FFT-based Dense Polynomial Arithmetic on Multi-cores

Marc Moreno Mazaand Yuzhen Xié

1 Ontario Research Centre for Computer Algebra
University of Western Ontario, London, Canada
moreno@csd.uwo.ca
2 Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, USA
yxie@csail.mit.edu

Abstract. We report efficient implementation techniques for FFT-based dense
multivariate polynomial arithmetic over finite fields, targeting multi-cores. We
have extended a preliminary study dedicated to polynomial multiplication and
obtained a complete set of efficient parallel routines in Cilk++ for polyiabm
arithmetic such as normal form computation. Since bivariate multiplicatien ap
plied to balanced data is a good kernel for these routines, we providedapth
study on the performance and the cut-off criteria of our different impletations

for this operation. We also show that, not only optimized parallel multiplication
can improve the performance of higher-level algorithms such as aldiom
computation but also this composition is necessary for parallel normmaldom-
putation to reach peak performance on a variety of problems that vectésted.

Keywords: parallel polynomial arithmetic, parallel polynomial rtiplication,
parallel normal form, parallel multi-dimensional FFT/T,RJilk++, multi-core

1 Introduction

Polynomial Arithmetic is at the core of every computer algefystem (CAS) such as
AXIOM, MAGMA, MAPLE, MATHEMATICA, NTL and REDUCE, and has an essential
impact on the performance of these software packages. Tiaybiquity of hardware
acceleration technologies (multi-cores, graphics prgingaunits, . . .) makes the devel-
opment ofbasic polynomial algebra subroutines (BPAS) necessary in order to support
CAS, akin to the BLAS in numerical linear algebra.

The work presented in this paper aims at contributing to éffisrt. In fact, and
up to our knowledge, this is the first report on the paraliion of dense polyno-
mial arithmetic, over finite fields and targeting multi-cerdll symbolic calculations
on univariate and multivariate polynomials can be reducetbimputing with polyno-
mials over finite fields (such as the prime fieldpZ for a prime numbep) via the
so-calledmodular techniques. Moreover, most symbolic calculations tend to densify
intermediate expressions even when the input and outpyhpuolials are sparse. See
Chapter 5 in [10] for an extensive presentation of theseside&ich explain why we
focus primarily on dense polynomials over finite fields.

Such polynomials are well suited for the use of asymptdtidast algorithms based
on FFT techniques. Note that some features of FFT technigreespecific to finite
fields, see Section 2.1 for details. In this context polyradmmiultiplication plays a cen-
tral role, and many basic operations on polynomials suchvési@h can be efficiently
reduced to multiplication. This observation has motivated preliminary study [19]
dedicated to FFT-based dense polynomial multiplicatioa.Hae shown thdtalanced
input data can maximize parallel speedup and minimize cache comploditivariate
multiplication. We say that a pair of multivariate polynaisi isbalanced if the par-
tial degrees of their product are equal (or very close). Heraunbalanced input data,
which are common in symbolic computation, are challengiig.have provided effi-
cient techniques to reduce multivariate (and univariateltiplication to balanced bi-
variate multiplication. Our implementation it€i | k++ [3] demonstrates good speedup
on multi-cores. Sections 2.2 to 2.4 summarize the contextlresults of [19].

In order to obtain a solid foundation library for basic padynial algebra subrou-
tines over finite fields and targeting multi-cores, at least ¢ssential problems need to
be handled and are addressed in this paper. In Sectionsd 1L.2nwve describe these
problems and present our solutions, which are detaileditiir@ections 3 to 6. Sec-
tion 1.3 describes our experimentation framework. Finathsection 7 we summarize
our results and discuss the outcome of this research.

1.1 Optimizing Balanced Bivariate Multiplication

FFT-based bivariate multiplication can be achieved by &tapof algorithms and im-
plementation techniques. Since balanced bivariate ntigkipon is the kernel to which
we are reducing multivariate multiplication, we need toedetine the most appropri-
ate algorithm and implementation techniques for the inpittigons of practical interest.
This problem ofcut-off criteria is essential in scientific computing. For instance, in
coding matrix multiplication, one is faced with choosinga@rg Strassen multiplica-
tion, classical multiplication and others; see [12] forailst

Determining cut-off criteria is even more challenging i tontext of multi-core
programming where both input data patterns and number @&scoeed to be taken
into account. This makes it necessary to combine theotetité empirical analysis.
The former cannot provide precise criteria due to simpliftcahypotheses but helps
narrowing the pattern ranges of the latter. Once the engpirgsults are obtained, the
theoretical analysis can also help understanding them.

