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Problem Definition 

• Problem: Hard to visualize the applications of 
algorithms that generate diagnosis 

• Goal: Provide a simple demo 

– Implemented on AIDA, a robotic driving assistant 

– Scenario: 
1. User inputs information (starting point, destination, stops and 

time constraint). 

2. AIDA checks the feasibility of the plan. If unfeasible, AIDA looks 
for alternative plans. 

3. AIDA returns the results. 



AIDA (Affective Intelligent Driving Agent) 
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Graph Generation 

1. From user input: 

[STOP1, STOP2, STOP3]  [true, false, true] 

2. Generate options 

True options  =  [STOP1, STOP3] 

Options   =       [true, true] 

          [true, false] 

          [false, true] 

          [false, false] 

3. Create Graph 

 



Messaging System 

• Client (phone) – server (PC) system 

• An XML file is created with the data on the graph 
generation and sent to server 

 <TPNS> 
- <TPN> 
  <FORMAT>Spec2</FORMAT>  
  <NAME>Main.run</NAME>  
  <START>0</START>  
  <END>1</END>  
  <DECISION>2</DECISION>  
 
-<ARC> 
  <START>4</START>  
  <END>5</END>  
  <PRIMITIVE>USER.drive("CURRENT_LOCATION","CENTRAL_SQUARE,_CAMBRIDGE")</PRIMITIVE>  
  <COST>0.0</COST>  
  <LOWERBOUND>5</LOWERBOUND>  
  <UPPERBOUND>5</UPPERBOUND>  
<\ARC> 
 …. 



Diagnosis Algorithms 

• Objective: 

– Detect cause of failures in temporal plans. 

– Provide suggestions to recovery plan consistency. 

 

• Detection: 

– RepresentativeXPlain by Barry O’Sullivan. 

– Conflict-Directed A* by Brian Williams. 

 

• Recovery: 

– Continuous domain relaxation. 

 

 

 

 



Representative Explanation 

• Generate maximal relaxations through growing.  

• Compute hitting sets of excluded constraints to 
generate new relaxation candidates. 

• Stop iteration while all constraints appear in the 
relaxation + exclusion sets. 

• Return: 

– Maximal Relaxation sets: ‘Do’ 

– Exclusion sets: ‘Miss’ 



Representative Explanation 

• Example: 

– Arrive at logan in 2 hrs, with a stop at Star market (30 
mins) and chinatown (60 mins). 

– Driving time: Home-Star (15 mins); Star-Chinatown(15 
mins) and Chinatown-Logan (15 mins). 

• Output: 

– {stopStar = Yes; stopChinatown = No; onTime = Yes}; 

– {stopStar = No; stopChinatown = Yes; onTime = Yes}; 

– {stopStar = Yes; stopChinatown = Yes; onTime = No}; 

 

• What if the user want to keep all three constraints? 



Continuous Relaxation 

• Instead of removing an activity, we calculate a new 
feasible duration for it. 

• Example: 

– Star Market: (30 mins) -> (15 mins). 

– Chinatown: (60 mins) -> (45 mins). 

– TotalDuration: (2 hrs) -> (2 hrs 15 mins) 

 

• The new duration is calculated by APSP algorithm. 
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Evaluation of RepresentativeXPlain 

• Provide basic capability of plan diagnosis and 
recovery. 

• Reduce result size and speed up diagnosis process*.  

• However, there still room for improvements: 

– The growing process doesn’t use any conflicts to prune 
repeated candidates. 

 

• Use Conflict-Directed A* to find maximal relaxations  

* Comparing to: J. Bailey and P. J. Stuckey. “Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization.” In Proc. of the 7th 
International Symposium on Practical Aspects of Declarative Languages (PADL05), volume 3350 of Lecture Notes in Computer Science. Springer-Verlag, 2005. 



Problem Formulation 

• Add additional choices to relaxable constraints. 
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Conflict-Directed Relaxation 

• Add additional choices to relaxable constraints. 

• Start search from the highest reward candidates. 

– If inconsistent, extract the conflict and move to the next 
candidate. 

– If consistent, add constraints with “Miss” assignments to 
the conflict set and move on. 

• When candidates exhaust, returns the consistent 
candidates.  



Conflict-Directed Relaxation 

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes}; 
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Performance Comparison 

• Three test cases:  

– 50, 100 and 200 episodes. 

• Three over-constrained levels:  

– Minimum, light and heavy. 
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Small Problem: 50 Episodes 
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Moderate Problem: 100 Episodes 
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Future Work 

• Flexible Plan Diagnosis. 

– Have the diagnosis algorithm to handle all plan variations. 

 

• Consider user preference. 

 

• Performance improvements. 

 



Questions 

 


