 partial-order schedules for RCPSP/max problems (Kolisch

& Padman, 2001) with 10–18 jobs3. The schedules are generated by a scheduler that

optimises a measure of POS flexibility (Banerjee & Haslum, 2011). The TPNU rep-

resentation of a schedule has a time point for the start and end of each activity,

as described above. Hence, the number of events and episodes with with uncertain

durations is determined by the number of jobs, but the number of episodes with

controllable constraints varies from 50 to 300.

3Set J10 from PSPLIB (http://www.om-db.wi.tum.de/psplib/)
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Figure 8-13: Examples for maximizing flexibility

8.3.2 Results

In this experiment, we solved the over-subscribed plans using two approaches: conflict-

directed relaxation with BCDR-U(DC), and MIP encoding with Gurobi. Similar to

the second experiment on transit route schedules, we use Gurobi as the sub-solver for

BCDR-U(DC). For the MIP encoding approach, we used the encoding introduced in

(Cui et al., 2015) to compute the maximum flexibility that can be built into the uncer-

tain durations. The problems in this experiment are of much smaller scale compared

to the previous two experiments, and both approaches were able to solve all problem

within the time limit (30 seconds). For each test run, we recorded the computation

times of both approaches for comparison.

The results are shown in Figure 8-14: each data point in the graph represents the

averaged runtime for one problem over five test runs. Similar to the results from the

previous experiments, BCDR-U(DC) is very effective for solving these problems when

compared with the MIP/Gurobi approach: it is about one order of magnitude faster

on solving most test problems.

Among the 325 test runs, we observed one interesting out-lier in the result: BCDR-

U(DC) spends more time solving Instance 135 than Gurobi. This is the only case in
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Figure 8-14: Runtimes of BCDR-U(DC) and Gurobi/MIP on RCPSP schedules (in
seconds)

which BCDR-U(DC) spends more time, and we were interested in investigating the

cause behind this issue. We started with the number of candidate relaxations eval-

uated in solving the problem (Figure 8-15). Not surprisingly, BCDR-U(DC) tested

many more candidates before reaching the optimal relaxations for Instance 135 (the

825th candidate dequeued), which explains the longer runtime on this problem. Next,

we retrieved the utility of candidates generated by BCDR-U(DC) while solving In-

stance 135. Figure 8-16 presents the utility of BCDR-U(DC)’s candidates in a test

run: from the first feasible candidate (Index 1 with utility 7.6667) to the final solution

(Index 825 with utility 5.1429). There are a few ‘plateau’ regions in the graph, which

indicate that BCDR-U(DC) spent a lot of time evaluating candidates of similar utility

without making progress towards the solution. This indicates one of the weakness in

BCDR-U(DC)’s best-first enumeration approach: without a good heuristic function

for computing the bounds on continuous relaxation costs, BCDR-U(DC) may waste

a large amount of time exploring parts of the search space it believes to be promis-

ing, but which in fact contain no good solutions. This issue is more often observed
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Figure 8-16: Utilities of candidates evaluated by BCDR-U(DC) while solving Instance
135

in problems with many conflicts, since each conflict may introduce multiple contin-

uous relaxations and significantly enlarge the search space. Therefore, a heuristic

function for estimating the bound on relaxation cost should be incorporated when-

ever available, and developing a general application bounding function for continuous

relaxation is part of our future research.
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8.4 Resolving Over-subscribed Travel Plans with Do-

main Relaxations

The objective of domain relaxation is to provide more options for users while resolving

over-subscribed plans. As presented in Chapter 1, BCDR has been implemented as

part of Uhura for users to manage their day-to-day tasks. To evaluate the usefulness

of domain relaxation in such scenarios, we conducted a user survey using Uhura,

which examines it in two aspects: (1) can it help users find solutions in scenarios that

would be impossible to solve using only temporal relaxations, and (2) is the quality

of BCDR’s domain relaxations acceptable in different scenarios. In this section, we

present the design of the user survey, and discuss the results and lessons learned.

8.4.1 Setup

The travel assistant behaves much like the example presented in Chapter 2. In the user

survey we use a web-based GUI to interact with the participants, which provides step-

by-step guidance for them. It operates on a set of template scenarios, and promotes

the users to input their requirements and activities for their trips, such as origin,

destination, time of departure, and desired trip length.

