

Continuously Relaxing Over-constrained Conditional Temporal Problems

Peng Yu and Brian C.Williams Massachusetts Institute of Technology IJCAI-13 August 7, 2013

Take Away Messages

- Over-constrained temporal problems can be better resolved by relaxing the temporal constraints continuously, instead of removing them discretely.
- The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.
- We can efficiently enumerate discrete and continuous relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm, first developed for diagnosis.

Robotic Personal Transportation System

• A personal air taxi with an intelligent trip advisory system.

Key features

- Find alternative solutions that are **simple** and **preferred**.
- Provide **insights** into cause of failure and its resolution.
 - Minimize the perturbations;
 - Prioritize alternatives;

minutes".

"Delay your arrival by 5

"OK, then how about having lunch at restaurant Y".

- Explain the cause of failure;
- Adapt incrementally to new constraints.

"Because of the extended travel time".

"if you want to shop for at least
 25 minutes, you can have lunch at restaurant Y for 55 minutes".

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Best-first Enumeration through Conflict-directed Relaxation;
- Applications.

Problem Formulation

- Model: (Over-constrained) Controllable Conditional Temporal Problems.
 - All choices are controllable.
 - Allowing temporal constraints to be relaxed:
 - a subset of the temporal constraints, $RE \subseteq E$, are relaxable.

- Preference functions are defined over decisions and constraint relaxations.
 - Each decision is mapped to a positive reward by function f_p .
 - Each constraint relaxation is mapped to a positive cost by function f_e .

Store	А	40
	В	100
Lunch	Х	70
	Y	80
	Z	30

Assignment :{Store = B, Lunch = Y} Reward: 100 + 80 = 180

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Best-first Enumeration through Conflict-directed Relaxation;
- Applications.

(Minimal) Discrete Relaxation

- Resolve over-constrained temporal problem C by removing constraints.
 - **Resolved**: $M \subseteq C$ such that $C \setminus M$ is consistent.
 - Minimal: $\forall c \in M (C \setminus M) \cup \{c\}$ is inconsistent.

Continuous Relaxation

- Relax a constraint partially by continuously modifying its temporal bounds:
 - A continuous relaxations, CR_i , weakens a temporal constraint: [LB, UB] \rightarrow [LB', UB'] where $LB' \leq LB$ and $UB' \geq UB$.
 - Continuous relaxations only apply to **relaxable** constraints.

"Shorten lunch to 25 minutes and delay arrival by 5 minutes"

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Best-first Enumeration through Conflict-directed Relaxation;
- Applications.

I. Learn Discrete Conflicts

• A discrete conflict is an inconsistent set of temporal constraints.

Choosing Store=B and Lunch=Y produces:

2. Weaken to Continuous Conflicts

- A continuous conflict is an equation formed from the discrete conflict.
- It specifies the deviation needed to resolve the conflict.

Discrete Conflict:

Continuous Conflict:

ArriveHome - HometoB - ShopatB-BtoY - LunchatY - YtoHome = -30

3. Map to Constituent Continuous Relaxations

• Relaxations specified by linear inequalities:

ArriveHome – *HometoB* – *ShopatB* –*BtoY* – *LunchatY* – *YtoHome* = –**30**

 $\Delta_{ShopatB} + \Delta_{LunchatY} + \Delta_{ArriveHome} \geq 30$

Discrete vs. Continuous Relaxations

- Resolve a conflict by relaxing constraints completely or partially.
 - Conflict:Store = B, Lunch = Y;
Home $\rightarrow B \ge 35$; Shop at $B \ge 35$;
Drive $B \rightarrow Y \ge 25$; Lunch at $Y \ge 75$;
 $Y \rightarrow$ Home ≥ 40 ; Arrive Home ≤ 180 .

