Case Study: Personal Transportation System

16.410-13
October 26 ${ }^{\text {th }}, 2011$ Masahiro Ono, Peng Yu

Model-hased Emhedded \& Rohotic Systems

Reminder

MEN

- 16.413 Project Part 1:
- Out last Wednesday.
- Due Nov, $14^{\text {th }}$.
- Mid-term:
- Monday Oct, 31st, Halloween.
- 1 letter-size help sheet, print or hand-written.
- 9:30am, Rm 33-419.
- 85 minutes.

Motivation

MEN
 Model-based Emhedded a Rohotic Systems

- 50 years lat aircraft (VTC

Februaby 1951 POPULAR MECHANICS

 MECHANICSave a personal

See page 118

Motivation

促

- However, flying aircraft is not easy:
- Single Engine: 3 months
- Multiengine Commercial: 6 months
- Helicopter: 3 months
- Create a highly automated vehicle:
- Provides point-to-point transportation like a taxi
- Must be robust to uncertainty
- Taxi driver!

Demo

MEN
 Model-hased Emhedded a Rohotic Systems

- The Personal Transportation System with X-Plane Simulation.

System Architecture

System Architecture

Generate Temporal Plan

Model-based Emhedded a Rohotic Systems

- Convert user requirements into temporal plan.
- I want to go to the Boeing company.
- I want to be there in 3 minutes.
- I want to use Harvey Field as backup landing sites.
- I want to stop at Leisureland if possible.

Generate Temporal Plan

$\square E=$
 Model-hased Embedded a Rohotic Systems

- Convert user requirements into temporal plan.
- I want to go to the Boeing company.
- I want to be there in 3 minutes.
- I want to use Harvey Field as backup landing sites.
- I want to stop at Leisureland if possible.

Generate Temporal Plan

MEN
 Model-hased Emhedded a Rohotic Systems

- Convert user requirements into temporal plan.
- Estimate the flight durations.

Generate Temporal Plan

唯に Model-based Embedded \& Rohotic Systems

- Convert user requirements into temporal plan.
- Estimate the flight durations.
- Add user preferences.

Temporal Plan Network (kim, wiliams and Abranson, 2001)
 \section*{脌}

Model-based Embedded a Rohotic Systems

- Augmented from Simple Temporal Networks.
- Addition of decision nodes.
- Rewards/costs.
- Symbolic constraints.

Solve a TPN

园
 Model-hased Embedded a Rohotic Systems

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency.
- Return solution (if candidate consistent) or start over (generate the next best candidate).

[0, 3]
Reward: 3

Massachusetts Institute of Technology

Solve a TPN

NEN

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency.
- Return solution (if candidate consistent) or start over (generate the next best candidate).

Massachusetts Institute of Technology

Solve a TPN

NEN

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency.
- Return solution (if candidate consistent) or start over (generate the next best candidate).

Massachusetts Institute of Technology

Solve a TPN

NEN

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency. Not consistent!
- Return solution (if candidate consistent) or start over (generate the next best candidate).

Massachusetts Institute of Technology

Solve a TPN

NEN

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency.
- Return solution (if candidate consistent) or start over (generate the next best candidate).

[0, 3]
Reward: 3

Massachusetts Institute of Technology

Solve a TPN

侯

- To find the most preferred/least cost plan.
- Generate the best candidate.
- Check temporal consistency. Not consistent!
- Return solution (if candidate consistent) or start over (generate the next best candidate).

[0, 3]
Reward: 3

What if no solution exists...

Model-based Embedde

- Tell the user I cannot find a solution.
- Let the user figure out the problem and input a new set of requirements.
- OR
- Diagnose the over-constrained plan and find a relaxation for the user.
- "If you relax your constraints or fly faster, I can find a feasible plan for you."

System Architecture

In the PTS Scenario

You cannot get there in 3 minutes but you can get there in 6 minutes.

Collaborative Diagnosis:

- Generate plan.
- Detect and diagnose conflicts.
- Present diagnoses and repair options to user.

Collaborative Diagnosis - Introduction

Model-based Emberde
 Model-based Embedded a Rohotic Systems

- Definition
- An interface between the computer and the user.

Dialogue Manager

Collaborative Diagnosis

Planner

Collaborative Diagnosis - Introduction

IIET

- Definition

- An interface between the computer and the user.
- Objective
- Help the user resolve infeasible plans.