Figure 8-17: A trip plan presented in the web interface

Once a solution is bound, it will be sent back to the interface and presented to the
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user, both using a story line, and visually using a polyline overlay on the map. For

example, Figure 8-17 shows a trip plan with a dinner and movie, with relaxations to

the departure time and dinner duration. The user is presented with an overview of

the trip with the map visualization, on which the task locations and traversal routes

are marked. In addition, the interface presents a story line of activities in this plan,

as well as the time allocation over them. If any temporal requirements are relaxed by

Uhura, they will be highlighted in the story line. Finally, if the user is not satisfied

with a solution, they can send a Next Solution query along with the reason behind

this decision to Uhura through the web interface. The reason could be to alternate

a destination choice, or revert the relaxation to a constraint. Uhura will then search

for the next best plan that respects these newly added requirements.

There are six scenarios in this survey, which are constructed based on commonly

encountered travel planning problems, such as an evening outing, a date, or a weekend

get together for kids. The users were asked to plan for up to three tasks in a session,

which can be either lunch, dinner, or movie, subject to different departure and arrival

time constraints. The six scenarios are defined as the following:

∙ You are planning for an outing trip with friends after work. This trip may

include a dinner and/or a movie. It starts from your office, and ends at your

home.

∙ You are planning for a date. This date includes a nice dinner at a French

restaurant and a movie. It starts from a meeting point you selected, and ends

at your date’s home.

∙ You are planning for a monthly weekend get together with a small group of close

friends. This trip includes a 2-hour lunch, a movie and possibly a dinner. It

starts from a meeting point you selected, and ends at your home.

∙ Your relatives are visiting today, and you are planning to take them out in the

afternoon. This trip may include a lunch, a movie and possibly a dinner. It

starts from your home, and ends at the airport they are flying out.
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∙ You are planning to take parents out for dinner and movie this evening. They

like Chinese food and drama. They also need go to bed early (before 9pm). This

trip starts from your office, and ends at your home.

∙ You are planning to join a kids play date with lunch and a movie. Kids like

spaghetti or tacos, and they only want animated movie. Note that you have to

take them back by 3:30pm. This trip starts from a meeting point and ends at

your home.

Finally, at the end of each session, we asked the participants to evaluate the last

solution proposed by BCDR, and submit two scores, quality and novelty, in the scale

of 1 to 5. The quality score indicates if the user is satisfied with the solution, with

5 being very satisfied and 1 being not satisfied. The novelty score indicates if the

plan produced by Uhura is something that is new or not thought of before by the

participant, with 5 being very new and 1 being not novel at all.

8.4.2 Results and Discussion

We received survey results from nine different participants, for a total of 54 sessions.

During the survey, we recorded the problems specified by the participants, the number

of Next Solution requests, the solutions generated by BCDR, and the evaluation

scores. Using the problems recorded, we also evaluated how many of them can be

solved with a temporal-only configuration after the survey. BCDR found solutions and

reached an agreement with the participants in 52 out of 54 sessions. In the solutions

for five out of six scenarios, domain relaxation was used for resolving conflicts in

the problems specified by the participants (Table 8.3). Compared to the temporal-

relaxation only approach, which gave up on 11 sessions, the introduction of domain

relaxation indeed provides the users more flexibility and higher chance of finding

solutions for their over-subscribed trips.

In general, participants of the user survey found Uhura to be useful in helping

them plan daily tasks. They found it simplified the used-to-be complicated and time-

consuming planning tasks. Usually, planning a day trip with a few tasks may take
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# Quality Novelty
Reject&
NextSol

Temporal
Relaxation

Domain
Relaxation

1 3.3 (1.4) 3.8 (1.08) 2.9 (2.3) 2.0 (2.6) 2.1 (2.7)
2 2.4 (1.5) 2.9 (1.22) 3.5 (2.8) 1.3 (2.9) 3.0 (3.3)
3 2.7 (1.5) 3.9 (0.83) 4.7 (5.5) 2.9 (3.0) 3.1 (2.8)
4 3.7 (1.6) 3.8 (1.17) 3.1 (3.0) 0.3 (0.7) 1.7 (3.4)
5 3.2 (1.4) 3.4 (1.20) 2.9 (2.1) 1.9 (2.6) 1.7 (3.0)
6 3.3 (1.5) 3.8 (1.08) 1.2 (0.6) 0.6 (1.1) 0.0 (0.0)

Table 8.3: Average quality and novelty scores, NextSolution requests, temporal and
domain relaxations (with standard deviation)

minutes or even an hour, depending on the number of alternatives and constraints in

the problem. With Uhura, a feasible solution can be found in seconds, and in this

survey it often took less than six Next Solution iterations before the participants and

Uhura agreed on a plan.

