Planning T(r)ips for Hybrid Electric Vehicles

How to Drive in the 21st Century

Andrew Wang and Peng Yu 16.S949 Student Lecture

May 14th, 2012

Example

- Origin: Sid-Pac
- Destination: Revere St.
- Meet Peng in 4 minutes.
- Need to find a path.

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Example: least-time path

Google Maps gives the path that minimizes trip duration.

- Duration: 3.6 minutes.
- Fuel: 0.193L.

Example: least-fuel path

We can find a path that minimize fuel usage^[1].

- Duration: 5 minutes.
- Fuel: 0.152L.

That's 25% saving! But he will be late.

[1]R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher. Greengps: a participatory sensing fuel efficient maps application. In *Proc. of MobiSys'10*, pages 151–164, San Francisco, CA, 2010.

Andrew Wang and Peng Yu

Route Time: 301.02s Route Fuel: 0.15221L Route distance: 3.0373km Planning Trips for Hybrid Electric Vehicles

Example: least-fuel path that is on-time

We want to find the path fuel usage within the timing constraint.

- Duration: 4 minutes.
- Fuel: 0.185L.

But how?

Planning Trips for Hybrid Electric Vehicles

Planning for Hybrid Electric Vehicles	"Defence": 4 Transporting stuff: 12 kWh/d	Conthermal: 1 kWb/d
 Motivation & Problem Formulation The Best Route 	Stuff: 48+ kWh/d	Tide: 11 kWh/d Wave: 4 kWh/d Deep offshore wind: 32 kWh/d
 The Best Driving Style 	Food, farming, fertilizer: 15kWh/d Gadgets: 5	Shallow offshore wind: 16 kWh/d Hydra 13kWh/d
 Examples and Summary 	Heating, cooling: 37 kWh/d	biomass: rood, biofuel, wood, waste incin'n, landfill gas: 24 kWh/d
	Jet flights: 30 kWh/d	PV farm (200 m ² /p): 50 kWh/d
Source: D. J. C. MacKay, <i>Sustainabl e Energy – Without the Hot Air</i> , UIT Cambridge, 2009.	Car: 40 kWh/d	PV, 10 m ² /p: 5 Solar heating: 13 kWh/d Wind: 20 kWh/d
Andrew Wang and Peng Vu Planning Trins for Hybrid Electric Vehicles		

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Hybrid cars are popular!

- Toyota Prius was Japan's best-selling car in 2011.
 - 252,528 units sold over the year.
- Why do people like hybrid vehicles?
 - 50% increase in City/Hwy MPG.
 - 40% reduction in carbon emission.

The hybrid system

- Electric motor (batteries) and gasoline engine:
- Saving energy through:
 - Keep the engine working in its efficient zone.
 - Avoid low speed crawling with ignited engine.

Superb low speed MPG

Fuel Consumption Rate: Toyota Prius and Volkswagen Golf

Source: US Environmental Protection Agency and metrompg.com

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Routing affects fuel economy

Driving style affects fuel economy

- Percent improvement via route-independent methods ۲
 - Avoid aggressive driving:
 - Keep optimal fuel economy speed:
 - Remove excess weight:
 - Avoid excessive idling:

- 7 23%.
- 1 2%/100lb.
- 0.02 0.04 L/min.

Fuel Economy Benefit

Source: US Department of Energy, www.fueleconomy.gov.

Andrew Wang and Peng Yu

A driving advisory system

- Input:
 - Where you want to go in how long.
 - A map of the road network with traffic conditions.
 - A model of the hybrid car's dynamics.
- Output:
 - Recommend the *route* that satisfies timing constraints while minimizing fuel consumption.
 - Provide driving guidance for avoiding aggressive driving and over-speed cruising.

Image Source: Pratap Tokekar, Nikhil Karnad, and Volkan Isler. Energyoptimal velocity profiles for car-like robots. In *ICRA*, 2011(submitted).