Massachusetts Institute of Technology

Challenge and Key Idea

侯

- Challenge: Too many options to take.
- Key Idea: Implement the diagnosis concepts and reduce the size of results by intelligently pruning meaningless options.
- Current-WA96 $\rightarrow\{$ IN, OUT\}.
- WA96-Boeing $\rightarrow\{$ IN, OUT\}.
- Current-Boeing $\rightarrow\{$ IN, OUT\}.

Working Principle

Why is the plan infeasible?

\downarrow
How to repair the plan? \downarrow
What is the best way to repair?

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Working Principle

Why is the plan infeasible?

How to repair the plan? \downarrow
What is the best way to repair?

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Identify Cause of Failure

Why is the plan infeasible?

We employed Conflict-directed A* algorithm to find and resolve the conflicts that cause inconsistency.

Working Principle

Why is the plan infeasible?

\downarrow
How to repair the plan?
\downarrow
What is the best way to repair?

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Generate Possible Options

How to repair the plan?

First, we resolve the conflicts by removing constraints (assign "OUT").

Generate Possible Options

How to repair the plan?

Second, we calculate the minimal relaxation for the removed constraints.

Working Principle

Why is the plan infeasible?

\downarrow
How to repair the plan?
\downarrow
What is the best way to repair?

Identify the Cause of Failure

Generate minimal perturbations to the goals

Present the user with possible options

Present Results

METE
 Model-hased Embedded \& Rohotic Systems
 What is the best way to repair?

We present possible options to the user and let the user decide if they want to execute.

Limit

METB
 Model-hased Embedded \& Rohotic Systems

- Not efficient enough for real world problems (> 1000 episodes).

Current Scenario
\# of Constraints Computation Time

Future Scenario
\# of Constraints

Diagnosis
Algorithm
0.1 sec

1000
> 1 day

System Architecture

Sample PTS Scenario

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

Three types of constraints

阣気
 The passenger of the PAV wants to:
 State constraints

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001\%

Three types of constraints

味に
 The passenger of the PAV wants to:
 State constraints
 Temporal constraints

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001%

Three types of constraints

ロミた
 The passenger of the PAV wants to：
 State constraints
 Temporal constraints Chance constraints

－go from Provincetown to Bedford within 60 minutes
－go through a scenic area and remain there between 5 and 10 minutes
－limit the risk of penetrating the NFZ or the storm to 0．001\％

Three required capabilities

The passenger of the PAV wants to:

- go from Provincetown to Bedford within 60 minutes
- go through a scenic area and remain there between 5 and 10 minutes
- limit the risk of penetrating the NFZ or the storm to 0.001\%

State constraints
Temporal constraints Chance constraints

- Goal-directed planning
- Planning in continuous domain
- Risk-sensitive planning

p-Sulu RH

MEN
 Model-hased Emhedded a Rohotic Systems

VERY roughly speaking...

p-Sulu RH = probabilistic receding horizon Sulu

pSulu RH

VERY roughly speaking...

Receding horizon control

Optimal control Under Stochastic Uncertainty

METI

Model-based Embedded a Rohotic Systems
-Exogenous disturbance
-State estimation error

Risk of constraint violation

Example: Race Car Path Planning

Model-hased

- A race car driver wants to go from the start to the goal as fast as possible
- Crashing into the wall may kill the driver
- Actual path may differ from the planned path due to uncertainty

Example: Race Car Path Planning

Model-hased Emhend

Problem

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%

- Cannot guarantee 100\% safety
- Driver wants a probabilistic guarantee:

P (crash) < 0.1\%

- Chance constraint

45

Example: Race Car Path Planning

$\square E=$
 Model-hased Embedded a Rohotic Systems

Problem

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%,

- Approach: set safety margin that guarantees the specified risk bound from start to the goal

Optimization of Safety Margin

Uniform width

Longer path

Non-uniform width

Shorter path

Key Idea - Risk Allocation

脌

- Taking a risk at the corner results in a shorter path than taking the same amount of risk at the straightaway
- Sensitivity of path length to risk is higher at the corner
- Risk Allocation
- Need to optimize the allocation of risk to time steps and constraints

Straightaway
Wide safety margin = lower risk

Iterative Risk Allocation (IRA) Algorithm MEN

Model-hased Embedded \& Rohotic Systems
-Starts from a suboptimal risk allocation
-Improves the risk allocation by iterations

