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Abstract. We report efficient implementation techniques for FFT-based dense
multivariate polynomial arithmetic over finite fields, targeting multi-cores. We
have extended a preliminary study dedicated to polynomial multiplication and
obtained a complete set of efficient parallel routines in Cilk++ for polynomial
arithmetic such as normal form computation. Since bivariate multiplication ap-
plied to balanced data is a good kernel for these routines, we provide an in-depth
study on the performance and the cut-off criteria of our different implementations
for this operation. We also show that, not only optimized parallel multiplication
can improve the performance of higher-level algorithms such as normal form
computation but also this composition is necessary for parallel normal form com-
putation to reach peak performance on a variety of problems that we have tested.
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1 Introduction

Polynomial Arithmetic is at the core of every computer algebra system (CAS) such as
AXIOM , MAGMA , MAPLE, MATHEMATICA , NTL and REDUCE, and has an essential
impact on the performance of these software packages. Today, the ubiquity of hardware
acceleration technologies (multi-cores, graphics processing units, . . . ) makes the devel-
opment ofbasic polynomial algebra subroutines (BPAS) necessary in order to support
CAS, akin to the BLAS in numerical linear algebra.

The work presented in this paper aims at contributing to thiseffort. In fact, and
up to our knowledge, this is the first report on the parallelization of dense polyno-
mial arithmetic, over finite fields and targeting multi-cores. All symbolic calculations
on univariate and multivariate polynomials can be reduced to computing with polyno-
mials over finite fields (such as the prime fieldZ/pZ for a prime numberp) via the
so-calledmodular techniques. Moreover, most symbolic calculations tend to densify
intermediate expressions even when the input and output polynomials are sparse. See
Chapter 5 in [10] for an extensive presentation of these ideas, which explain why we
focus primarily on dense polynomials over finite fields.



Such polynomials are well suited for the use of asymptotically fast algorithms based
on FFT techniques. Note that some features of FFT techniquesare specific to finite
fields, see Section 2.1 for details. In this context polynomial multiplication plays a cen-
tral role, and many basic operations on polynomials such as division can be efficiently
reduced to multiplication. This observation has motivatedour preliminary study [19]
dedicated to FFT-based dense polynomial multiplication. We have shown thatbalanced
input data can maximize parallel speedup and minimize cache complexity for bivariate
multiplication. We say that a pair of multivariate polynomials isbalanced if the par-
tial degrees of their product are equal (or very close). However, unbalanced input data,
which are common in symbolic computation, are challenging.We have provided effi-
cient techniques to reduce multivariate (and univariate) multiplication to balanced bi-
variate multiplication. Our implementation inCilk++ [3] demonstrates good speedup
on multi-cores. Sections 2.2 to 2.4 summarize the context and the results of [19].

In order to obtain a solid foundation library for basic polynomial algebra subrou-
tines over finite fields and targeting multi-cores, at least two essential problems need to
be handled and are addressed in this paper. In Sections 1.1 and 1.2, we describe these
problems and present our solutions, which are detailed through Sections 3 to 6. Sec-
tion 1.3 describes our experimentation framework. Finally, in Section 7 we summarize
our results and discuss the outcome of this research.

1.1 Optimizing Balanced Bivariate Multiplication

FFT-based bivariate multiplication can be achieved by a variety of algorithms and im-
plementation techniques. Since balanced bivariate multiplication is the kernel to which
we are reducing multivariate multiplication, we need to determine the most appropri-
ate algorithm and implementation techniques for the input patterns of practical interest.
This problem ofcut-off criteria is essential in scientific computing. For instance, in
coding matrix multiplication, one is faced with choosing among Strassen multiplica-
tion, classical multiplication and others; see [12] for details.

Determining cut-off criteria is even more challenging in the context of multi-core
programming where both input data patterns and number of cores need to be taken
into account. This makes it necessary to combine theoretical and empirical analysis.
The former cannot provide precise criteria due to simplification hypotheses but helps
narrowing the pattern ranges of the latter. Once the empirical results are obtained, the
theoretical analysis can also help understanding them.

In this work, we consider two implementations of bivariate multiplication. One is
based on Cooley-Tukey FFT; often we simply call it FFT. The other is based on Trun-
cated Fourier Transform (TFT), see Sections 2.3. The theoretical analysis provides a
simple cut-off criterion between our two algorithms when run serially. Section 4, af-
ter a description of our implementation, provides experimental results on 1, 8, 12 and
16 cores on a 16-core machine. We obtain simple cut-off criteria in each case and for
several degree patterns of practical interest. These results are important since for cer-
tain degree ranges and for certain numbers of cores TFT substantially outperforms FFT
while FFT is faster in the other cases. Taking advantage of these features can speedup
not only multiplication but also the operations that rely onit.



1.2 Efficient Parallel Computation of Normal Forms

All basic operations on polynomials, such as division, can be reduced to multiplica-
tion. For multivariate polynomials over finite fields, two basic operations are of high
interest:exact division andnormal form computations. Note that polynomial addition
is important too but does not bring any particular implementation challenges.

Given two multivariate polynomialsf andg, we say thatg divides f exactly if there
exists a polynomialq such thatf = qg holds. Testing whetherg dividesf exactly and
computingq when this holds can be done using FFT-techniques similar to those used for
multiplication in Section 2.3. Hence we do not insist on thisoperation since no major
additional implementation issues have to be handled with respect to multiplication.

However, computing normal forms (as defined in Section 2.5) brings new chal-
lenges. Indeed, complexity estimates show that the serial and parallel times of these
computations (using the multi-threaded programming modelof [9]) are exponential in
the number of variables, see Section 5. Moreover, the numberof synchronization points
in a parallel program computing normal forms is also exponential in the number of vari-
ables. In addition, at each synchronization point the number of threads which need to
join grows with the input data size (precisely with their partial degrees). Consequently,
the parallel overhead is potentially large. A first attempt for parallelizing the serial nor-
mal form algorithms of [17] reached limited success as reported in [14].

In this work, we investigate how our parallel multiplication code could be efficiently
composed with a parallel normal form implementation. This has the potential to in-
crease parallel speedup factors but also parallel overhead.