In this work, we consider two implementations of bivariataltiplication. One is
based on Cooley-Tukey FFT; often we simply call it FFT. Thigeotis based on Trun-
cated Fourier Transform (TFT), see Sections 2.3. The thieat@analysis provides a
simple cut-off criterion between our two algorithms when gerially. Section 4, af-
ter a description of our implementation, provides expentakresults on 1, 8, 12 and
16 cores on a 16-core machine. We obtain simple cut-offr@iia each case and for
several degree patterns of practical interest. Thesetsesd important since for cer-
tain degree ranges and for certain numbers of cores TFTanttzly outperforms FFT
while FFT is faster in the other cases. Taking advantageadetiieatures can speedup
not only multiplication but also the operations that relyibn

1.2 Efficient Parallel Computation of Normal Forms

All basic operations on polynomials, such as division, carrdduced to multiplica-
tion. For multivariate polynomials over finite fields, twodi@operations are of high
interest:exact division andnormal form computations. Note that polynomial addition
is important too but does not bring any particular impleragoh challenges.

Given two multivariate polynomialg andg, we say thay divides f exactly if there
exists a polynomiad such thatf = gg¢ holds. Testing whethey divides f exactly and
computingg when this holds can be done using FFT-techniques simil&iosetused for
multiplication in Section 2.3. Hence we do not insist on thyeration since no major
additional implementation issues have to be handled witheet to multiplication.

However, computing normal forms (as defined in Section 2r&)gls new chal-
lenges. Indeed, complexity estimates show that the santlparallel times of these
computations (using the multi-threaded programming moé§d]) are exponential in
the number of variables, see Section 5. Moreover, the nuofleginchronization points
in a parallel program computing normal forms is also exptiaéim the number of vari-
ables. In addition, at each synchronization point the nurob¢hreads which need to
join grows with the input data size (precisely with theirtgrdegrees). Consequently,
the parallel overhead is potentially large. A first attengotdarallelizing the serial nor-
mal form algorithms of [17] reached limited success as reglan [14].

In this work, we investigate how our parallel multiplicatioode could be efficiently
composed with a parallel normal form implementation. Thas khe potential to in-
crease parallel speedup factors but also parallel overhead

Once again we approach this problem by combining theoteti@hempirical anal-
ysis. In the former, some parallel overhead (the one forligdigng a f or loop) is
taken into account, but not all. For instance, those comioig fsynchronization points
are neglected. In Section 5, this theoretical analysis estgghat parallel multiplica-
tion can improve the parallelism of parallel normal form qartation. In Section 6, our
experimentation not only confirms this insight but shows gaaallel multiplication is
necessary for parallel normal form computation to reachdgggeedup factors on all
input patterns that we have tested. These results are iamg@ihce normal form com-
putations represent the dominant cost in many higher-lalggdrithms, such as those
for solving systems of polynomial equations, which is ouvidg application.

1.3 Experimentation Framework

The techniques proposed in this paper are implemented ilCitke+ language [3],
which extends C++ to the realm of multi-core programmingsldasn the multi-threaded
model realized in [9]. The Cilk++ language is also equippéith\& provably efficient
parallel scheduler by work-stealing [2]. We use the seriab@ines for 1-D FFT and
1-D TFT from thenodpn library [16]. Our integer arithmetic modulo a prime number
relies also on the efficient functions fronbdpn, in particular the improved Mont-
gomery trick [18], presented in [17]. All our benchmarks aseried out on a 16-core
machine with 16 GB memory and 4096 KB L2 cache. All the prooesare Intel Xeon
E7340 @ 2.40GHz.

2 Background

Throughout this papeK designates the finite field/pZ with p elements, wherg > 2

is a prime number. All polynomials considered hereaftermatdtivariate with coeffi-
cients inK and withn ordered variables; < --- < x,,. The set of all such polynomials
is denoted b¥K[z1, . .., x,].

The purpose of this section is to describe algorithms for hasic operations in
K[z1,...,z,]: multiplication andnormal formcomputation. These algorithms are based
on FFT techniques. We start by stressing the specificitipeidbrming FFTs over finite
fields, in particular the use of thieuncated Fourier Transform (TFT). In the context of
polynomial system solving, which is our driving applicatjahis leads to what we call
the1-D FFT black box assumption.

2.1 FFTs over Finite Fields and the Truncated Fourier Transbrm

Using the Cooley-Tukey algorithm [6] (and its extensionshsas Bluestein’s algo-
rithm) one can compute theiscrete Fourier Transform (DFT) of a vector ofs complex
numbers withinD(s1g(s)) scalar operations. For vectors with coordinates in the @rim
field K, three difficulties appear with respect to the complex case.

