Explanations by AIDA
(Affective Intelligent Driving Agent)

Nancy Foen, Peng Yu

May 9, 2011
Content

• Motivation
• Problem Definition
• System Architecture
• Diagnosis Algorithms
• Evaluation & Conclusion
Plan Diagnosis Review

- Over-Constrained Problem
- Conflict Detection
- Consistency Restoration
- Result Selection (Partial Solutions)
Problem Definition

• Problem: Hard to visualize the applications of algorithms that generate diagnosis
• Goal: Provide a simple demo
 – Implemented on AIDA, a robotic driving assistant
 – Scenario:
 1. User inputs information (starting point, destination, stops and time constraint).
 2. AIDA checks the feasibility of the plan. If unfeasible, AIDA looks for alternative plans.
 3. AIDA returns the results.
AIDA (Affective Intelligent Driving Agent)
System Architecture

1. User Input → Android Application
2. Graph Generation
3. Messaging System → Android Application
4. Diagnosis Algorithm → Google Maps, Phone-Computer Communication
5. Messaging System
6. Output → Computer, Phone-Computer Communication
User Input

Starting Point:
Current location

Final Destination:
15 Albion Street, Somerville

Select Desired Stops
- Central Square, Cambridge
- Davis Square, Somerville
- Logan Airport, Boston

STOP DURATION
How long will you be staying at Davis Square, Somerville:
- 35 minutes

Submit Clear Select Stops
Graph Generation

Constraint Home-Logan

Start

[15, 15] Drive Home-Stop1

[30, 30] Stay Stop1

[15, 15] Drive Stop1-Stop2

[60, 60] Stay Stop2

[15, 15] Drive Stop2-Destination

Goal

[15, 15] Drive Home-Stop1

[30, 30] Stay Stop1

[25, 25] Drive Stop1-Destination

[15, 15] Drive Home-Stop2

[60, 60] Stay Stop2

[20, 20] Drive Stop2-Destination

[20, 20] Drive Home-Destination
Graph Generation

1. From user input:

 \([\text{STOP1, STOP2, STOP3}] \rightarrow [\text{true, false, true}]\)

2. Generate options

 True options = [\text{STOP1, STOP3}]

 Options = [true, true]
 [true, false]
 [false, true]
 [false, false]

3. Create Graph
Messaging System

• Client (phone) – server (PC) system
• An XML file is created with the data on the graph generation and sent to server

<TPNS>
 - <TPN>
 - <FORMAT>Spec2</FORMAT>
 - <NAME>Main.run</NAME>
 - <START>0</START>
 - <END>1</END>
 - <DECISION>2</DECISION>

 - <ARC>
 - <START>4</START>
 - <END>5</END>
 - <PRIMITIVE>USER.drive("CURRENT_LOCATION","CENTRAL_SQUARE,_CAMBRIDGE")</PRIMITIVE>
 - <COST>0.0</COST>
 - <LOWERBOUND>5</LOWERBOUND>
 - <UPPERBOUND>5</UPPERBOUND>
 </ARC>
...
Diagnosis Algorithms

• Objective:
 – Detect cause of failures in temporal plans.
 – Provide suggestions to recovery plan consistency.

• Detection:
 – RepresentativeXPlain by Barry O’Sullivan.
 – Conflict-Directed A* by Brian Williams.

• Recovery:
 – Continuous domain relaxation.
Representative Explanation

• Generate maximal relaxations through growing.
• Compute hitting sets of excluded constraints to generate new relaxation candidates.
• Stop iteration while all constraints appear in the relaxation + exclusion sets.
• Return:
 – Maximal Relaxation sets: ‘Do’
 – Exclusion sets: ‘Miss’
Representative Explanation

• Example:
 – Arrive at logan in 2 hrs, with a stop at Star market (30 mins) and chinatown (60 mins).
 – Driving time: Home-Star (15 mins); Star-Chinatown (15 mins) and Chinatown-Logan (15 mins).

• Output:
 – \{stopStar = Yes; stopChinatown = No; onTime = Yes\};
 – \{stopStar = No; stopChinatown = Yes; onTime = Yes\};
 – \{stopStar = Yes; stopChinatown = Yes; onTime = No\};

• What if the user want to keep all three constraints?
Continuous Relaxation

• Instead of removing an activity, we calculate a new feasible duration for it.

• Example:
 – Star Market: (30 mins) -> (15 mins).
 – Chinatown: (60 mins) -> (45 mins).
 – TotalDuration: (2 hrs) -> (2 hrs 15 mins)

• The new duration is calculated by APSP algorithm.
Continuous Relaxation

[15, 15] Drive Home-Star
[30, 30] Stay Star
[15, 15] Drive Star-Chinatown
[60, 60] Stay Chinatown
[15, 15] Drive Chinatown-Logan

[120, 120] Constraint Home-Logan
Continuous Relaxation

[15, 15] -> [15, 15]
Drive Home-Star

[30, 30]
Stay Star

[15, 15]
Drive Star-Chinatown

[60, 60]
Stay Chinatown

[15, 15]
Drive Chinatown-Logan

[120, 120]
Constraint Home-Logan
Continuous Relaxation

- Drive Home-Star
- Stay Star
- Drive Star-Chinatown
- Stay Chinatown
- Drive Chinatown-Logan

[120, 120] -> [135, 135]

Constraint Home-Logan
Evaluation of RepresentativeXPlain

• Provide basic capability of plan diagnosis and recovery.

• Reduce result size and speed up diagnosis process*.

• However, there still room for improvements:
 – The growing process doesn’t use any conflicts to prune repeated candidates.

• Use Conflict-Directed A* to find maximal relaxations

Problem Formulation

• Add additional choices to relaxable constraints.
Conflict-Directed Relaxation

• Add additional choices to relaxable constraints.
• Start search from the highest reward candidates.
 – If inconsistent, extract the conflict and move to the next candidate.
 – If consistent, add constraints with “Miss” assignments to the conflict set and move on.
• When candidates exhaust, returns the consistent candidates.
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
Conflict-Directed Relaxation

• \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};

• \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};

• \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{No}\};
Conflict-Directed Relaxation

- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{No}; \text{onTime} = \text{Yes}\};
- \{\text{stopStar} = \text{Yes}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{No}\};
- \{\text{stopStar} = \text{No}; \text{stopChinatown} = \text{Yes}; \text{onTime} = \text{No}\};
Conflict-Directed Relaxation

- \{stopStar = Yes; stopChinatown = Yes; onTime = Yes\};
- \{stopStar = No; stopChinatown = Yes; onTime = Yes\};
- \{stopStar = No; stopChinatown = No; onTime = Yes\};
- \{stopStar = Yes; stopChinatown = No; onTime = Yes\};
- \{stopStar = No; stopChinatown = No; onTime = Yes\};
- \{stopStar = Yes; stopChinatown = Yes; onTime = No\};
- \{stopStar = No; stopChinatown = Yes; onTime = No\};
Performance Comparison

- Three test cases:
 - 50, 100 and 200 episodes.

- Three over-constrained levels:
 - Minimum, light and heavy.
Future Work

• Flexible Plan Diagnosis.
 – Have the diagnosis algorithm to handle all plan variations.

• Consider user preference.

• Performance improvements.
Questions