In addition to finding feasible resolutions to the conflicts, we are also interested in

the quality and novelty of BCDR’s solutions. It occasionally produced plans that are

new to the participants, as the average novelty scores are above 3 for most scenarios

(Figure 8-19). On the other hand, the quality scores indicate that BCDR’s solutions

are acceptable, but not much preferred, as the average ratings are in the range of 2s

and 3s. The scores are lower in scenario 2 and 3, for which more domain relaxations

were used in the solutions (average 3.0 and 3.1 per session). This is likely caused

by the issues in BCDR’s preference model. The results showed that our simple pro-

cedure of integrating costs from temporal and domain relaxations does not penalize

domain relaxations enough sometimes, which makes BCDR too aggressive in relax-

ing domains, even in some scenarios where slightly weakening temporal constraints is

sufficient. In addition, some participants reported that BCDR lacks of a personalized

preference model: it uses the same static cost functions over temporal relaxations,

and vector distance models over domain relaxations for all users. if the first plan

BCDR returned does not look good, it can hardly find better alternatives afterwards,

regardless of how many times they asked Uhura for Next Solution. As can be seen

in Figure 8-18, the quality scores do not improve as the participants ask for more

candidate plans. This is because Uhura enumerates candidate plans in best-first or-
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der, and given a poor preference model to start with, it usually cannot come up with

better plans that meet the users’ needs. While some users find it good at capturing

their preferences, others may think BCDR’s trade-offs do not make sense at all. This

is the cause of the large variance in the quality scores, and is an important problem

for future research. One alternative approach is to use a multi-objective preference

model, which is likely to perform better in the integration of these different objective

functions. Note that it will require a different configuration of BCDR’s search queue

for enumerating candidates along the pareto-front.
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Figure 8-18: Quality score vs. plan requests (X-axis values perturbed to show over-
lapping data points)
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Figure 8-19: Novelty score vs. plan requests (X-axis values perturbed to show over-
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Finally, as presented in previous sections, the cost of computing domain relax-

ations is significantly higher than that of temporal relaxation. On average, each

knowledge base query takes around 500 ms, and each semantic similarity calculation

takes about 200 ms. Due to the size of the knowledge base and word2vec model for

170



Freebase entities, they were deployed on separate servers from the one for BCDR.

The delay in network connection is a big factor that affects BCDR’s performance.

Therefore, when using BCDR for domain specific applications, one may reduce the

coverage of the knowledge base and similarity model for better run-time performance.

8.5 Chapter Summary

In this chapter, we presented the experiment results in the domains of deep-sea mis-

sion planning, transit vehicle scheduling, and resource-constrained project scheduling

to evaluate BCDR’s effectiveness in computing continuous temporal relaxations for

resolving large and complex plans. In addition, when evaluated empirically on a range

of urban trip planning scenarios, the domain relaxation capability has also demon-

strated a substantial improvement in flexibility compared to temporal relaxation only

approaches.
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Chapter 9

Concluding Remarks

9.1 Summary of Contributions

In this thesis, we presented a conflict-directed relaxation algorithm, called Best-first

Conflict-Directed Relaxation (BCDR), for computing continuous relaxations for over-

subscribed temporal plans. BCDR reasons with the Temporal Plan Network model

to detect the cause of over-subscription, and enumerates relaxations for temporal

bounds, chance constraints and variable domains to restore feasibility in best-first

order. The key of the continuous relaxation capability is to generalize the discrete

conflicts and relaxations used in prior work, to hybrid conflicts and relaxations, which

denote minimal inconsistencies and minimal relaxations to both discrete and contin-

uous relaxable constraints.

In this thesis, we focus on solving the following four sub-problems posed by the

development of BCDR:

1. The problem of detecting the exact cause of failure in over-subscribed temporal

plans, and enumerate their relaxations in best-first order.

2. The problem of computing preferred continuous relaxations, instead of suspen-

sions, for temporal bounds involved in a conflict, based on a user preference

model.
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3. The problem of generating a robust and risk-bounded relaxations for plans under

temporal uncertainty.

4. The problem of computing preferred relaxations, instead of complete removal,

for domain constraints, based on a user preference model.

In order to solve these problems, we presented four contributions in this thesis.

1. A Conflict-directed Relaxation Framework for Over-subscribed Tem-

poral Plans. Our first contribution is a novel framework for detecting and re-

solving conflicts in temporal plans, which supports the enumeration of a variary

of partial relaxations in best-first order, and the incorporation of user feedback.

2. Continuous Relaxation for Temporal Constraints. Our second contribu-

tion is a method for computing continuous relaxations, instead of suspensions,

for conflicting temporal bounds in over-subscribed temporal plans.