First, in the context of symbolic computation, it is desleato restrict ourselves to
radix 2 FFTs since the radix must be invertiblé&imnd one may want to keep the ability
of computing modulo small primes evenp = 3,5,7, ... for certain types of modular
methods, such as those for polynomial factorization; seeChapter 14] for details. As
a consequence the FFT of a vector of sizwver the finite fieldK has the same running
time for all s in a range of the formj2¢, 2¢*1). This staircase phenomenon can be
smoothened by the so-call&duncated Fourier Transform (TFT) [11]. In most practical
cases, the TFT performs better in terms of running time anchomg consumption
than the radix-2 Cooley-Tukey Algorithm; see the experitagon reported in [17].
However, the TFT has its own practical limitations. In pautar, no efficient parallel
algorithm is known for it.

Another difficulty with FFTs over finite fields comes from thellbwing fact: a
primitive s-th root of unity (which is needed for running the Cooley-g&ukalgorithm
on a vector of size) exists inK if and only if s dividesp — 1. Consider two univariate
polynomialsf, g over K and letd be the degree of the produgy. It follows that fg
can be computed by evaluation and interpolation based oratlie 2 Cooley-Tukey
Algorithm (see the algorithm of Section 2.3 with= 1) if and only if some power o
greater thanl dividesp — 1. When this holds, computinflg amounts to:

g(s)s + 3s operations irK using the Cooley-Tukey Algorithm,

9
31

2

2(lg(s) +1)(d + 1) + 3s operations irK using TFT,

wheres is the smallest power df greater thanl. When this does not hold, one can
use other techniques, such as the®age-Strassen Algorithm [10, Chapter 8], which

introduces “virtual primitive roots of unity”. However, ihincreases the running time
to O(slg(s)lg(lg(s))) scalar operations.

Last but not least, when solving systems of algebraic egus{which is our driving
application), partial degrees of multivariate polynomigihcluding degrees of univari-
ate polynomials) rarely go beyond the million. This impltbat, in our context, the
lengths of the vectors to which 1-D FFT need to be applied arelly not large
enough for making efficient use of parallel code for 1-D FFT.

2.2 The 1-D FFT Black Box Assumption

The discussion of the previous section, in particular it [@aragraph, suggests the
following hypothesis. We assume throughout this paperweahave at our disposal
ablack box computing the DFT at a¢-primitive root of unity (whenK admits such
value) of any vector of size in the rangg2¢=1, 2] in time O(s1g(s))). However, we
do not make any assumptions about the algorithm and its imgai¢ation. In particular,
we do not assume that this implementation is a parallel oheréfore, we rely on
the row-column multi-dimensional FFT to create concurexgcution in the algorithm
presented in Section 2.3.

2.3 Multivariate Multiplication

Let f,g € K[z1,...,z,] be two multivariate polynomials. For eachletd; andd’; be
the degree iny; of f andg respectively. For instance, ff = x3zy + 2323 + 2222 + 1
we haved; = 3 anddy = ds = 2. We assume the existence of a primitieth rootw;,
for all i, wheres; is a power of 2 satisfying; > d; + d’; + 1. Then, the producfg is
computed as follows.

Step 1. Evaluatef andg at each point of the-dimensional grid (w{*, ...,wi"),0 <
e1 < $81,...,0 < e, < s,) via multi-dimensional FFT.

Step 2: Evaluatef g at each poin of the grid, simply by computing(P) g(P).

Step 3: Interpolatef g (from its values on the grid) via multi-dimensional FFT.

The above procedure amounts to:

o[s)sitlsn) + (n+ s = Ssla(s) + (n -+ 1)s @

i=1 j#i

operations inkK, wheres = s; - - - s,,. If our 1-D FFT black box relies on TFT rather
than the Cooley-Tukey algorithm, the above estimate besome

gZ(Hsj)(di+d’,;+1)(1g(s,;)+1) + (n+ D)]Jdi+di+1). (2

i=1 j#i i=1

2.4 Balanced Bivariate Multiplication

In [19], the authors give a cache complexity estimate of fgerdthm of Section 2.3
under the assumption of 1-D FFT black box. Using the thecaktnodel introduced
in [8], and denoting byL the size of a cache line, they have obtained the following

upper bound: s + cs(E + -+ é) for some constant > 0 on the number of
cache misses. This suggests the following definition. Tlreopaolynomialsf, g is said
balanced if all the partial degrees of their product are equal, thaf i, +d’'; = d; +d’;
holds for all2 < 7 < n. Indeed, for fixeds andn, this bound is minimized when
the pair f, g is balanced; moreover it reaches a local minimumat 2 ands; =
se = \/s. Experimentation reported in [19] confirms the good perfamge ofbalanced
bivariate multiplication, that is, bivariate multiplication with balanced input.d2a on
these results, the authors have developed techniquesen toréfficiently reduce any

dense multivariate polynomial multiplication to baland®eariate multiplication.