Once again we approach this problem by combining theoretical and empirical anal-
ysis. In the former, some parallel overhead (the one for parallelizing a for loop) is
taken into account, but not all. For instance, those coming from synchronization points
are neglected. In Section 5, this theoretical analysis suggests that parallel multiplica-
tion can improve the parallelism of parallel normal form computation. In Section 6, our
experimentation not only confirms this insight but shows that parallel multiplication is
necessary for parallel normal form computation to reach good speedup factors on all
input patterns that we have tested. These results are important since normal form com-
putations represent the dominant cost in many higher-levelalgorithms, such as those
for solving systems of polynomial equations, which is our driving application.

1.3 Experimentation Framework

The techniques proposed in this paper are implemented in theCilk++ language [3],
which extends C++ to the realm of multi-core programming based on the multi-threaded
model realized in [9]. The Cilk++ language is also equipped with a provably efficient
parallel scheduler by work-stealing [2]. We use the serial Croutines for 1-D FFT and
1-D TFT from themodpn library [16]. Our integer arithmetic modulo a prime number
relies also on the efficient functions frommodpn, in particular the improved Mont-
gomery trick [18], presented in [17]. All our benchmarks arecarried out on a 16-core
machine with 16 GB memory and 4096 KB L2 cache. All the processors are Intel Xeon
E7340 @ 2.40GHz.



2 Background

Throughout this paperK designates the finite fieldZ/pZ with p elements, wherep > 2
is a prime number. All polynomials considered hereafter aremultivariate with coeffi-
cients inK and withn ordered variablesx1 < · · · < xn. The set of all such polynomials
is denoted byK[x1, . . . , xn].

The purpose of this section is to describe algorithms for twobasic operations in
K[x1, . . . , xn]: multiplication andnormal form computation. These algorithms are based
on FFT techniques. We start by stressing the specificities ofperforming FFTs over finite
fields, in particular the use of theTruncated Fourier Transform (TFT). In the context of
polynomial system solving, which is our driving application, this leads to what we call
the1-D FFT black box assumption.

2.1 FFTs over Finite Fields and the Truncated Fourier Transform

Using the Cooley-Tukey algorithm [6] (and its extensions such as Bluestein’s algo-
rithm) one can compute theDiscrete Fourier Transform (DFT) of a vector ofs complex
numbers withinO(s lg(s)) scalar operations. For vectors with coordinates in the prime
field K, three difficulties appear with respect to the complex case.

First, in the context of symbolic computation, it is desirable to restrict ourselves to
radix 2 FFTs since the radix must be invertible inK and one may want to keep the ability
of computing modulo small primesp, evenp = 3, 5, 7, . . . for certain types of modular
methods, such as those for polynomial factorization; see [10, Chapter 14] for details. As
a consequence the FFT of a vector of sizes over the finite fieldK has the same running
time for all s in a range of the form[2ℓ, 2ℓ+1). This staircase phenomenon can be
smoothened by the so-calledTruncated Fourier Transform (TFT) [11]. In most practical
cases, the TFT performs better in terms of running time and memory consumption
than the radix-2 Cooley-Tukey Algorithm; see the experimentation reported in [17].
However, the TFT has its own practical limitations. In particular, no efficient parallel
algorithm is known for it.

Another difficulty with FFTs over finite fields comes from the following fact: a
primitive s-th root of unity (which is needed for running the Cooley-Tukey algorithm
on a vector of sizes) exists inK if and only if s dividesp − 1. Consider two univariate
polynomialsf, g over K and letd be the degree of the productfg. It follows thatfg
can be computed by evaluation and interpolation based on theradix 2 Cooley-Tukey
Algorithm (see the algorithm of Section 2.3 withn = 1) if and only if some power of2
greater thand dividesp − 1. When this holds, computingfg amounts to:

– 9
2 lg(s)s + 3s operations inK using the Cooley-Tukey Algorithm,

– 9
2 (lg(s) + 1)(d + 1) + 3s operations inK using TFT,

wheres is the smallest power of2 greater thand. When this does not hold, one can
use other techniques, such as the Schönage-Strassen Algorithm [10, Chapter 8], which
introduces “virtual primitive roots of unity”. However, this increases the running time
to O(s lg(s) lg(lg(s))) scalar operations.



Last but not least, when solving systems of algebraic equations (which is our driving
application), partial degrees of multivariate polynomials (including degrees of univari-
ate polynomials) rarely go beyond the million. This impliesthat, in our context, the
lengths of the vectors to which 1-D FFT need to be applied are generally not large
enough for making efficient use of parallel code for 1-D FFT.

2.2 The 1-D FFT Black Box Assumption

The discussion of the previous section, in particular its last paragraph, suggests the
following hypothesis. We assume throughout this paper thatwe have at our disposal
a black box computing the DFT at a2ℓ-primitive root of unity (whenK admits such
value) of any vector of sizes in the range(2ℓ−1, 2ℓ] in time O(s lg(s))). However, we
do not make any assumptions about the algorithm and its implementation. In particular,
we do not assume that this implementation is a parallel one. Therefore, we rely on
the row-column multi-dimensional FFT to create concurrentexecution in the algorithm
presented in Section 2.3.

2.3 Multivariate Multiplication

Let f, g ∈ K[x1, . . . , xn] be two multivariate polynomials. For eachi, let di andd′i be
the degree inxi of f andg respectively. For instance, iff = x3

1x2 + x3x
2
2 + x2

3x
2
1 + 1

we haved1 = 3 andd2 = d3 = 2. We assume the existence of a primitivesi-th rootωi,
for all i, wheresi is a power of 2 satisfyingsi ≥ di + d′i + 1. Then, the productfg is
computed as follows.

Step 1: Evaluatef andg at each point of then-dimensional grid((ωe1

1 , . . . , ωen

n ), 0 ≤
e1 < s1, . . . , 0 ≤ en < sn) via multi-dimensional FFT.

Step 2: Evaluatefg at each pointP of the grid, simply by computingf(P ) g(P ).
Step 3: Interpolatefg (from its values on the grid) via multi-dimensional FFT.