The constrained optimization problem

Objective: Minimize the fuel consumption of a trip.
– By:

Choosing a smart route: $Seg_1, Seg_2, ..., Seg_N.$ Using proper acceleration and braking: $Acc_1, Dec_1, ..., Acc_N, Dec_N.$ And economy cruising speed: $Vel_1, Vel_2, ..., Vel_N.$

– To minimize:

$$TotalGas = \sum_{k=1\dots N} Fuel(Seg_k, Acc_k, Dec_k, Vel_k)$$

The constrained optimization problem

• Time:

$$\sum_{k=1\dots N} Time(Seg_k, Acc_k, Dec_k, Vel_k) < TimeLimit$$

• Traffic:

 $Vel_k < SpeedLimit_k$

• Vehicle dynamics:

 $\forall k, \quad Acc_k < MaxAcc, \quad Dec_k < MaxBrake$

A complete path connecting the origin and destination.

Andrew Wang and Peng Yu

The constrained optimization problem

Objective: Minimize the fuel consumption of a trip.
 – By:

Choosing a smart route: $Seg_1, Seg_2, ..., Seg_N.$ Using proper acceleration and braking: $Acc_1, Dec_1, ..., Acc_N, Dec_N.$ And economy cruising speed: $Vel_1, Vel_2, ..., Vel_N.$

1. Optimize the *route*.

2. Optimize the *driving strategy*.

Planning for Hybrid Electric Vehicles

- Motivation & Problem Formulation
- The Best Route
- The Best Driving Style
- Examples and Summary

Vehicle routing problems

- Find the best set of road segments from the map:
 - For example, Stata Center to Logan Airport.

Vehicle routing problems

- Find the best set of road segments from the map:
 - Assume that we already know the fuel consumption and duration of each road segment.

Andrew Wang and Peng Yu

Definition

• To minimize:

$$TotalGas = \sum_{k=1\dots N} Fuel(Seg_k)$$

• Subject to:

$$\sum_{k=1\dots N} Time(Seg_k) < TotalTime$$

• An optimal constraint satisfaction problem!

Exact solution

- Constrained Bellman-Ford^[1] routing algorithm.
 - Treat the problem as a Multi-objective optimization.
 - Search the entire Pareto Set.
 - Using Breadth-first search and record all paths that are not dominated.

- Exponential worst-case complexity.

[1] J. Jaffe, "Algorithms for finding path with multiple constraints", Networks, vol. 14, pp.95-116, 1984.

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Faster methods?

- Recall: Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Recall: the Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Recall: the Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Recall: the Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Recall: the Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Recall: the Dijkstra's algorithm.
 - Solves single-source shortest path problems.
 - Successively update the distance to vertices with newly discovered shortest route.

- Runs in polynomial time: $O(|V|^2)$
- But, it does not guarantee satisfying the timing constraint!

Andrew Wang and Peng Yu

Backward Forward Heuristic (BFH) algorithm

- Modified from Dijkstra's algorithm.
 - Using Dijkstra's algorithm to construct shortest path trees for both fuel consumption and time, starting from the end.

Backward Forward Heuristic (BFH) algorithm

- Modified from Dijkstra's algorithm.
 - Using Dijkstra's algorithm to construct shortest path trees for both fuel consumption and time, starting from the end.

BFH: Create least-fuel tree and least-time tree

- Modified from Dijkstra's algorithm.
 - Using Dijkstra's algorithm to construct shortest path trees for both fuel consumption and time, starting from the end.

BFH: Create least-fuel tree and least-time tree

- Modified from Dijkstra's algorithm.
 - Using Dijkstra's algorithm to construct shortest path trees for both fuel consumption and time, starting from the end.

BFH: Restart from the beginning

- Then start from the beginning, choose between the *least time path* and *least fuel path* to proceed.
 - If the LFP satisfies timing constraint, proceed with it.
 - Otherwise, proceed with LTP.

- If the LFP satisfies timing constraint, proceed with it.
- Otherwise, proceed with LTP.
- If the timing constraint is **4h**.

- If the LFP satisfies timing constraint, proceed with it.
- Otherwise, proceed with LTP.
- If the timing constraint is **3.5h**.

– If the timing constraint is 3.5h.

– If the timing constraint is 3.5h.

– If the timing constraint is 3.5h.

Backward Forward Heuristic (BFH) analysis

- The complexity is three times of Dijkstra's algorithm.
- Usually generates suboptimal paths that satisfies timing constraint.
 - The forward procedure only makes locally optimal decision.
 - BFH paths usually less than 10% more expensive than optimal paths^[1].