2.5 Normal Form Computation

Let f,g1,...,9n € K[z1,...,x,] be polynomials. Recall that variables are ordered as
1 < -+ < z,. We assume that the sgjy, . . ., g, } satisfies the following properties:

(1) forall 1 <4 < n the polynomialg; is non-constant and its largest variable:js

(73) forall 1 < i < nthe leading coefficient of; w.r.t. z; is 1,

(¢93) forall2 < i <nandalll < j < ithe degree of; in z; is less than the degree
of gj in Zj, that iS,deg(g,;, .Z’j) < deg(gj,o:j).

Such a set is calledraduced monic triangular set. The adjectives triangular, monic and
reduced describe respectively the above propefijesii) and(iii). We will denote by
0; the degree ofy; in x; and byé the productd, - - - §,,. For instance, witm = 2,
g1 = #2 +1andg, = z3 + x1, the set{gy, g2} is a reduced monic triangular set.
Observe that this notion is dependent on the variable ordeh our example, the set
{91, g2} would no longer be triangular for the ordering < .

Reduced monic triangular sets are special cases obrggr bases [7] and enjoy
many algorithmic important properties. We are interesteckhin the following one.
There exists anique polynomialr € K[z, ..., z,] such that the following hold:

(iv) eitherr = 0 holds or for alll < ¢ < n the degree of in x; is less thar;,
(v) fiscongruentte modulo{g,...,g,} thatis, there exist polynomials, . .., ¢,
€ K[zy,...,z,] such that we havef = r + ¢191 + - - - + ¢ngn.

Such a polynomiat is called thenormal formof f w.r.t.{g1, ..., g, }. Considemn, g1, g2
as above and = a3z, +x227. Thenr = —z,+1 is the normal form off w.r.t. {g1, g2}
Indeed we havef = r + g1 g1 + g2g2 With g2 = z; andgq; = x5 — 1; moreover we have
deg(r, 331) < 01 anddeg(r, .132) < 0.

In broad terms the polynomialis obtained after simplifying w.r.t. {g1,...,gn}. It
is, indeed, what the commasd npl i f y computes in computer algebra systems such
as MapLE, when this command is applied foand{g1,...,g,}. This is an essential
operation in symbolic computation and the above resukstiduat- is uniquely defined
as long as it satisfiggv) and(v). One natural way for computingis as follows:

(a) Initialize r,, ;1 to bef.
(b) For+ successively equal to,n — 1,...,2,1 computer; as the remainder in the
Euclidean division of-; 1 by g;, regarding these polynomials as univariate:jn

(c) Returnr;.

In our example we set; = f and compute, the remainder of3 by go which is
ry = mox? — 2. Then we compute; the remainder of, by g; which is—z5 + 1.

This procedure suffers from intermediate expression s\{#tlis cannot be seen on
very simple example, of course.) One can check that the dégrg of the successive

remainders,, ..., r, may dramatically increase unti} is finally divided byg;. Con-
siderg,, 21121 _1% —Lgn-1= xqzz—l —(E% —1,...,02= x% —1’% -Lg = x% +1
andf = z3---22_ 2} We will obtainry = (2% + 1)?"~2 whereas is simply0.

This phenomenon is better controlled by an algorithm pregdsy Li, Moreno
Maza and Schost in [17]. This latter procedure relies on €8iekeking-Kung'’s “fast
division trick” [5, 20, 13] which reduces an Euclidean digis to two multiplications.
The algorithm of [17] proceeds by induction on the numberasfables and its pseudo-
code is shown below. The base case, thatis 1, is given by the procedufgéormalForm;
which is in fact Cook-Sieveking-Kung's fast division. Thergeral case is given by the
NormalForm; procedure foR < i < n where the input polynomiaf is assumed to be
in K[z1,...,z;) and{gi, ..., ¢;} is a reduced monic triangular setifjz, ..., z;]. A
few comments are needed about these two procedures.

— Rev(g;) designates theeversal of the polynomialg;. that is, the polynomial ob-
tained fromg; by reversing the order of its coefficients; for instaiRev(g;) =

323 + 221 + 1 for g = 2% + 221 + 3.

deg(f,zi)—deg(gi,zi)+1
Ty

— Rev(g;)™" mod g1,...,gi1, is the inverse ofRev(g;)

modulo the reduced monic triangular def;, . .. ,gi_hx?eg(-f@i)—deg(gim)+1};
this can be computed viggmbolic Newton Iteration, see [10, Chapter 8].