The above procedure amounts to:

9

2

n
∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9

2
s lg(s) + (n + 1)s (1)

operations inK, wheres = s1 · · · sn. If our 1-D FFT black box relies on TFT rather
than the Cooley-Tukey algorithm, the above estimate becomes:

9

2

n
∑

i=1

(
∏

j 6=i

sj)(di + d′i + 1)(lg(si) + 1) + (n + 1)
n
∏

i=1

(di + d′i + 1). (2)

2.4 Balanced Bivariate Multiplication

In [19], the authors give a cache complexity estimate of the algorithm of Section 2.3
under the assumption of 1-D FFT black box. Using the theoretical model introduced
in [8], and denoting byL the size of a cache line, they have obtained the following



upper boundc sn+1
L

+ c s( 1
s1

+ · · · + 1
sn

) for some constantc > 0 on the number of
cache misses. This suggests the following definition. The pair of polynomialsf, g is said
balanced if all the partial degrees of their product are equal, that is, if d1+d′1 = di+d′i
holds for all2 ≤ i ≤ n. Indeed, for fixeds andn, this bound is minimized when
the pairf, g is balanced; moreover it reaches a local minimum atn = 2 ands1 =
s2 =

√
s. Experimentation reported in [19] confirms the good performance ofbalanced

bivariate multiplication, that is, bivariate multiplication with balanced input. Based on
these results, the authors have developed techniques in order to efficiently reduce any
dense multivariate polynomial multiplication to balancedbivariate multiplication.

2.5 Normal Form Computation

Let f, g1, . . . , gn ∈ K[x1, . . . , xn] be polynomials. Recall that variables are ordered as
x1 < · · · < xn. We assume that the set{g1, . . . , gn} satisfies the following properties:

(i) for all 1 ≤ i ≤ n the polynomialgi is non-constant and its largest variable isxi,
(ii) for all 1 ≤ i ≤ n the leading coefficient ofgi w.r.t. xi is 1,
(iii) for all 2 ≤ i ≤ n and all1 ≤ j < i the degree ofgi in xj is less than the degree

of gj in xj , that is,deg(gi, xj) < deg(gj , xj).

Such a set is called areduced monic triangular set. The adjectives triangular, monic and
reduced describe respectively the above properties(i), (ii) and(iii). We will denote by
δi the degree ofgi in xi and byδ the productδ1 · · · δn. For instance, withn = 2,
g1 = x2

1 + 1 andg2 = x3
2 + x1, the set{g1, g2} is a reduced monic triangular set.

Observe that this notion is dependent on the variable ordering. In our example, the set
{g1, g2} would no longer be triangular for the orderingx2 < x1.

Reduced monic triangular sets are special cases of Gröbner bases [7] and enjoy
many algorithmic important properties. We are interested here in the following one.
There exists aunique polynomialr ∈ K[x1, . . . , xn] such that the following hold:

(iv) eitherr = 0 holds or for all1 ≤ i ≤ n the degree ofr in xi is less thanδi,
(v) f is congruent tor modulo{g1, . . . , gn}, that is, there exist polynomialsq1, . . . , qn

∈ K[x1, . . . , xn] such that we havef = r + q1g1 + · · · + qngn.

Such a polynomialr is called thenormal form of f w.r.t.{g1, . . . , gn}. Considern, g1, g2

as above andf = x3
2x1+x2x

2
1. Thenr = −x2+1 is the normal form off w.r.t.{g1, g2}.

Indeed we havef = r + q1g1 + q2g2 with q2 = x1 andq1 = x2 − 1; moreover we have
deg(r, x1) < δ1 anddeg(r, x2) < δ2.

In broad terms the polynomialr is obtained after simplifyingf w.r.t.{g1, . . . , gn}. It
is, indeed, what the commandsimplify computes in computer algebra systems such
as MAPLE, when this command is applied tof and{g1, . . . , gn}. This is an essential
operation in symbolic computation and the above result states thatr is uniquely defined
as long as it satisfies(iv) and(v). One natural way for computingr is as follows:

(a) Initialize rn+1 to bef .
(b) For i successively equal ton, n − 1, . . . , 2, 1 computeri as the remainder in the

Euclidean division ofri+1 by gi, regarding these polynomials as univariate inxi.



(c) Returnr1.

In our example we setr3 = f and computer2 the remainder ofr3 by g2 which is
r2 = x2x

2
1 − x2

1. Then we computer1 the remainder ofr2 by g1 which is−x2 + 1.
This procedure suffers from intermediate expression swell. (This cannot be seen on

very simple example, of course.) One can check that the degree inx1 of the successive
remaindersrn, . . . , r2 may dramatically increase untilr2 is finally divided byg1. Con-
sidergn = x2

n − x2
1 − 1, gn−1 = x2

n−1 − x2
1 − 1, . . . , g2 = x2

2 − x2
1 − 1, g1 = x2

1 + 1
andf = x4

2 · · ·x4
n−1x

4
n. We will obtainr2 = (x2

1 + 1)2n−2 whereasr is simply0.
This phenomenon is better controlled by an algorithm proposed by Li, Moreno

Maza and Schost in [17]. This latter procedure relies on Cook-Sieveking-Kung’s “fast
division trick” [5, 20, 13] which reduces an Euclidean division to two multiplications.
The algorithm of [17] proceeds by induction on the number of variables and its pseudo-
code is shown below. The base case, that isn = 1, is given by the procedureNormalForm1

which is in fact Cook-Sieveking-Kung’s fast division. The general case is given by the
NormalFormi procedure for2 ≤ i ≤ n where the input polynomialf is assumed to be
in K[x1, . . . , xi] and{g1, . . . , gi} is a reduced monic triangular set inK[x1, . . . , xi]. A
few comments are needed about these two procedures.

– Rev(gi) designates thereversal of the polynomialgi. that is, the polynomial ob-
tained fromgi by reversing the order of its coefficients; for instanceRev(g1) =
3x2

1 + 2x1 + 1 for g1 = x2
1 + 2x1 + 3.

– Rev(gi)
−1

mod g1, . . . , gi−1, x
deg(f,xi)−deg(gi,xi)+1
i is the inverse ofRev(gi)

modulo the reduced monic triangular set{g1, . . . , gi−1, x
deg(f,xi)−deg(gi,xi)+1
i };

this can be computed viasymbolic Newton Iteration, see [10, Chapter 8].
– In practice the quantitiesS1, . . . , Sn are pre-computed and stored before calling

NormalFormi. Therefore, the computations of these quantities are not taken into
account in any complexity analysis of these procedures.

– map(NormalFormi−1,Coeffs(f, xi), {g1, . . . , gi−1}) is the polynomial inxi ob-
tained fromf by replacing each coefficient off in xi with its normal form w.r.t.
{g1, . . . , gi−1}.