[1] H. F. Salama, D. S. Reeves, and Y. Viniotis, "A distributed algorithm for delay-constrained unicast routing," in *Proc. IEEE INFOCOM'97*, Japan, pp. 84–91.

Runtime performance

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Runtime performance

• We benchmark the algorithm on various problems ranging from 100 nodes to 60000 nodes.

Andrew Wang and Peng Yu

Quality of results

• If we want to spend 20 - 40s more on the trip:

Planning for Hybrid Electric Vehicles

- Motivation & Problem Formulation
- The Best Route
- The Best Driving Style
- Examples and Summary

Previously: Vehicle Routing Problems

- Find the best set of road segments from the map:
 - Assume that we already know the fuel consumption and duration of each road segment.

Andrew Wang and Peng Yu

Finding $Fuel(Seg_k)$ and $Time(Seg_k)$

• Depends on driving behavior

- Depends on power management
 - traditional: $P_{req} = P_{ice}$
 - hybrid: $P_{req} = P_{ice} + P_{em}$
 - additional degree of freedom in the power split
 - $P_{em} > 0$: battery **discharging**
 - $P_{em} < 0$: battery charging
- through regenerative braking
- or ICE driving EM

Assumptions and solution strategy

Assume: $v_k(t) = F_{trap}(Acc_k, Vel_k, Dec_k)$.

- Strategy: optimize the fuel consumption of each segment.
 - Optimize **a** velocity profile (over $P_{ice,k}$, $P_{em,k}$)

- Optimize *the* velocity profile (over Acc_k , Dec_k)

Optimize *a* velocity profile: problem statement

- Input: $v(\cdot)$
- Objective: $Fuel(Seg, v(\cdot)) = \min_{P_{em}(\cdot)} \Delta m_f$
- Output: $P_{ice}(\cdot)$, $P_{em}(\cdot)$, $Fuel(Seg, v(\cdot))$
- Charge-sustaining constraints:
 - $SOC_{min} < SOC < SOC_{max}$
 - $SOC(start) = SOC(end) = \frac{1}{2}(SOC_{min} + SOC_{max})$

Optimize *a* velocity profile: modeling power flow

• Mechanical power:

•
$$P_{req} = P_{ice} + P_{em}$$

•
$$P_{req} = F_{req}v = \left(C_Dv^2 + M\frac{dv}{dt}\right)v$$

• Fuel power:

•
$$\frac{dm_f}{dt} = \frac{1}{H_f} \cdot \frac{P_{ice}}{\eta_{ice}(P_{ice})}$$

• Electric power:

•
$$\frac{dSOC}{dt} = -\frac{1}{Q_{max}V_{batt}} \cdot \frac{P_{em}}{\eta_{em}(P_{em})}$$

Optimize *a* velocity profile: solution by ECMS

- Fuel is to gold as battery charge is to cash.
 - fuel tank = personal stash of gold
 - charge battery = put gold/cash into the bank
 - discharge battery = take cash out of the bank
- Goal: retain as much gold as possible.
- Strategy: express everything in terms of gold.
 - Equivalent Consumption Minimization Strategy (ECMS)

Source: L. Serrao, S. Onori, and G. Rizzoni, "A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles," *Journal of Dynamic Systems, Measurement, and Control, Vol. 133, May 2011*.

Optimize *a* velocity profile: ECMS algorithm

Pontryagin's minimum principle:

- if $P_{em}(\cdot)$ is globally optimal i.e. minimizes $\Delta m_f = \int \dot{m_f} dt$,
- then at each time t, $P_{em}(t)$ is locally optimal w.r.t.

• $\dot{m}_{b,e}(t) = \frac{1}{H_f} \cdot \frac{P_{em}}{\eta_{em}(P_{em})}$

Source: L. Serrao, S. Onori, and G. Rizzoni, "A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles," *Journal of Dynamic Systems, Measurement, and Control, Vol. 133, May 2011.*

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Assume λ is constant. (actually depends on internal battery parameters)

Optimize *a* velocity profile: ECMS algorithm

Minimize:

$$\dot{m}_{f,e}(t) = \dot{m}_f(t) + \lambda \, \dot{m}_{b,e}(t).$$

- Algorithm:
 - 1. Select λ .
 - Optimize $P_{em}(t)$ at all times t.
 - 2. Simulate $P_{em}(\cdot)$ to determine SOC(*end*).
 - 3. Iterate on 1 and 2, using the Shooting Method to ensure SOC(start) = SOC(end).