3. Robust Relaxation Under Temporal Uncertainty. Our third contribution

is an approach for learning conflicts from temporal plans that involve uncertain

durations and chance constraints, and computing risk-bounded relaxations for

them.

4. Domain Relaxation for Parameterized Variables. Our final contribution

is a method for computing relaxations for domain constraints, which enables

more options to be added into the variable domains, for resolving conflicts in

temporal plans.

Contribution 1 provides the basic generate-and-test framework for conflict detec-

tion and resolution, and Contribution 2 through 4 are different relaxation techniques

implemented as extensions to the relaxation generator and consistency tester. These

extensions to the tester provide support for learning conflicts that involve controllable

and uncertain temporal durations, while to the generator they support risk-bounded

and continuous relaxations for temporal and domain constraints.
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The BCDR algorithm has been incorporated as part of a plan relaxation advisor,

called Uhura, to help users repair over-subscribed temporal plans in multiple domains,

including deep sea explorations, transit route management and urban travel planning.

Results from our experiments have demonstrated its efficiency in resolving large and

highly constrained logistic problems, and effectiveness in collaborating with humans

to resolve urban travel planning problems with a large number of alternatives.

9.2 Future Work

There are a number of interesting avenues for future research on the topic of plan

relaxation. We elaborate on some of them here.

A New Relaxation Approach for Generative Planning Problems

Currently, BCDR is only capable of resolving over-subscribed temporal plans, and

handling risk-bounds defined over temporal constraint subject to uncertain durations.

While useful in some situations, it is not able to help in many real-world scenarios

when a plan is not given. BCDR cannot solve the large class of generative planning

problems, which are commonly encountered in manufacturing applications. In order

to enable such capability, BCDR’s conflict learning algorithm must be extended to

support a richer activity model with preconditions & effects, and efficiently extract

cause of failure from conflicting goals and incomplete planning domains. And the

relaxation generator needs to support new types of relaxations, such as introducing

additional actions into the planning domain and weakening the preconditions and

effects of actions. While BCDR’s current conflict learning functions are essentially

temporal constraint solvers without any planning capability, the domain relaxation

feature presented in Chapter 6 can be viewed as a first step towards this objective,

which may be extended for relaxing goal descriptions and action models without much

difficulty.
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A More Accurate Preference Model over Discrete and Continuous Choices

BCDR takes a hybrid approach to compute both the decisions and relaxation over

discrete variables (e.g. alternative plan selection), and continuous relaxations over

temporal and chance constraints. It uses a simple weighted preference model over

these choices to enumerate candidate solutions in best-first order. While easy to

compute and provides support for total ordering, the simple weighted preference

often cannot capture the human users true intent. For example, one missing fea-

ture that often causes BCDR to be overly conservative is the support for condi-

tional relations between choices. In some situations, the users may prefer to wait

for hours at a very nice restaurant, but choose not to visit an ok one even if it has

no queue. To effectively computes plan relaxations, BCDR needs a more accurate

model to capture human preferences over both discrete and continuous choices, which

also supports best-first enumeration. One possible method is to extend the CP-nets

(Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004) model for continuous variables,

on which (Mohammed, Mouhoub, & Alanazi, 2015) has demonstrated one approach

with promising results for online shopping recommendation.

Adopting Partial Constraint Satisfaction Techniques for Improving Effi-

ciency

Finally, improving efficiency for large scale problems is a key issue to address for

BCDR. BCDR was designed to enumerate candidates in best-first order, prioritizing

quality over speed while generating consistent relaxations. However, in many real-

world scenarios, especially in the domain of logistics and manufacturing, it is often

impractical to find the best solution due to the large search space and number of

constraints. In such scenarios, users prefer to have solutions that are ’ok’ but can

be found in a bounded period of time. Instead of a complete best-first enumeration

strategy, a Partial Constraint Satisfaction (PCS) approach may be more suitable for

BCDR in these domains. In the constraint programming literature, many search

techniques have been developed for solving large scale logistic problems, including
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enforced hill-climbing, large neighborhood search, and column generation. Incorpo-

rating them into BCDR will greatly improve its efficiency on large-scale problems.

On the other hand, taking an incomplete approach puts a new challenge on plan

relaxation, since BCDR may ask the users to relax some of the constraints that may

not be necessary. It requires the preference model to handle this type of decision

uncertainty, and is an important component of future work.
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Appendix A

Definition of Chance Constraints

In the definition below, we use the standard definitions of random variables from

probability theory (Durrett, 2010). Intuitively, when describing outcomes of random

variables, we can imagine sampling 𝜔 from a sample space Ω. The outcomes of random

variables can be generated via functions f(𝜔). Further, we have a probability measure

𝑃 , which takes a subset 𝐴 ⊆ Ω and gives the probability of samples being in 𝐴.