NormalForm1(f, {g1})
1 S1 := Rev(g1)

−1
mod x

deg(f,x1)−deg(g1,x1)+1
1

2 D := Rev(f)S1 mod x
deg(f,x1)−deg(g1,x1)+1
1

3 D := g1 Rev(D)
4 return f − D

NormalFormi(f, {g1, . . . , gi})
1 f := map(NormalFormi−1,Coeffs(f, xi), {g1, . . . , gi−1})
2 Si := Rev(gi)

−1
mod g1, . . . , gi−1, x

deg(f,xi)−deg(gi,xi)+1
i

3 D := Rev(f)Si mod x
deg(f,xi)−deg(gi,xi)+1
i

4 D := map(NormalFormi−1,Coeffs(D,xi), {g1, . . . , gi−1})
5 D := gi Rev(D)
6 D := map(NormalFormi−1,Coeffs(D,xi), {g1, . . . , gi−1})
7 return f − D



Observe that performingNormalForm1 simply amounts to two multiplications. More
generally,NormalFormi requires two multiplications and3(δi + 1) recursive calls to
NormalFormi−1. In [17], the authors have shown thatNormalFormn(f, {g1, . . . , gn})
runs inO(4nδ lg(δ) lg(lg(δ))) operations inK.

3 Cutoff Analysis for Dense Bivariate Multiplication

As mentioned in the introduction, the work in [19] identifiedbalanced bivariate multi-
plication as a good kernel for dense multivariate multiplication. Bivariate multiplication
based on FFT techniques, and under the 1-D FFT black box assumption, can be done
via either 2-D FFT or 2-D TFT. More precisely, the necessary 1-D FFTs of the algo-
rithm of Section 2.3 can be performed via either the Cooley-Tukey algorithm or TFT.
In order to optimize our balanced bivariate multiplicationcode, we need to determine
when to use these different 1-D FFT routines. This section offers a first answer based on
algebraic complexity analysis meanwhile Section 4 will provide experimental results.

Recall that we aim at applying bivariate multiplication to balanced pairs. In practice,
as mentioned in [19], using “nearly balanced” pairs is oftensufficient. Hence, with the
notations of Section 2, we can assume thatd1 + d′1 and d2 + d′2 are of the same
order of magnitude. Moreover, it is often the case thatdi andd′i are quite close, for
all 1 ≤ i ≤ n. For instance, in normal form computations, we havedi ≤ 2d′i − 2
for all 1 ≤ i ≤ n (up to exchanging the role off and g). Therefore, in both the
experimental analysis of Section 4 and in the complexity analysis of the present section,
we can assume that all partial degreesd1, d

′
1, d2, d

′
2 are of the same order. To keep

experimentation and estimates manageable, we will assume that they all belong to a
range[2k, 2k+1) for somek ≥ 2. In the case of our complexity analysis, we will further
assume that alld1, d

′
1, d2, d

′
2 are equal (or close) to a valued in such a range.

We call degree cut-off FFT vs TFT a valued ∈ [2k, 2k+1) such that the work (or
algebraic complexity) of bivariate multiplication based on 2-D TFT is less than the one
of bivariate multiplication based on 2-D FFT. Our objectivein the sequel of this section
is to determine the smallest possible cut-off for a given value ofk.

To this end, we have developed a MAPLE package (available upon request) that ma-
nipulates polynomials with rational number coefficients and with k and2k as variables.
We denote byQ[k, 2k] the set of these objects. It satisfies all the usual algebraicrules
on such expressions plus other operations targeting complexity analysis. For instance,
our package computes symbolic logarithms of appropriate elements ofQ[k, 2k] and
performs asymptotic majorations (i.e. majorations that hold for k big enough).

The table below gives the work for the algorithm of Section 2.3 when 1-D FFTs are
performed by TFT. Note that for alld in the range[2k, 2k+1) the work of the Cooley-
Tukey bivariate multiplication is48 × 4k(3k + 7).

Determining degree cut-off’s (for FFT vs TFT) implies solving inequalities of the
form p > 0 for p ∈ Q[k, 2k]. We achieve this by using standard techniques of real
function analysis and we omit the details here.

For different valuesd of the form2k+c12
k−1+· · ·+c72

k−7 where eachc1, . . . , c7 is
either0 or 1, we have compared the work of our bivariate multiplication based on either
FFT or TFT. The above table lists some of our findings. These results suggest that for



Table 1.Work of TFT-based bivariate multiplication

d Work

2k 3(2k+1 + 1)2(7 + 3k)

2k + 2k−1 81 k 4k + 270 4k + 54 k 2k + 180 2k + 9k + 30

2k + 2k−1 + 2k−2 441

4
k 4k + 735

2
4k + 63 k 2k + 210 2k + 9k + 30

2k + 2k−1 + 2k−2 + 2k−3 2025

16
k 4k + 3375

2
4k + 135

2
k 2k + 225 2k + 9k + 30

Table 2.Degree cut-off estimate

(c1, c2, c3, c4, c5, c6, c7) Range for which this is a cut-off

(1, 1, 1, 0, 0, 0, 0) 3 ≤ k ≤ 5

(1, 1, 1, 0, 1, 0, 0) 5 ≤ k ≤ 7

(1, 1, 1, 0, 1, 1, 0) 6 ≤ k ≤ 9

(1, 1, 1, 0, 1, 1, 1) 7 ≤ k ≤ 11

(1, 1, 1, 1, 0, 0, 0) 11 ≤ k ≤ 13

(1, 1, 1, 1, 0, 1, 0) 14 ≤ k ≤ 18

(1, 1, 1, 1, 1, 0, 0) 19 ≤ k ≤ 28

every range[2k, 2k+1) that occur in practice (see Section 4) a sharp (or minimal) degree
cut-off is around2k + 2k−1 + 2k−2 + 2k−3. Our experimental results lead in fact to
2k+2k−1+2k−2 on 1 core, which seems to us coherent. Indeed our complexity analysis
does not take several important factors such as memory management overhead and etc.

4 Efficient Implementation for Balanced Bivariate Multiplicati on

In this section we present our implementation techniques for FFT-based polynomial
multiplication on multi-cores. These techniques avoid unnecessary calculations and re-
duce memory movement, Although we focus on balanced bivariate multiplication, our
explanation covers to the general case, which we had to consider anyway. Indeed, op-
timizing our code in the general multivariate case was necessary to make a fair perfor-
mance evaluation of our balanced bivariate multiplicationand our reduction to it. We
evaluate the performance of our implementation using VTune[4] and Cilkscreen [3].
We further compare the performance and determine experimentally the cut-off between
TFT- and FFT-based bivariate multiplication for a large range of polynomials.