Iterative Risk Allocation Algorithm

唯に

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation

Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

Model-based Emhedded \& Rohotic Systems

No gap = Constraint is active

Gap = constraint is inactive

Massachusetts Institute of Technology

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best
available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

MEN

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation

Decrease the risk where the constraint is inactive
Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

NET
 Model-based Embedded a Rohotic Systems

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

MEN
 Model-based Embedded a Rohotic Systems

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active

6 End loop

Iterative Risk Allocation Algorithm

MEN
 Model-hased Embedded \& Rohotic Systems

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

MEN
 Model-hased Embedded \& Rohotic Systems

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

Iterative Risk Allocation Algorithm

MEN
 Model-hased Emhedded a Rohotic Systems

Algorithm IRA

1 Initialize with arbitrary risk allocation
2 Loop
Compute the best available path given the current risk allocation
Decrease the risk where the constraint is inactive

Increase the risk where the constraint is active
6 End loop

pSulu RH

```
|E

\section*{VERY roughly speaking...}


\section*{Receding horizon control}

\section*{Receding Horizon Control}

\section*{MEN}
- Patchwork.


\section*{Receding Horizon Control}

\section*{M三 \(\overline{1}\)}
- Patchwork.


\section*{Receding Horizon Control}

\section*{M三 \(\overline{1}\)}
- Patchwork.


\section*{Risk Budgeting}
\[
\Delta=1 \%
\]


\section*{Start}

\section*{Risk Budgeting}

\section*{MEN}


Risk budget


Start

\section*{Risk Budgeting}

\section*{MEN}


Risk budget


Start

\section*{Risk Budgeting}

\section*{\(1 \equiv 1=\)}


Risk budget


Start

\section*{Risk Budgeting}


Risk budget


Start

\section*{Risk Budgeting}

\section*{\(1 \equiv 1=\)}


Start

\section*{Risk Budgeting}

\section*{\(1 \equiv 1=\)}


Start

\section*{Result: p-Sulu}

\section*{以上 \\ Model-hased Emhedded a Rohotic Systems}
- Risk-performance trade-off
- More risk \(\Leftrightarrow\) shorter path
- Less risk \(\Leftrightarrow\) longer path

\section*{Ilition}


\section*{p-Sulu Application to Space Rendezvous}

\section*{C}

HTV unmanned resupply vehicle


Challenges:
- Risk of collision
- Complicated rendezvous procedure
- Unintuitive dynamics (follows Clohessy-Wiltshire eq.)


\section*{HTV rendezvous planning problem}

\section*{}

\section*{HTV unmanned resupply vehicle}


Chance constraints: \(\begin{cases}\square & \cdots \\ \square & \Delta_{1}=0.5 \% \\ \square & \cdots \\ \Delta_{2}=0.5 \%\end{cases}\)
(a)
(b)
RI point
\begin{tabular}{|ll|}
\hline\(\triangleleft\) & Sulu \\
\(\sim\) & p-Sulu \\
\(\triangle\) & CW/line \\
\hline
\end{tabular}

情 Approach Initiation RI: R-bar Initiation, YA: Yaw-around

\section*{HTV rendezvous planning : Result}

\section*{\(\cdots=\bar{B}\) \\ Model-based Embedded a Rohotic Systems}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Algorithm } & Sulu & p-Sulu & Nominal \\
\hline \multirow{2}{*}{\(c_{1}\) (Navigation) } & Risk bound \(\Delta_{1}\) & \multicolumn{3}{|c|}{0.005} \\
\cline { 2 - 6 } & Probability of failure \(P_{\text {fail }, 1}\) & 0.92 & 0.0024 & \(<10^{-6}\) \\
\hline \multirow{2}{*}{\(c_{2}\) (Goals) } & Risk bound \(\Delta_{2}\) & \multicolumn{3}{|c|}{0.005} \\
\cline { 2 - 5 } & Probability of failure \(P_{\text {fail }, 2}\) & 1.0 & 0.0029 & \(<10^{-6}\) \\
\hline \multicolumn{2}{|c|}{ Cost function value (Delta V) \(J^{\star}(\mathrm{m} / \mathrm{s})\)} & 7.30 & 7.32 & 8.73 \\
\hline \multicolumn{6}{|c|}{ Computation time (s) } & 3.9 & 11.4 & 0.09 \\
\hline
\end{tabular}

\section*{11.9 kg saving of fuel, compared to the nominal plan}

Massachusetts Institute of Technology```