A chance-constraint is rigorously defined as follows:

Definition 23. Consider a constraint program with decision variables x, and a set

of random variables f(𝜔) with probability measure 𝑃 , sample space Ω, and 𝜔 ∈ Ω.

Let the set of constraints be defined over decision variables and random variables

as

𝐶 =
⋁︁
𝑖∈𝐼

⋀︁
𝑗∈𝐽𝑖

𝐴𝑗(x, f(𝜔)) ≥ 𝑏𝑗

where 𝐼 can be thought of as a set of distinct scenarios, and 𝐽𝑖 can be thought of as

a listing of the set of constraints required to hold in each scenario.

A chance-constraint is a tuple ⟨𝐶,∆⟩, requiring:

𝑃 (𝐶 satisfied) ≡ 𝑃

(︃{︃
𝜔

⃒⃒⃒⃒
⃒⋁︁
𝑖∈𝐼

⋀︁
𝑗∈𝐽𝑖

𝐴𝑗(x, f(𝜔)) ≥ 𝑏𝑗

}︃)︃
≥ ∆ (A.1)

While the definition here is presented for constraints systems in disjunctive normal
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form, this is a general representation with conversions via De Morgan’s laws, and is

sufficient for the chance-constrained problem definitions presented in Chapter 3.

180



Appendix B

Proofs for BCDR’s Completeness

In this chapter, we present the proofs for the completeness of BCDR on computing

continuous relaxations, and its extension for controllable relaxations (BCDR-U).

B.1 Completeness of BCDR for Computing Contin-

uous Relaxations

Theorem 1. (Completeness of BCDR) If an over-subscribed TPN can be resolved,

then BCDR will return a consistent relaxation that weakens the temporal bounds of

some of its episodes.

𝑃𝑟𝑜𝑜𝑓. (Proof by contradiction) Given a continuously relaxable TPN 𝑇 : ⟨𝑃,𝑄, 𝑉,

𝐸,𝑅𝐸,𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩, assuming that 𝑆𝑜𝑙 : ⟨𝐴, 𝑆,𝑅𝑒, 𝐸
′⟩ is a valid solution for 𝑇 , but

no consistent relaxation is returned by BCDR.

As presented in Algorithm 5, BCDR only terminates and return 𝑛𝑢𝑙𝑙 if none of

the candidate solutions found can resolve all known conflicts 𝐶. In other words, if

BCDR fails to find a solution, Function ExpandOnConflict must have failed to

find a set of relaxations for all conflicts in 𝐶. However, such a set of relaxations do

exist: 𝑆𝑜𝑙 is a valid solution for 𝑇 , meaning that it resolves all conflicts 𝐶 ′ in 𝑇 .

There are only two possible causes of such a situation: (1) the consistency checking

algorithm returns conflicts that are not in 𝐶 ′, meaning that the conflicts are not valid
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and their constraints in fact consistent; and (2) the linear program algorithm we use

to compute continuous relaxations is incomplete, in that it failed to find a solution

for a feasible LP problem.

For (1), the Bellman-Ford algorithm is proved to be sound and complete. Hence

given a network 𝑇 ′, it will neither signal failure if 𝑇 ′ is consistent, nor return a set of

constraints that do not form a negative cycle as a conflict if 𝑇 ′ is inconsistent.

For (2), the LP solver we have been using with BCDR are LPSolve (Berkelaar,

Eikland, & Notebaert, 2008) and Gurobi (Gurobi Optimization, 2015). Similarly,

both solvers are sound and complete on LP problems given sufficient computation

time. They will never signal failure on a feasible LP problem, or return a solution

that does not respect all the constraints.

Therefore BCDR will not signal failure on an over-subscribed TPN that has a

feasible solution. The assumed situation will never occur.

B.2 Completeness of BCDR-U for Computing Con-

trollable Relaxations

Lemma 1. Given a STNU that is not strongly controllable, Algorithm 8 returns a

minimal conflicting set of constraints.

𝑃𝑟𝑜𝑜𝑓. First of all, the triangular reduction algorithm BCDR-U(SC) uses to check

strong controllability is proven to be sound and complete. Hence it will not signal

failure on strongly controllable network.

Second, we show that given an uncontrollable STNU 𝑇 : ⟨𝑉, 𝑉𝑟, 𝐸, 𝐸𝑢⟩, Algorithm

8 will return a valid conflicting set of constraints 𝐶.