4.1 Implementation Techniques

As in Section 2, letf ∈ K[x1, · · · , xn] be a multivariate polynomial with degreedi in
xi, for all 1 ≤ i ≤ n. We representf in a dense recursive manner w.r.t. the variable
orderx1 < . . . < xn. This encoding, which is similar to ann−dimensional matrix in
row-major layout, is defined as follows:



– The coefficients off are stored in a contiguous one-dimensional arrayB.
– The coefficient of the termxe1

1 . . . xen

n is indexed byℓ1 · · · ℓn−1en+ℓ1 · · · ℓn−2en−1

+ · · · + ℓ1e2 + e1 in B, whereℓi = di + 1 for all 1 ≤ i ≤ n.

The parallelization of the multiplication algorithm in Section 2.3 takes advantage
of the ease-of-use of the parallel constructs inCilk++. For instance, when evaluating
a polynomial by means of an-dimensional FFT, the 1-D FFTs computed along thei-
th dimension (for each1 ≤ i ≤ n) are parallelized by acilk for loop. Similarly,
Step 2 of the multiplication algorithm is performed by acilk for. A special care is
needed, however, for handling the large data sets and frequent memory access that this
algorithm may involve. We described below the challenges and our solutions.

Data transposition. A number ofn−1 data transpositions is needed when performing
the row-columnn-dimensional algorithm. Data transposition is purely memory-bound
and can be a bottleneck. For the2-dimensional case, we use the cache-efficient code
provided by Matteo Frigo. It employs a divide-conquer approach presented in [8] which
fits the base case into the cache of the targeted machine. For the multi-dimensional case,
we divide the problem into multiple2-dimensional transpositions where Matteo Frigo’s
cache-efficient code can be applied. Consider for instance atrivariate polynomial rep-
resentation, with dimension sizes ofs1, s2, s3 and where the variable ordering has to
be changed fromx1 < x2 < x3 to x3 < x2 < x1. First we exchangex1 andx2 by
means ofs3 number of2-dimensional transpositions of sizes1s2. This gives the order
of x2 < x1 < x3. To exchangex2 andx3, we view variablesx2 andx1 as one variable
and group their coefficients vector into one of sizeℓ = s2s1. Then, one2-dimensional
transposition of sizeℓs3 will suffice. The resulting variable order is nowx3 < x2 < x1.

Avoiding unnecessary calculations and reducing memory movement. We first
discuss the implementation of the algorithm of Section 2.3 when the 1-D FFTs are
performed by the (radix 2) Cooley-Tukey algorithm. We allocate two workspacesA and
B each with sizes = s1 · · · sn for the evaluation off andg respectively. To prepare for
the interpolation of the productf g, the coefficient data off andg are scattered to the
appropriate positions ofA andB. One can make these data movements first and then
evaluate the polynomials. We use a more cache-efficient way instead. On the evaluation
of the first variable off , we copy in parallel each of the(d2 +1) · · · (dn +1) number of
coefficient vectors of sized1 +1 from f to the corresponding vector of sizes1 in A and
continue the evaluation of this vector inA by a 1-D FFT in place. This method improves
the data-locality. It also saves from not doing FFTs on(s2 · · · sn)−(d2+1) · · · (dn +1)
number of sizes1 vectors of zeros. We proceed similarly withg.

For the TFT version of the algorithm of Section 2.3, we have realized two imple-
mentations. One implementation is similar to the one above and we call it “in-place”.
Each data transposition has to be done for the sizes, but the number of 1-D FFTs in
an evaluation or interpolation are bounded byps = (d1 + d′1 + 1) · · · (dn + d′n + 1),
the size of the product. Our second implementation is “out-of-place”. We only allocate
one extra workspaceC of sizeps. C is used for the evaluation ofg. We will use the
space of the product for the evaluation off , and the result will be in the right place.
Savings can be gained on the evaluation of the first variable in the same way as above.
The difference is as follows. To evaluate a vectorvi of sizedi + d′i + 1 in variablexi,



we allocate a temporary vectorti of sizesi as a workspace and copy the data invi to si

and then perform 1-D TFT inti; ti is freed after use.
Our benchmark shows that the “out-of-place” TFT-based method is more efficient

for balanced problems (that is when the partial degrees of the product are equal); more-
over the performance of this approach becomes even better when the number of cores
increases. However, for problems with unequal partial degrees in the product, the “in-
place” TFT-based method works better. We will study in a future work the causes of
this behavior.

4.2 Performance Evaluation

We use VTune [4] and Cilkscreen [3] to evaluate the performance of our implementa-
tion. We measure the instruction, cache and parallel efficiency on 8 processors for the
multiplication of bivariate polynomials with partial degrees in the range of[2047, 4096].

Table 3 lists a selection of events and ratios reported by VTune for FFT-based and
TFT-based methods respectively. Due to the availability ofVTune in our laboratory,
these measurements are done on a 8-core machine with 8 GB memory. Each processor
is Intel Xeon X5460 @3.16GHz and has 6144 KB of L2 cache.

For all the tested problems by either FFT or TFT method, theirclocks per instruc-
tions retired (CPI) is around0.8. Their L2 cache miss rates are below0.0008. The very
small modified data sharing ratios (less than0.00025) imply that, chances of threads
racing on using and modifying data laid in one cache line are very low. However, TFT-
based method use about three times less number of instructions retired than FFT-based
for problems which are worst cases for FFT, such as(2048, 2048), (2048, 4096) and
(4096, 4096). These account for the better timing of TFT-based method fora certain
range of degrees, shown in the figures of next section.

Table 3.Performance evaluation by VTune for TFT-based and FFT-based method

Method d1 d2 INST Clocks per L2 cache Modified data Time on
RETIRED instructions miss rate sharing ratio 8 cores

(×109) retired (CPI) (×10−3) (×10−3) (s)

TFT-based 2047 2047 44 0.794 0.423 0.215 0.86
2048 2048 52 0.752 0.364 0.163 1.01
2047 4095 89 0.871 0.687 0.181 2.14
2048 4096 106 0.822 0.574 0.136 2.49
4095 4095 179 0.781 0.359 0.141 3.72
4096 4096 217 0.752 0.309 0.115 4.35

FFT-based 2047 2047 38 0.751 0.448 0.106 0.74
2048 2048 145 0.652 0.378 0.073 2.87
2047 4095 79 0.849 0.745 0.122 1.94
2048 4096 305 0.765 0.698 0.094 7.64
4095 4095 160 0.751 0.418 0.074 3.15
4096 4096 622 0.665 0.353 0.060 12.42



We use Cilkscreen to estimate the parallelism of these running instances by mea-
suring theirwork andspan; recall that we rely on the multi-threaded parallelism model
introduced in [2]. The data measured by Cilkscreen are summarized in Table 4 . The
parallel overhead appears very low and the burdened parallelism is nearly equal to the
expected parallelism. The speedup factors that we obtain, reported in the next section,
are as good as the estimated ones.

