Resolving Over-constrained Probabilistic Temporal Problems through Chance Constraint Relaxation

Peng Yu, Cheng Fang, Brian C. Williams Massachusetts Institute of Technology

Motivation & Objective

Uncertainty is hard to plan with: when planning for trips, we human beings can hardly evaluate the uncertainty accurately and plan for it.

"It is 6pm now. I want to arrive home in 40 minutes. I can take Bus #3 at 18:08 ($\sigma = 2$), 8 mins walk to stop, and 24 mins on bus. 18:06 18:08 18:10 or Bus #934 at 18:11($\sigma = 1$). **IO** mins walk to stop, and

Objective: Resolve infeasible chance-constrained temporal problems through making trade-offs between risk taken and timing requirements:

"You have 85% chance of catching Bus #934 and arrive home 3 minutes late." "'Or, take Bus #3 and arrive home on time, but there is a 50% risk of missing the bus, if it arrives early."

Application: This project is in support of a personal commute advisor and an AUV mission advisory system.

We model travel and mission plans using chance-constrained probabilistic Simple Temporal Problems (cc-pSTPs), in which:

A subset of temporal durations are **probabilistic**, the chance of feasibility is restricted

Temporal and Chance Constraint Relaxations

Temporal Relaxations

- A continuous relaxation, TR_i , weakens a temporal constraint [LB, UB] to [LB', UB'] where $LB' \leq LB \text{ and } UB' \geq UB.$

"Delay your arrival by 5 minutes."

Chance Constraint Relaxations

- A chance constraint relaxation, CR_i , increases the chance constraint from CC to CC' where $CC' \geq CC.$

"Can you accept 15% risk of missing the deadline" instead of 5%."

Resolving Over-constrained Problems

A valid set of continuous and chance constraint relaxations restores the feasibility of a chanceconstrained temporal problem.

It presents a risk allocation over probabilistic temporal constraints that meets the chance constraint and enables a **dynamically** controllable STNU for execution.

Defining Preferred Solutions

I) Each choice is mapped to a positive reward using function f_p , and computed using addition.

Bus	#3	40	Assignment: $Bus = #3$
	#934	100	Reward: 40

2) Chance constraint relaxation is mapped to a positive cost using function f_{cr} , and each temporal relaxation is mapped to a positive cost using function f_{tr} .

Generating Continuous Relaxations for "Continuous" Conflicts

Step I: Learning Conflicts

- A conflict composes of an inconsistent set of temporal constraints.

Step 2: Mapping to Continuous Constraints

Each edge in the cycle represents a linear expression defined over the lower and upper bounds of constraints. To eliminate the conflict, the sum of these expressions must be larger or equal to zero.

Step 3: Computing Optimal Relaxations

Given a set of conflicts, we formulate a constrained optimization problem and compute the optimal resolution

- Given a risk allocation, which converts probabilistic uncertainty to set-bounded uncertainty, we can learn conflicts from the negative cycles detected by controllability checking algorithms^{[1][2]}.

using IPOPT, subject to the continuous constraints.

 $\min f_{\rm cr}(cc'-cc) + \sum f_{tc}(tc'_i - tc_i)$

- $\sum_{i} Risk(pt_i) \leq cc'$
- Minimize the **cost** of temporal (tc'_i) and chance constraint (cc') **relaxations**.
- Make all **conflict** expressions non-negative.
- Bound the risk allocated over all **probabilistic** temporal constraints (pt_i) .

Best-first Enumeration of Relaxations

We developed the Conflict-Directed Chance-Constraint Relaxation (CDCR) algorithm for enumerating relaxations to chance-constrained temporal problems in best-first order. It takes a generate and test approach for discovering conflicts and refine candidate relaxations.

Each time a conflict is detected, we compute relaxations for it and all known conflicts, then use them to extend the search tree.

Generator – Non-linear Solver Compute optimal relaxations and allocations to resolve all known conflicts.

Tester – Controllability Checking Check if the current problem is dynamically controllable, and extract conflict if not.

Applications & Experiments

- In addition to transit advisor, CDCR has been integrated into a mission advisory system to help oceanographers schedule autonomous underwater vehicle (AUV) operations with high uncertainty. The goal is to improve the robustness of their plans and reduce their workload.
- To benchmark its performance, we simulated a set of AUV missions using randomly generated target locations and mission constraints, by varying:

a. Number and length of activities in a mission. b. Risk bounds and uncertainty distributions of activities.

The search terminates if

- a relaxation is found that enables a feasible risk \bullet allocation and a **controllable STNU**,
- or when a conflict cannot be resolved.

Relaxation **Relaxation** I Conflict2 Conflict2 solution that fixes Relaxation2 all conflicts in the 'I found a feasible relaxation.' Bus

If there are choices in the problem (such as temporal problems with alternatives), we can also use alternative assignments that suspend constraints to resolve Bus=#934 conflicts. Conflict

The search space will be explored using both expansion on variable and expansion on conflict^[3]. c. Costs over temporal and chance constraint relaxations.

- We tested CDCR on problems with two types of uncertainty distributions: uniform and normal.
- CDCR performs much better problem.' on problems with uniform distributions, since conflict resolution is much more costly for non-linear distributions. - Hence tractability must be considered when selecting density functions for modeling temporal uncertainty.

This research is funded by the Boeing Company grant MITBA-GTA-I, and in collaboration with the Deep Submergence Lab at Woods Hole Oceanographic Institute.

[1] Morris, P. 2006. A structural characterization of temporal dynamic controllability. In Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming, 375–389. [2] Yu, P.; Fang, C.; and Williams, B. 2014. Resolving uncontrollable conditional temporal problems using continuous relaxations. In Proceedings of the Twenty-fourth International Conference on Automated Planning and Scheduling, 341–349. [3] B.Williams and R. Ragno. Conflict-directed A* and its role in model-based embedded systems. In Discrete Applied Mathematics, 155(12):1562–1595, 2007.

cannot

Expand on Conflict I

 $AtHome_{UB} - OnBus_{UB}$

 $-WalkHome_{LB} \geq 0$

Bus=#3

find a