
Explanations by AIDA
(Affective Intelligent Driving Agent)

Nancy Foen, Peng Yu

May 9, 2011

Content

• Motivation

• Problem Definition

• System Architecture

• Diagnosis Algorithms

• Evaluation & Conclusion

Plan Diagnosis Review

Over-Constrained
Problem

Conflict
Detection

Consistency
Restoration

Result Selection
(Partial Solutions)

Problem Definition

• Problem: Hard to visualize the applications of
algorithms that generate diagnosis

• Goal: Provide a simple demo

– Implemented on AIDA, a robotic driving assistant

– Scenario:
1. User inputs information (starting point, destination, stops and

time constraint).

2. AIDA checks the feasibility of the plan. If unfeasible, AIDA looks
for alternative plans.

3. AIDA returns the results.

AIDA (Affective Intelligent Driving Agent)

System Architecture

User Input

Graph Generation

Messaging System

Diagnosis Algorithm

Messaging System

Output

Android Application

Android Application
Google Maps

Computer

Phone-Computer Communication

Android Application

Phone-Computer Communication

User Input

Graph Generation

Stay
Stop1

Drive
Home-Stop1

Drive
Stop1-Stop2

Stay
Stop2

Drive
Stop2-Destination

Constraint Home-Logan

[15, 15] [30, 30]

[120, 120]

[60, 60] [15, 15] [15, 15]

Stay
Stop1

Drive
Home-Stop1

Drive
Stop1-Destination

[15, 15] [30, 30] [25, 25]

Drive
Home-Stop2

Stay
Stop2

Drive
Stop2-Destination

[60, 60] [5, 5] [20, 20]

Drive
Home-Destination

[20, 20]

Goal Start

Graph Generation

1. From user input:

[STOP1, STOP2, STOP3] [true, false, true]

2. Generate options

True options = [STOP1, STOP3]

Options = [true, true]

 [true, false]

 [false, true]

 [false, false]

3. Create Graph

Messaging System

• Client (phone) – server (PC) system

• An XML file is created with the data on the graph
generation and sent to server

 <TPNS>
- <TPN>
 <FORMAT>Spec2</FORMAT>
 <NAME>Main.run</NAME>
 <START>0</START>
 <END>1</END>
 <DECISION>2</DECISION>

-<ARC>
 <START>4</START>
 <END>5</END>
 <PRIMITIVE>USER.drive("CURRENT_LOCATION","CENTRAL_SQUARE,_CAMBRIDGE")</PRIMITIVE>
 <COST>0.0</COST>
 <LOWERBOUND>5</LOWERBOUND>
 <UPPERBOUND>5</UPPERBOUND>
<\ARC>
 ….

Diagnosis Algorithms

• Objective:

– Detect cause of failures in temporal plans.

– Provide suggestions to recovery plan consistency.

• Detection:

– RepresentativeXPlain by Barry O’Sullivan.

– Conflict-Directed A* by Brian Williams.

• Recovery:

– Continuous domain relaxation.

Representative Explanation

• Generate maximal relaxations through growing.

• Compute hitting sets of excluded constraints to
generate new relaxation candidates.

• Stop iteration while all constraints appear in the
relaxation + exclusion sets.

• Return:

– Maximal Relaxation sets: ‘Do’

– Exclusion sets: ‘Miss’

Representative Explanation

• Example:

– Arrive at logan in 2 hrs, with a stop at Star market (30
mins) and chinatown (60 mins).

– Driving time: Home-Star (15 mins); Star-Chinatown(15
mins) and Chinatown-Logan (15 mins).

• Output:

– {stopStar = Yes; stopChinatown = No; onTime = Yes};

– {stopStar = No; stopChinatown = Yes; onTime = Yes};

– {stopStar = Yes; stopChinatown = Yes; onTime = No};

• What if the user want to keep all three constraints?

Continuous Relaxation

• Instead of removing an activity, we calculate a new
feasible duration for it.

• Example:

– Star Market: (30 mins) -> (15 mins).