Discrete Resolutions

Remove Shop at $B \ge 35$; Remove Lunch at $Y \ge 75$; Remove Arrive Home ≤ 180 Continuous Resolutions

Lunch at $Y \ge 45$; Arrive Home ≤ 210 ; Shop at $B \ge 25$ and Lunch at $Y \ge 55$;

and many more

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Best-first Enumeration through Conflict-Directed Relaxation;
- Applications.

Generalize CDA* to Continuous Relaxations

- Conflict-Directed A* (Williams and Ragno, 2004) can be applied to discrete relaxation problems:
 - Efficiently prunes search space using learned conflicts (Bailey and Stucky, 2005).
 - Enumerates minimal discrete relaxations (Previti and Marques-Silva, 2013) in best-first order.
- To solve a relaxation problem:
 - Frame an equivalent constraint optimization problem.
 A. Discrete relaxation: add binary variables.

 - B. Continuous relaxation: add non negative continuous variables.
 - The objective function represents the preference.

Best-first Conflict Directed Relaxation

 BCDR generalizes the conflict resolution procedure in CDA* to include constituent continuous relaxations.

Conflict-Directed A*

- Key Ideas:
 - Split on conflict;
 - Best-first enumeration.

CDA* with Constituent Continuous Relaxation

• Split a conflict using its constituent continuous relaxations.

$$\min(f(\Delta_{Shop \ at \ B}) + f(\Delta_{Lunch \ at \ Y}) + f(\Delta_{Arrive \ Home}))$$

s.t. $\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \ge 30$

Continuous Relaxations for Multiple Conflicts

• For two or more continuous relaxations on the same branch, the utility is determined by the grounded solution that respects both inequalities.

 $\min(f(\Delta_{Shop \ at \ B}) + f(\Delta_{Lunch \ at \ Y}) + f(\Delta_{Arrive \ Home}) + f(\Delta_{Drive \ to \ B}) + f(\Delta_{Drive \ B \ to \ Y}) + f(\Delta_{Travel \ Time}))$

s.t. $\Delta_{Shop \ at \ B} + \Delta_{Lunch \ at \ Y} + \Delta_{Arrive \ Home} \ge 30$

and

$$\Delta_{Drive \ to \ B} + \Delta_{Drive \ B \ to \ Y} + \Delta_{Travel} \ge 10$$

Incorporating User Responses

- BCDR incrementally adapts to new requirements.
- These requirements are recorded as new conflicts.

No, I want to spend **at least 25** minutes on shopping. **Required Continuous Relaxations**

 $\Delta_{Arrive Home} \leq 0;$

 $\Delta_{Shop\ at\ B} \leq 10;$

New Requirements as Conflicts

• Expand search tree using user response conflicts.

Split on Conflicts for Conditional Problems

 If a node has an unresolved conflict, we expand it using both constituent continuous relaxation and decisions that deactivates its constraints.

Contents

- Relaxations of Conditional Temporal Problems;
- Continuous Relaxation and Conflict Resolution;
- Best-first Enumeration through Conflict-directed Relaxation;
- Applications.

Ongoing Projects

- Personal Transportation System.
- Mission advisory system for autonomous underwater vehicles.
- Trip advisor for car-sharing network users.

Empirical Validation - Setup

- We simulated a car-sharing network in Boston using randomly generated car locations and destinations.
- Test cases are characterized by:
 - Number of reservations per car.
 - Number of cars in the network.
 - Number of activities per reservation.
 - Number of alternative options per activity.
- Time change may affect neighboring reservations.

Empirical Validation - Results

• We compare the efficiency of generalized vs. discrete conflict resolution in finding the best continuous relaxation.

Contributions

- Over-constrained temporal problems can be resolved by relaxing the temporal constraints continuously.
- The fundamental concepts of conflicts and minimal relaxations naturally generalize to the continuous case.
- We can efficiently enumerate discrete and continuous relaxations in best-first order, by generalizing the Conflict-Directed A* algorithm.
- Executable, test cases and slides are available at: http://people.csail.mit.edu/yupeng/software.html