Table 4.Performance evaluation by Cilkscreen for TFT-based and FFT-based method

Method d1 d2 Work Span/ Parallelism/ Speedup
Burdened Burdened estimates

(×109) span (×109) parallelism 4P 8P 16P

TFT-based 2047 2047 45 0.613/0.614 74.18/74.02 3.69-4 6.77-8 11.63-16
2048 2048 53 0.615/0.616 86.35/86.17 3.74-4 6.96-8 12.22-16
2047 4095 109 0.118/0.118 92.69/92.58 3.79-4 7.09-8 12.54-16
2048 4096 125 1.184/1.185 105.41/105.27 3.80-4 7.19-8 12.88-16
4095 4095 193 2.431/2.433 79.29/79.24 3.71-4 6.86-8 11.89-16
4096 4096 223 2.436/2.437 91.68/91.63 3.76-4 7.03-8 12.43-16

FFT-based 2047 2047 40 0.612/0.613 65.05/64.92 3.64-4 6.59-8 11.08-16
2048 2048 155 0.619/0.620 250.91/250.39 3.80-4 7.50-8 14.55-16
2047 4095 98 1.179/1.180 82.82/82.72 3.77-4 6.99-8 12.23-16
2048 4096 383 1.190/1.191 321.75/321.34 3.80-4 7.60-8 14.82-16
4095 4095 169 2.429/2.431 69.39/69.35 3.66-4 6.68-8 11.35-16
4096 4096 392 2 .355/2.356 166.30/166.19 3.80-4 7.47-8 13.87-16

4.3 Cut-off between TFT- and FFT-based Methods

We compare the performances of the FFT- and TFT-based bivariate multiplication.
More precisely and as discussed in Section 3, we consider that all partial degrees
d1, d2, d

′
1, d

′
2 are between two consecutive powers of 2 and we would like to deter-

mine for which degree patterns the TFT approach outperformsthe FFT one. We study
the following three degree ranges:[256, 512), [1024, 2048) and [4096, 8192). In gen-
eral, we use the “in-place” implementations of FFT- and TFT-based methods. When the
partial degrees of the product are equal, the “out-of-place” TFT-based method is used.

Table 5.Sizes and cut-offs of three sets of problems

No. Input degree Product size Size cut-off on
range range 1 core 8 cores 12 cores 16 cores

1 256-511 263169-1046529 786596 814012 861569
2 1023-2047 4198401-1676902512545728 13127496 14499265 16433645
3 4095-8191 67125249-268402689202660762 207958209 227873850 257370624
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Table 6.Cut-off details between TFT-based and FFT-based bivariate multiplication

No. #cores TFT-based Method FFT-based Method
Time Speedup Faster Time ratio Time Speedup Faster Time ratio

(s) factor portion TFT/FFT (s) factor portion FFT/TFT

1 1 0.120-0.419 75% 2.55-1.00.305-0.338 25% 1.0-1.20
8 0.020-0.065 5.5-6.7 78% 2.50-1.00.050-0.055 6.0-6.3 22% 1.0-1.17

12 0.015-0.048 5.5-9.0 82% 2.73-1.00.038-0.044 7.4-8.2 18% 1.0-1.15
2 1 2.27-8.13 2.58-1.0 75% 5.85-6.60 25% 1.0-1.20

8 0.309-1.08 6.8-7.6 78% 2.61-1.00.806-0.902 7.2-7.3 22% 1.0-1.16
12 0.224-0.779 8.2-11.0 86% 2.77-1.00.613-0.707 9.3-9.8 14% 1.0-1.09
16 0.183-0.668 7.8-14.1 98% 3.18-1.00.588-0.661 9.6-10.8 2% 1.0-1.02

3 1 42.2-154.3 76% 2.63-1.0110.9-123.2 24% 1.0-1.20
8 5.52-20.07 6.8-7.8 77% 2.69-1.014.82-16.57 7.4-7.6 23% 1.0-1.17

12 3.75-14.10 9.0-11.4 85% 2.92-1.010.96-12.72 9.9-10.3 15% 1.0-1.03
16 3.09-11.36 9.5-14.9 96% 3.12-1.09.55-11.02 11.0-12.0 4% 1.0-1.04

The sizes and the cut-offs on 1, 8, 12 and 16 cores for the threesets of problems are
summarized in Table 5. Table 6 lists the timings, the speedupfactors, the percentages
of the size range and the ratio by which TFT or FFT is superior for the three sets of
problems on 1, 8, 12 and 16 cores. To provide an insight view ofthe benchmarks, we
display the complete timing results and their cut-off regression w.r.t. the size of the
product for the range of[1024, 2048) on 1, 8 and 16 cores in Figures 1 to 6.

Figures 1 to 6 reveal clearly the different performances of FFT- and TFT-based
methods for the problems in set2 with partial degrees in the range of[1024, 2048),
which is [210, 211). Here, the timing of FFT-based method is about the same for all the
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problems, but the timing of TFT-based method is correlated to the size of the partial
degrees. This result agrees with our complexity analysis reported in Expressions (1)
and (2) in Section 2.3. Expression (1) indicates that the work for multiplying any pair
of n-variate polynomials with partial degreesdi andd′i in a range of[2k, 2k+1) by
FFT-based method is constant, and determined by the value ofs, which is2n(k+2). This
reflects the well-knownstaircase phenomenon of FFT. Meanwhile, the work of TFT-
based method grows linearly with

∏n

i=1(di + d′i + 1), as indicated by Expression (2).
Therefore, in a certain lower range of[2k, 2k+1), TFT-based method performs better.

Overall, both FFT- and TFT-based methods show good speedup factors on 8 to 16
cores, with peak performance for the latter. The cut-off criteria are similar for all degree
ranges, independent of the magnitude of the degrees. In a degree range of[2k, 2k+1), the
percentage of problems for which the TFT-based method outperforms FFT’s increases
with the number of cores. On one core, the TFT-based method isbetter for the first75%
of the sizes by at most a factor of2.6. This is coherent to the theoretical analysis result
in Section 3, taking into account the memory management overhead in our implemen-
tation. On 16 cores, the TFT-based method is superior for up to 98% of the problem
range by a maximum factor of3.2. The mechanism that favors the TFT-based method
on multi-cores will be studied further.