Illustration of the Shooting Method Source: http://en.wikipedia.org/wiki/Shooting_method

Optimize *a* velocity profile: ECMS validation

Source: P. Pisu and G. Rizzoni, "A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles," *IEEE Transactions on Control Systems Technology, Vol. 15, No. 3, May 2007.*

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Optimize *a* velocity profile: ECMS validation

Source: P. Pisu and G. Rizzoni, "A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles," *IEEE Transactions on Control Systems Technology, Vol. 15, No. 3, May 2007.*

Andrew Wang and Peng Yu

Planning Trips for Hybrid Electric Vehicles

Optimize *a* velocity profile: ECMS validation

	Pure thermal		DP	ECMS opt	
Driving Cycle	mpg	mpg	Improv.	mpg	Improv.
FUDS	22.1	25.7	16.4%	25.7	16.3%
FHDS	24.8	26.0	4.9%	25.8	4.1%
ECE	20.8	24.5	18.2%	24.5	18.0%
EUDC	23.3	24.8	6.3%	24.7	6.2%
NEDC	22.2	24.5	10.7%	24.5	10.7%
JP1015	21.0	25.2	20.1%	25.1	19.8%

Source: C. Musardo, G. Rizzoni, and B. Staccia, "A-ECMS: An adaptive Algorithm for Hybrid Elecric Vehicle Energy Management," *Proceedings of the 44th IEEE Conference on Decision and Control*, 2005.

Cycle	Pure	FSM	A-ECMS	\mathcal{H}_{∞}	DP		
_	Diesel						
FUDS	21	$21(0.76)^{\dagger}$	26(0.7)	21 (0.72)	26^{*} (0.7)		
FHDS	25	24(0.73)	26(0.66)	24(0.72)	$26^{*}(0.7)$		
* Results based on simplified model.							
[†] Final SOC between parentheses.							

Source: P. Pisu and G. Rizzoni, "A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles," *IEEE Transactions on Control Systems Technology, Vol. 15, No. 3, May 2007.*

Optimize the velocity profile

- Input: *Dist, SpeedLimit*
- Objective: $Fuel(Seg) = \min_{Acc, Dec} Fuel(Seg, v(\cdot))$
- Subject to constraints:
 - 0 < Acc < MaxAcc, 0 < Dec < MaxBrake
 - **Vel** = SpeedLimit
 - $v(\cdot) = F_{trap}(Acc, Vel, Dec)$
 - $\int v(t) dt = Dist$

• Output: $v^*(\cdot)$

Summary of algorithms

Planning for Hybrid Electric Vehicles

- Motivation & Problem Formulation
- The Best Route
- The Best Driving Style
- Examples and Summary

Recall: The Driving Problem

- We would like to get to the destination with minimum fuel consumption through:
 - Selecting the best route.
 - Optimizing the driving style.
- In addition, we want to satisfy the timing constraints.
 - Drive to the Logan airport from the Stata Center in 15 minutes.

Andrew Wang and Peng Yu

Results: hybrid car

• Path selected by the algorithm.

• Driving profile.

Andrew Wang and Peng Yu

Non-hybrid cars

• Volkswagen Golf

Non-hybrid cars

• Path selected by the algorithm.

• Driving profile.

Andrew Wang and Peng Yu

Summary

- Problems solved:
 - How to select the path that minimize fuel cost, while satisfying timing constraints.
 - The best driving style/modes that minimize the fuel consumption.
- Remarks
 - The modeling and optimization of energy systems can be very hard.
 - Suboptimal approaches may save a lot of time.
- Hybrid cars (and ECO driving modes) do help save fuel!

Byproduct

- Fuel efficient path generator:
 - Compute a path for your trip based on OpenStreetMap Database, then project on Google Map.
 - Satisfies your timing constraint while minimizing fuel consumption.
 - Available for Prius and Golf, in Cambridge and Boston area.
 - http://people.csail.mit.edu/yupeng/files/16S949.zip