If 𝑇 is not strongly controllable, then the consistency checking function will return

a negative cycle after evaluating the reduced graph. The conflict 𝐶 is generated by

collecting all supporting constraints for the edges in the cycle. All supporting con-

straints for an edge have been preserved by the generation procedure of the distance

graph and the triangular reduction procedure. Even if we are only given the con-
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straints in 𝐶, we can reconstruct a distance graph that contains the negative cycle.

Therefore, constraints in 𝐶 are guaranteed to be in conflict.

Finally, we show that the conflict, 𝐶, returned by Algorithm 8 isminimal, mean-

ing that any proper subset of 𝐶 is not a valid conflict.

Given a negative cycle, only those constraints that contribute to the edge weights

in the cycle will be collected into 𝐶. If we suspend any constraint in 𝐶, the negative

cycle will be eliminated. For example, if a requirement edge 𝑐𝑖 ∈ 𝐶 is suspended,

which is equivalent to setting the lower and upper bounds of 𝑐𝑖 to [−∞,+∞], at least

one of the edges in the negative cycle will have weight +∞. If a contingent edge

𝑢𝑖 ∈ 𝐶 is suspended, then all edges supported by it will have weight +∞, since the

reductions that involve 𝑢𝑖 not longer exist. Therefore, 𝐶 is a minimal conflict.

Lemma 2. Given a STNU that is not dynamically controllable, Algorithm 9 returns

a minimal conflicting set of constraints.

𝑃𝑟𝑜𝑜𝑓. Similar to the proof for Lemma , fastDCcheck is proven to be sound

and complete. Hence it will not signal failure on dynamically controllable network.

For networks that are not dynamically controllable, our conflict extraction pro-

cedure guarantees to return a minimal conflicting set of constraints (Algorithm 9):

given a negative cycle detected by the AllMaxConsistency procedure on the re-

duced graph, only those constraints that contribute to the edge weights in the cy-

cle will be collected and returned. We show that given an uncontrollable STNU

𝑇 : ⟨𝑉, 𝑉𝑟, 𝐸, 𝐸𝑢⟩, Algorithm 9 will return a valid conflicting set of constraints 𝐶.

If 𝑇 is not dynamically controllable, then the AllMaxConsistency function

will return a negative cycle after evaluating the reduced graph. The conflict 𝐶 is

generated by collecting all supporting constraints for the edges in the cycle, plus all

constraints contributed to the reductions that produced these edges. Therefore, they

form a semi-reducible negative cycle in the original graph. Even if we are only given

the constraints in 𝐶, we can reconstruct a distance graph that produces the negative

cycle. Therefore, constraints in 𝐶 are guaranteed to be in conflict.

Finally, we show that the conflict, 𝐶, returned by Algorithm 9 isminimal, mean-
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ing that any proper subset of 𝐶 is not a valid conflict.

Only constraints that contribute to the edge weights of the reductions to produce

them are collected into 𝐶. Therefore, constraints in 𝐶 forms a minimal semi-reducible

negative cycle. If we suspend any constraint in 𝐶, the semi-reducible negative cycle

will be eliminated, either because some edges created from the suspended constraint

will disappear (hence the cycle is no longer negative), or because some reductions will

be disabled (hence the negative cycle is no longer semi-reducible). Therefore, 𝐶 is a

minimal conflict.

Theorem 2. (Completeness of BCDR-U) If an over-subscribed TPNU can be re-

solved, then BCDR-U will return a controllable relaxation that weakens the temporal

bounds of some of its episodes.

𝑃𝑟𝑜𝑜𝑓. (Proof by contradiction) Given a continuously relaxable TPNU 𝑇 : ⟨𝑃,𝑄,

𝑉, 𝑉𝑟, 𝐸, 𝐸𝑢, 𝑅𝐸,𝑅𝐸𝑢, 𝐿𝑒, 𝐿𝑝, 𝑓𝑝, 𝑓𝑒⟩, assuming that 𝑆𝑜𝑙 : ⟨𝐴, 𝑆,𝑅𝑒, 𝑅𝑢, 𝐸
′⟩ is a valid

solution for 𝑇 , but no consistent relaxation is returned by BCDR.

We take a similar approach to prove BCDR-U’s completeness by constructing a

contradiction. If BCDR-U fails to find a solution, Function ExpandOnConflict

must have failed to find a set of relaxations for all conflicts in 𝐶. However, 𝑆𝑜𝑙

demonstrates that such a set of relaxations do exist.