5 Parallelism Estimates for Normal Form Computations

The recursive structure of the procedureNormalFormn in Section 2.5 offers opportuni-
ties for concurrent execution. Moreover, this procedure relies on multivariate multipli-
cation and we can hope to increase parallelism by relying on our parallel multiplication.
Estimating this extra parallel speedup factor is a fundamental problem, as discussed in
the introduction. This section offers a first answer based oncomplexity analysis mean-
while Section 6 will provide experimental results.



 2048
 2560

 3072
 3584

 4096  2048
 2560

 3072
 3584

 4096
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

Time(s)

2-D FFT method on 8 cores (0.806-0.902 s, 7.2-7.3x speedup)
2-D TFT method on 8 cores (0.309-1.08 s, 6.8-7.6x speedup)

d1+d1’+1 d2+d2’+1

Time(s)

Fig. 3.Timing of bivariate multiplication for input degree range of[1024, 2048) on 8 cores.

We first consider the span (or parallel running time) of the algorithms in Section 2
by means of the multi-threaded programming model of [9]. This model, however, does
not explicitly cover parallel for-loops, which are needed for both multiplication and
normal form computations.

Following the way acilk for loop is implemented in thecilk++ language [3],
we assume that the span of a for-loop of the form

for i from 1 to n do BODY(i); end for;

is bounded byO(lg(n)S) whereS is the maximum span ofBODY(i) for i in the range
1..n. Consequently the span of a nested for-loop

for j in 1..m do
for i from 1 to n do BODY(i); end for;

end for;

is bounded byO(lg(n)lg(m)S).
Definings = s1 · · · sn andℓ =

∏n

i=1 lg(si), it is easy to check that the span of the
multiplication algorithm of Section 2.3 is

3
n
∑

i=1

(
∏

j 6=i

lg(sj))si lg(si) + 3
n
∏

i=1

lg(si) = 3ℓ

(

n
∑

i=1

si + 1

)

(3)

operations inK, when the Cooley-Tukey algorithm is used for 1-D FFTs. This estimates
becomes

3

n
∑

i=1

ℓ

lg(si)
(di + d′i + 1)(lg(si) + 1) + 3

n
∏

i=1

lg(di + d′i + 1), (4)

which is the same order of magnitude as

3ℓ

n
∑

i=1

(di + d′i + 1) + 3

n
∏

i=1

lg(di + d′i + 1), (5)
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when all thesi become large.
We turn now to the span estimates for the procedureNormalFormi when applied to

f and{g1, . . . , gi} whereg1, . . . , gi is a reduced monic triangular set ofK[x1, . . . , xi]
(see Section 2) andf is a polynomial ofK[x1, . . . , xi]. In practice, the partial degree
of f w.r.t xi is at most2δi − 2, for all 1 ≤ i ≤ n. Indeed, the polynomialf is often
the product of two polynomialsa and b which are reduced w.r.t. the reduced monic
triangular set{g1, . . . , gi}, that is, which satisfydeg(a, xj) < δj anddeg(b, xj) < δj

for all 1 ≤ j ≤ i.
Defineδi = (δ1, . . . , δi). Let us denote byWM(δi) andSM(δi) the work and span of

a multiplication algorithm applied toh andgi whereh satisfiesdeg(h, xj) < δj for 1 ≤
j < i anddeg(h, xi) ≤ 2δi − 2. Let alsoSNF(δi) be the span ofNormalFormi applied
to f and{g1, . . . , gi}. If the procedureNormalFormi is run with a serial multiplication,
then we have:

SNF(δi) = 3 ℓi SNF(δi−1) + 2WM(δi) + ℓi (6)

whereℓi =
∏i

j=1 lg(δj). Similarly, if the procedureNormalFormi is run with a parallel
multiplication, we obtain:

SNF(δi) = 3 ℓi SNF(δi−1) + 2SM(δi) + ℓi. (7)

Neglecting logarithmic factors and denoting byd the maximum ofδi for all 1 ≤ i ≤ n,
the spanSNF(δi) ∈ O(3ndn) if a serial multiplication is used, otherwiseSNF(δi) ∈
O(3nd) if a parallel multiplication is used. Since the workWNF(δi) ∈ O(4ndn) (again
neglecting logarithmic factors) this implies that work, span and parallelism (i.e. the
ratio of work divided by span) are all exponential in the number of variables. This
suggests that obtaining efficient parallel implementationof the procedureNormalFormi

is interesting but also challenging.
In Tables 7 and 8, the span ofNormalFormi is computed fori = 1, 2, 3 andδ1 =

· · · = δi = d with d ∈ {2k, 2k + 2k−1}. For i = 1, the spans ofNormalFormi with
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Table 7.Span of TFT-based normal form forδ
i
= (2k, . . . , 2k).

i With serial multiplication With parallel multiplication

1 18 k 2k + 44 2k + 10k + 22 12 k 2k + 24 2k + 11 k + 20

2 72 k 4k + 168 4k + o(4k) 60 k2 2k + 168 k2 2k + 96 2k + o(2k)

3 216 k 8k + 496 8k + o(8k) 216 k3 2k + 720 k2 2k + 720 k 2k + 288 2k + o(2k)

or without parallel multiplication are essentially the same. Indeed we assume that 1-D
FFTs are run serially. The slight gain is explained by the fact in Step 1of the algorithm
of Section 2.5. One can evaluate the two input polynomials concurrently.

For i = 2, the gain obtained from the use of a parallel multiplicationis asymp-
totically in the order ofΘ(2k/k). For i = 3, this becomesΘ(4k/k2). This suggests
that a parallel multiplication code (even under the 1-D FFT black box assumption) can
speedup substantially a parallel code forNormalFormi with i ≥ 2.