– Chinatown: (60 mins) -> (45 mins).

– TotalDuration: (2 hrs) -> (2 hrs 15 mins)

• The new duration is calculated by APSP algorithm.

Continuous Relaxation

Stay
Star

Drive
Home-Star

Drive
Star-Chinatown

Stay
Chinatown

Drive
Chinatown-Logan

Constraint
Home-Logan

[15, 15] [30, 30]

[120, 120]

[60, 60] [15, 15] [15, 15]

Continuous Relaxation

Stay
Star

Drive
Home-Star

Drive
Star-Chinatown

Stay
Chinatown

Drive
Chinatown-Logan

Constraint
Home-Logan

[15, 15]

[30, 30]
-> [15, 15]

[120, 120]

[60, 60] [15, 15] [15, 15]

Continuous Relaxation

Stay
Star

Drive
Home-Star

Drive
Star-Chinatown

Stay
Chinatown

Drive
Chinatown-Logan

Constraint
Home-Logan

[15, 15] [30, 30]

[120, 120]

[60, 60]
 -> [45, 45] [15, 15] [15, 15]

Continuous Relaxation

Stay
Star

Drive
Home-Star

Drive
Star-Chinatown

Stay
Chinatown

Drive
Chinatown-Logan

Constraint
Home-Logan

[15, 15] [30, 30]

[120, 120] -> [135, 135]

[60, 60] [15, 15] [15, 15]

Evaluation of RepresentativeXPlain

• Provide basic capability of plan diagnosis and
recovery.

• Reduce result size and speed up diagnosis process*.

• However, there still room for improvements:

– The growing process doesn’t use any conflicts to prune
repeated candidates.

• Use Conflict-Directed A* to find maximal relaxations

* Comparing to: J. Bailey and P. J. Stuckey. “Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization.” In Proc. of the 7th
International Symposium on Practical Aspects of Declarative Languages (PADL05), volume 3350 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

Problem Formulation

• Add additional choices to relaxable constraints.

Stay
Star

Drive
Home-Star

Drive
Star-Chinatown

Stay
Chinatown

Drive
Chinatown-Logan

Constraint
Home-Logan

[15, 15] [30, 30]

[120, 120]

[60, 60] [15, 15] [15, 15]

Stay
Star

[0, +∞]

Stay
Chinatown

[0, +∞]

Constraint
Home-Logan

[0, +∞]

Conflict-Directed Relaxation

• Add additional choices to relaxable constraints.

• Start search from the highest reward candidates.

– If inconsistent, extract the conflict and move to the next
candidate.

– If consistent, add constraints with “Miss” assignments to
the conflict set and move on.

• When candidates exhaust, returns the consistent
candidates.

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = No; onTime = Yes};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = No; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = No; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = Yes; onTime = No};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = No; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = Yes; onTime = No};

• {stopStar = No; stopChinatown = Yes; onTime = No};

Conflict-Directed Relaxation

• {stopStar = Yes; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = Yes; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = No; onTime = Yes};

• {stopStar = No; stopChinatown = No; onTime = Yes};

• {stopStar = Yes; stopChinatown = Yes; onTime = No};

• {stopStar = No; stopChinatown = Yes; onTime = No};

Performance Comparison

• Three test cases:

– 50, 100 and 200 episodes.

• Three over-constrained levels:

– Minimum, light and heavy.

0

50

100

150

200

250

300

350

400

Minimum Light Heavy

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Small Problem: 50 Episodes

CD-A*

RepresentativeXPlain

0

500

1000

1500

2000

2500

Minimum Light Heavy

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Moderate Problem: 100 Episodes

CD-A*

RepresentativeXPlain

0

2000

4000

6000

8000

10000

12000

14000

16000

Minimum Light Heavy

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Large Problem: 200 Episodes

CD-A*

RepresentativeXPlain

Future Work

• Flexible Plan Diagnosis.

– Have the diagnosis algorithm to handle all plan variations.

• Consider user preference.

• Performance improvements.

Questions

