Massachusetts Institute of Technology

Case Study: Personal Transportation System

16.410-13 October 26th, 2011 Masahiro Ono, Peng Yu

Reminder

- 16.413 Project Part 1:
 - Out last Wednesday.
 - Due Nov,14^{th.}
- Mid-term:
 - Monday Oct, 31st, Halloween.
 - 1 letter-size help sheet, print or hand-written.
 - 9:30am, Rm 33-419.
 - 85 minutes.

Motivation

• 50 years late aircraft (VTC

ohotic Systems

Model-based Embedd

Motivation

- However, flying aircraft is not easy:
 - Single Engine: 3 months
 - Multiengine Commercial: 6 months
 - Helicopter: 3 months
- Create a highly automated vehicle:
 - Provides point-to-point transportation like a taxi
 - Must be robust to uncertainty
 - Taxi driver!

Demo

• The Personal Transportation System with X-Plane Simulation.

Massachusett Institute of Technology

System Architecture

System Architecture

- Convert user requirements into temporal plan.
 - I want to go to the Boeing company.
 - I want to be there in 3 minutes.
 - I want to use Harvey Field as backup landing sites.
 - I want to stop at Leisureland if possible.

- Convert user requirements into temporal plan.
 - I want to go to the Boeing company.
 - I want to be there in 3 minutes.
 - I want to use Harvey Field as backup landing sites.
 - I want to stop at Leisureland if possible.

- Convert user requirements into temporal plan.
- Estimate the flight durations.

Ξ∖Ξ

- Convert user requirements into temporal plan.
- Estimate the flight durations.
- Add user preferences.

Temporal Plan Network (Kim, Williams and Abramson, 2001)

- Augmented from Simple Temporal Networks.
 - Addition of decision nodes.
 - Rewards/costs.
 - Symbolic constraints.

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency. Not consistent!
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency. Not consistent!
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

What if no solution exists...

- Tell the user I cannot find a solution.
- Let the user figure out the problem and input a new set of requirements.
- OR
- Diagnose the over-constrained plan and find a relaxation for the user.
 - "If you relax your constraints or fly faster, I can find a feasible plan for you."

System Architecture

In the PTS Scenario

Collaborative Diagnosis - Introduction

- Definition
 - An interface between the computer and the user.

Collaborative Diagnosis - Introduction

- Definition
 - An interface between the computer and the user.
- Objective
 - Help the user resolve infeasible plans.

Challenge and Key Idea

- Challenge: Too many options to take.
- Key Idea: Implement the diagnosis concepts and reduce the size of results by intelligently pruning meaningless options.
 - Current-WA96 →{IN, OUT}.
 - WA96-Boeing \rightarrow {IN, OUT}.
 - Current-Boeing \rightarrow {IN, OUT}.

Working Principle

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Working Principle

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Identify Cause of Failure

We employed Conflict-directed A* algorithm to find and resolve the conflicts that cause inconsistency.

Working Principle

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Generate Possible Options

Generate Possible Options

Working Principle

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Present Results

What is the best way to repair?

We present possible options to the user and let the user decide if they want to execute.

I found two options for you, which one do you prefer?

"Relax your time constraint to 6 minutes"

"Fly from Leisureland to the Boeing Company in 1 minute"

Limit

 Not efficient enough for real world problems (> 1000 episodes).

		Scenario Computation Time	Future \$ # of Constraints	
Diagnosis Algorithm	15	0.1 sec	1000	> 1 day

14

System Architecture

Sample PTS Scenario

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

Three types of constraints

The passenger of the PAV wants to:

- go from **Provincetown** to **Bedford** within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

State constraints

Three types of constraints

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

State constraints Temporal constraints

Three types of constraints

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

State constraints Temporal constraints Chance constraints

Three required capabilities

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

State constraints	 Goal-directed planning 			
Temporal constraints	Planning in continuous domain			
Chance constraints	 Risk-sensitive planning 			

pSulu RH

VERY roughly speaking...

ᆘᆂᅚ돌

Optimal control Under Stochastic Uncertainty Exogenous disturbance **Risk of constraint violation** State estimation error 99.9% Nominal Path 99.9% 99% 99% 90% 80% t=1 $\mathbf{P}(\mathbf{x})$ t=2x

Example: Race Car Path Planning

- A race car driver wants to go from the start to the goal as fast as possible
- Crashing into the wall
 may kill the driver
- Actual path may differ from the planned path due to uncertainty

Example: Race Car Path Planning

Problem

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%

- Cannot guarantee 100% safety
- Driver wants a probabilistic guarantee:

P(crash) < 0.1%

– Chance constraint

≡l\≒

Example: Race Car Path Planning

Problem

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%

 Approach: set safety margin that guarantees the specified risk bound from start to the goal

Optimization of Safety Margin

Uniform width

Non-uniform width

Longer path

Shorter path

Key Idea - Risk Allocation

- Taking a risk at the corner results in a shorter path than taking the same amount of risk at the straightaway
- Sensitivity of path length to risk is higher at the corner
- Risk Allocation
 - Need to optimize the allocation of risk to time steps and constraints

Starts from a suboptimal risk allocationImproves the risk allocation by iterations

Algorithm IRA

- **1** Initialize with arbitrary risk allocation
- 2 Loop
- 3 Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
- 5 Increase the risk where the constraint is active
- 6 End loop

<u>3</u>

5

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop
 - Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active
- 6 End loop

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop

3

5

- Compute the best available path given the current risk allocation
- <u>4</u> Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active
- 6 End loop

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop
- 3 Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active
- 6 End loop

<u>5</u>

<u>3</u>

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop
 - Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
- 5 Increase the risk where the constraint is active
- 6 End loop

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop

3

5

- Compute the best available path given the current risk allocation
- <u>4</u> Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active
- 6 End loop

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop
- 3 Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active
- 6 End loop

<u>5</u>

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop
- <u>3</u> Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
- 5 Increase the risk where the constraint is active
- 6 End loop

pSulu RH

VERY roughly speaking...

ΞŃΞ

Receding Horizon Control

Ξ

Receding Horizon Control

Ξ

Receding Horizon Control

 $\Delta = 1\%$

14117

ĽΞ√Ξ

ohotic Systems

ĽΞ√Ξ

ohotic Systems

14117 Massachusetts Institute of Technology

IIEI∖Ξ

ohotic Syste

IIEI∖Ξ

nhotic Syste

67

IIEI∖Ξ

nhatic Syste

IIEI∖Ξ

nhatic Syste

Result: p-Sulu

Risk-performance trade-off

Illii

- More risk ⇔ shorter path
- Less risk ⇔ longer path

p-Sulu Application to Space Rendezvous

HTV unmanned resupply vehicle

Challenges:

- Risk of collision
- Complicated rendezvous procedure
- Unintuitive dynamics (follows Clohessy-Wiltshire eq.)

HTV rendezvous planning problem

AF Approach Initiation, RI: R-bar Initiation, YA: Yaw-around

HTV rendezvous planning : Result

Algorithm		Sulu	p-Sulu	Nominal
c_1 (Navigation)	Risk bound Δ_1	0.005		
	Probability of failure $P_{fail,1}$	0.92	0.0024	$< 10^{-6}$
c_2 (Goals)	Risk bound Δ_2	0.005		
	Probability of failure $P_{fail,2}$	1.0	0.0029	$< 10^{-6}$
Cost function value (Delta V) J^* (m/s)		7.30	7.32	8.73
Computation time (s)		3.9	11.4	0.09

11.9 kg saving of fuel, compared to the nominal plan

EVE