In Table 9, we provide the span ofNormalFormi for another degree pattern, namely
for δi = 2k andδi−1 = · · · = δi = 1. This configuration is actually the general one for

Table 8.Span of TFT-based normal form forδ
i
= (2k + 2k−1, . . . , 2k + 2k−1).

i With serial multiplication With parallel multiplication

1 27 k 2k + 93 2k + 10k + 32 18 k 2k + 54 2k + 11 k + 27

2 162 k 4k + 540 4k + o(4k) 90 k2 2k + 396 k2 2k + 378 2k + o(2k)

3 729 k 8k + 2403 8k + o(8k) 324 k3 2k + 1836 k2 2k + 3186 k 2k + 1782 2k + o(2k)
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the polynomials describing the symbolic solutions of polynomial systems with finitely
many solutions. We call itShape Lemma after the landmark paper [1] where this degree
pattern was formally studied and from which the terminologyis derived.

In Table 10, we provide the limit of the parallelism ofNormalFormi whenk goes to
+∞ (that is the ratio between work and span) for the same degree patterns as in Table 9.

Table 9.Span of TFT-based normal form forδ
i
= (2k, 1, . . . , 1).

i With serial multiplication With parallel multiplication

2 144 k 2k + 642 2k + 76 k + 321 72 k 2k + 144 2k + 160 k + 312

4 4896 k 2k + 45028 2k + 2488 k + 22514 1296 k 2k + 2592 2k + 6304 k + 12528

8 3456576 k 2k + 71229768 2k + o(2k) 209952 k 2k + 419904 2k + o(2k)

Table 9 suggests that forShape Lemma degree patterns and for a fixed number of
variables, the extra speedup factor provided by a parallel multiplication (w.r.t. a serial
one) is upper bounded by a constant. This does not imply that using parallel multipli-
cation in a parallel normal form forShape Lemma degree patterns would be of limited
practical interest. Table 10 suggests that a parallel multiplication can indeed increase
the parallelism ofNormalFormi, in particular when the number of variables is large.

These complexity estimates do not take into account parallel overhead. In the case of
NormalFormi, those are potentially large. Indeed, after Steps 1, 4 and 6 of NormalFormi,
there is a synchronization point for(δi + 1) threads, namely the(δi + 1) recursive
calls toNormalFormi−1. Observe also that the number of synchronization points of



Table 10.Parallelism estimates of TFT-based normal form forδ
i
= (2k, 1, . . . , 1).

i With serial multiplication With parallel multiplication

2 13/8 ≃ 2 13/4 ≃ 3

4 1157/272 ≃ 4 1157/72 ≃ 16

8 5462197/192032 ≃ 29 5462197/11664 ≃ 469

NormalFormi is 3i−1. This puts a lot of “burden” on the parallelism of this procedure.
Section 6 will tell how much can really be achieved in practice.

6 Efficient Parallel Computation of Normal Forms

We present now our experimental results for efficient parallelization of normal forms.
Our key techniques include reducing multivariate multiplication to bivariate and com-
posing the parallelism of bivariate multiplications with that at the level of the normal
form algorithm, as discussed in Section 5. We study three typical degree patterns, il-
lustrated in Figures 7, 8 and 9. All the benchmarks show the important role of parallel
bivariate multiplication in improving the performance of normal form computations.
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Fig. 7.Normal form computation of a large bivariate problem.

Figure 7 displays the speedup factors for computing the normal form of a bivariate
problem with serial bivariate multiplication and with parallel bivariate multiplication.
The main degrees of the polynomials of a triangular set are8191 and8191, and the par-
tial degrees of the polynomial under simplification are16380 and16380. The speedup
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Fig. 8.Normal form computation of a medium-sized 4-variate problem.

of normal form computation without parallel multiplication is very poor, about2.0 on
16 cores. The parallelization of the bivariate multiplications helps improving the per-
formance significantly, by a factor of6.

Figure 8 demonstrates the2.0 times of improvement contributed by the parallel
bivariate multiplications involved in the normal form computation of a medium-sized
4-variate problem, where all the main degrees of the triangular set are equal to64, and
all the partial degrees of the polynomial to be reduced are126. The 8-variate problem,
described in Figure 9 with main degree pattern of “1024, 2, 2, 2, 2, 2, 2, 2”, shows a
speedup of10.75 on16 cores without parallel bivariate multiplication. Composed with
parallel bivariate multiplication it can achieve a more satisfactory speedup of13.4.

These results show that, when the number of variables is small, say 2, the parallelism
of our normal form routine can be small. However, if the inputpolynomial degrees are
large enough, parallel multiplication can increase the overall parallelism substantially.
In the Shape Lemma case, when the number of variables is large, say 8, our normal form
routine already possesses a high parallelism. Hence, even though parallel multiplication
cannot help as much as in the previous case, the combination of the two parallel code
brings again high performance.

7 Concluding Remarks

We have reported implementation strategies for FFT-based dense polynomial arithmetic
targeting multi-cores. We have extended our preliminary study [19] dedicated to multi-
plication leading to a complete set of efficient routines forpolynomial arithmetic oper-
ations, including normal form computations.

Since balanced bivariate multiplication is the kernel to which most of these routines
reduce, we have conducted an in-depth study on the implementation techniques for this
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Fig. 9. Normal form computation of an irregular 8-variate problem.

operation. Our performance analysis by VTune and Cilkscreen show that our imple-
mentations have good instruction and cache efficiency, and good parallelism as well.
In particular we have determined cut-off criteria between two variants of this balanced
bivariate multiplication based respectively on Cooley-Tukey FFT and the Truncated
Fourier Transform on multi-cores. The cut-off criteria aresimilar for all degree ranges
that we have tested. However, for a fixed degree range of the form [2k, 2k+1), the per-
centage of problems for which TFT-based method outperformsFFT’s increases with
the number of cores.

We have explained why the parallelization of normal form computation is challeng-
ing and also of great importance in symbolic computation. Wehave shown that, not
only efficient parallel multiplication can improve the performance of parallel normal
form computation, but also that this composition is necessary for parallel normal form
computation to reach peak performance on all input patternsthat we have tested.

For both problems of optimizing balanced bivariate multiplication and performing
efficient parallel computation of normal forms, we have combined theoretical and em-
pirical analyses. The former could not provide a precise answer due to simplification
hypotheses but helped narrowing the pattern ranges for the latter analysis.

Nevertheless, we would like to obtain more “realistic” results through complexity
analysis. In the context of this study, this means being ableto better take parallel over-
head into account: A subject of future research.

Another future work is the development of higher-level algorithms on top of the
basic polynomial algebra subroutines (BPAS) presented in this paper. Our driving ap-
plication is the solving of polynomial systems symbolically. Our next step toward this
goal is the parallelization of polynomial GCDs modulo regular chains, following the
work of [15].
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