There are only two possible causes of such a situation: (1) the controllability

checking algorithm returns invalid conflicts that are not in 𝐶 ′; and (2) the linear

program algorithm we use to compute continuous relaxations is incomplete. We have

proved that (2) never occurs in the proof for Theorem 1. Here we focus on (1) and

examine this cause for both BCDR-U(SC) and BCDR-U(DC), which uses different

controllability checking algorithms for extracting conflicts.

For BCDR-U(SC), the triangular reduction algorithm it uses to check strong con-

trollability is proven to be sound and complete. Hence it will not signal failure on

strongly controllable network. For uncontrollable networks, our conflict extraction

procedure guarantees to return a minimal conflicting set of constraints (Lemma B.2).

For BCDR-U(DC), the fastDCcheck algorithm it uses to check dynamic con-
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trollability is also proven to be sound and complete. Hence it will not signal failure

on dynamically controllable network. Similar to strong controllability, for networks

that are not dynamically controllable, our conflict extraction procedure guarantees

to return a minimal conflicting set of constraints (Lemma 2).

Therefore BCDR-U will not signal failure on an over-subscribed TPNU that has

a feasible solution. The assumed situation will never occur.
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Appendix C

Strong and Dynamic Controllability

Checking for STNUs

In this section, we review the algorithms for checking the strong and dynamic con-

trollability of STNUs.

C.1 Checking Strong Controllability using Triangu-

lar Reduction

The polynomial time algorithm presented in (Vidal & Fargier, 1999) evaluates if

an STNU is Strongly Controllable using triangular reductions (Algorithm 18). The

reduction procedure adds additional constraints to enforce the satisfaction for the

complete range of uncertain durations. Once all reductions complete, the algorithm

then checks the consistency of the graph with these additional edges from reduction.

If the extended graph is consistent, then the STNU is controllable, meaning that a

schedule can be found that is consistent regardless of the outcomes of the uncertain

durations.

There are three major steps in this algorithm:

∙ Map the input STNU to its equivalent distance graph.
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Input: A STPU 𝑇 = ⟨𝑉,𝐸,𝐸𝑢⟩.
Output: A boolean value in 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 that indicates if 𝑇 is strongly

controllable.
1 𝐷𝐺←GetDistanceGraph(𝑇 );
2 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄←NonContingentEdges(𝐷𝐺);
3 while 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄 ̸= ∅ do
4 𝛼←Dequeue(𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄);
5 if End(𝛼) is uncontrollable then
6 𝛽 ← ContingentEdgeEndAt(End(𝛼)) //retrieve the contingent

edge that ends at the end node of edge 𝛼;
7 𝛼′ ← Reduce(𝛼, 𝛽);
8 𝛾 ←GetEdge(Start(𝛼),Start(𝛽));
9 if Weight(𝛼′) <Weight(𝛾) then

10 𝛾 ← 𝛼′ //only record the reduction if it results in an edge that is
tighter than existing ones 𝛼;

11 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑄 ∪ 𝛾;

12 endif

13 else if Start(𝛼) is uncontrollable then
14 𝛽 ← ContingentEdgeStartAt(Start(𝛼)) //retrieve the contingent

edge that ends at the start node of edge 𝛼;
15 𝛼′ ← Reduce(𝛼, 𝛽);
16 𝛾 ←GetEdge(End(𝛽),End(𝛼));
17 if Weight(𝛼′) <Weight(𝛾) then
18 𝛾 ← 𝛼′;
19 endif

20 endif

21 end
22 𝑁𝐶𝑦𝑐𝑙𝑒←Bellman-Ford(𝐷𝐺);
23 return 𝑁𝐶𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙;

Algorithm 18: Strong controllability checking algorithm

∙ Reduce all non-contingent edges that end (Line 13) or start (Line 5) at an

uncontrollable node using the triangular reduction rule.

∙ After the reductions, we run the Bellman-Ford algorithm on the reduced graph

(Line 24). If no negative cycle is detected, the algorithm returns 𝑇𝑟𝑢𝑒 to indi-

cate that the input STNU is strongly controllable. Otherwise 𝐹𝑎𝑙𝑠𝑒 is returned.

There are two reduction rules for distance edges from requirement links in the

triangular reduction procedure, which different in whether the edge starts or ends at

received event. We demonstrate them using the example shown in Figures C-1 and
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Figure C-1: Reduction rule for edges starting from receive events

BC

A

β

α

BC

A

β

α
α-β

Figure C-2: Reduction rule for edges ending at receive events

∙ For requirement edge 𝛼 that starts at a receive event 𝐵, we add an additional

edge from 𝐶 to 𝐴 (Figure C-1). The weight of the new edge is computed by

subtracting the weight of the contingent edge 𝛽 from the weight of 𝛼.

∙ For requirement edge 𝛼 that ends at a receive event 𝐵, we add an additional

edge from 𝐴 to 𝐶 (Figure C-2). The weight of the new edge is computed by

subtracting the weight of the contingent edge 𝛽 from the weight of 𝛼.

During the reduction, if we are trying to add a edge to a pair of events between

which a edge already exists, then the reduced edge is only preserved if its weight is

smaller than the existing one (Line 9 and 17). In this situation the existing edge can

be removed to save memory space since it is dominated by the new edge.
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C.2 Checking Dynamic Controllability using fastD-

Ccheck

The fastDCcheck algorithm presented in (Morris, 2006) evaluates if an STNU is

Dynamically Controllable. It has a time complexity of O(𝑁4) and was the fastest DC

checking algorithm when introduced. This paper proves that a STNU is dynamically

controllable if and only if it does not have a negative cycle that is semi-reducible.

A semi-reducible path in an STNU is one sequence of distance edges that can be

transformed into one without lower-case edge. The fastDCcheck algorithm utilizes

this theorem and determines the dynamic controllability of a STNU by checking if the

network contains any semi-reducible negative cycle. It iteratively applies a collection

of reduction rules to the network and checks its consistency in order to expose any

such cycles. The pseudo code of the algorithm is presented in Algorithm 19.

Input: A STPU 𝑇 = ⟨𝑉,𝐸,𝐸𝑢⟩.
Output: A boolean value in 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 that indicates if 𝑇 is dynamically

controllable.
1 𝐷𝐺←GetNormalDistanceGraph(𝑇 );
2 for 1 to K do
3 𝑁𝐶𝑦𝑐𝑙𝑒←AllMaxConsistent(𝐷𝐺);
4 if 𝑁𝐶𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙 then
5 for 𝐸 in LowerCaseEdges(𝐷𝐺) do
6 𝑚𝑜𝑎𝑡𝑃𝑎𝑡ℎ𝑠←Propagate(𝐸);
7 for 𝑃𝑎𝑡ℎ in 𝑚𝑜𝑎𝑡𝑃𝑎𝑡ℎ𝑠 do
8 𝐸 ′ ←Reduce(𝐸,𝑃𝑎𝑡ℎ);
9 AddToGraph(𝐸 ′, 𝐷𝐺)

10 end

11 end

12 else
13 return 𝐹𝑎𝑙𝑠𝑒;
14 endif

15 end
16 𝑁𝐶𝑦𝑐𝑙𝑒←AllMaxConsistent(𝐷𝐺);
17 return 𝑁𝐶𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙;
Algorithm 19: fastDCcheck algorithm for checking dynamic controllability

The key procedure in fastDCcheck is to iterate through each lower-case edge

in the network and propagate over all allowed paths to search for their moat edges.

190



For a lower-case edge 𝛼, an edge 𝛽 is a moat edge if (1) it has negative weight; (2)

the sum of weights for path 𝑃 :(End(𝛼),End(𝛽)) is negative; and (3) no other edge

𝛾 exists in 𝑃 between 𝛼 and 𝛽 such that 𝑃 ′:(End(𝛼),End(𝛾)) is negative.

Once a set of moat edges are identified detected, fastDCcheck then iterate

through the path from the lower-case edge to each of the moat edges, called moat

paths, and tried to reduce the path to one single edge using the five reduction rules

(Figure C-3).

Upper-Case: adds
B:x y B:(x+y)

A C D A D

Lower-Case: adds
x c:y x+y

A C D A D if x<0

Cross-Case: adds
B:x c:y B:(x+y)

A C D A D if x<0, B≠C

No-Case: adds
x y x+y

A C D A D

Label-Removal: adds
B:x x

A C A C if x≥0

Figure C-3: fastDCcheck reductions

If all reductions are successful, the path will be reduced to an edge and added

to the distance graph (Line 8). Once all discovered moat paths for all lower-case

edges have been reduced, fastDCcheck runs an AllMax consistency check on the

graph. The only difference between AllMax and a normal consistency check is that

the lower-case edges are excluded from the check. If the check fails, fastDCcheck

terminates immediately and return false to signal that the input STNU is not dy-

namically controllable (Line 13) . Otherwise, the algorithm moves on to the next

iteration. In total, there could be at most 𝐾 iterations, where 𝐾 equals the number

of lower-case edges in the distance graph. If none of the AllMax checks fails after

K iterations, fastDCcheck will run it for one more time (Line 16) and return true

if it succeeds.
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