— In practice the quantities, ..., S, are pre-computed and stored before calling
NormalForm;. Therefore, the computations of these quantities are kentanto
account in any complexity analysis of these procedures.

— map(NormalForm;_1, Coeffs(f, z;),{g1,...,9i—1}) is the polynomial inz; ob-
tained fromjf by replacing each coefficient gfin z; with its normal form w.r.t.

{glw--»gifl}-

NormalFormy (f, {g1})

165 := Rev(glf1 mod x(lleg(f’xl)_deg(gl’xl)ﬂ
2 D :=Rev(f)S; mod gt/ m)-deslgrm)tl
3 D:=g; Rev(D)

4 return f— D

NormalForm;(f,{g1,-.-,9:})
1 f:=map(NormalForm;_1, Coefs(f, z;),{g1,...,9i-1})

2 S;:=Rev(g;)”" mod g1,...,gi-1, x?eg('f’wi)_deg(gi’mHl

3 D:=Rev(f)S; mod w?Eg(fymi)*deg(gi,xi)+1

4 D :=map(NormalForm;_1, Coeffs(D, z;),{g1,-..,9i-1})
5 D :=g;Rev(D)

6 D :=map(NormalForm;_1, Coeffs(D, x;),{g1,...,9i—1})
7 return f — D

Observe that performingormalForm; simply amounts to two multiplications. More
generally,NormalForm; requires two multiplications angl(§; + 1) recursive calls to
NormalForm;_1. In [17], the authors have shown thabrmalForm,,(f,{g1,...,9n})
runs inO (4™ 1g(0) 1g(lg(d))) operations irk.

3 Cutoff Analysis for Dense Bivariate Multiplication

As mentioned in the introduction, the work in [19] identifibdlanced bivariate multi-
plication as a good kernel for dense multivariate multggiion. Bivariate multiplication
based on FFT techniques, and under the 1-D FFT black box g@isumncan be done
via either 2-D FFT or 2-D TFT. More precisely, the necessafy BEFTs of the algo-
rithm of Section 2.3 can be performed via either the Coolekel algorithm or TFT.
In order to optimize our balanced bivariate multiplicatimrde, we need to determine
when to use these different 1-D FFT routines. This sectitereh first answer based on
algebraic complexity analysis meanwhile Section 4 willyide experimental results.

Recall that we aim at applying bivariate multiplication &ldnced pairs. In practice,
as mentioned in [19], using “nearly balanced” pairs is ofgfiicient. Hence, with the
notations of Section 2, we can assume thhat- d’; andds + d’o are of the same
order of magnitude. Moreover, it is often the case thaandd’; are quite close, for
all 1 < i < n. For instance, in normal form computations, we hdye< 2d’; — 2
forall 1 < i < n (up to exchanging the role of and g). Therefore, in both the
experimental analysis of Section 4 and in the complexityyaigof the present section,
we can assume that all partial degrelesd’ 1, d», d’5 are of the same order. To keep
experimentation and estimates manageable, we will asshatehey all belong to a
range[2*, 2++1) for somek > 2. In the case of our complexity analysis, we will further
assume that all;, d’1, d2, d’s are equal (or close) to a valddn such a range.

We call degree cut-off FFT vs TFT a valued € [2¥,2F+1) such that the work (or
algebraic complexity) of bivariate multiplication basad2D TFT is less than the one
of bivariate multiplication based on 2-D FFT. Our objectineghe sequel of this section
is to determine the smallest possible cut-off for a givemegaif.

To this end, we have developed azFLE package (available upon request) that ma-
nipulates polynomials with rational number coefficientd aith & and2* as variables.
We denote byQ[k, 2¥] the set of these objects. It satisfies all the usual algebuégs
on such expressions plus other operations targeting caitpbmnalysis. For instance,
our package computes symbolic logarithms of appropriagenehts ofQ[k, 2] and
performs asymptotic majorations (i.e. majorations thad fiar £ big enough).

The table below gives the work for the algorithm of Sectiadhw&hen 1-D FFTs are
performed by TFT. Note that for all in the range2*, 2%+1) the work of the Cooley-
Tukey bivariate multiplication ig8 x 4% (3k + 7).

Determining degree cut-off's (for FFT vs TFT) implies solgiinequalities of the
form p > 0 for p € Q[k,2¥]. We achieve this by using standard techniques of real
function analysis and we omit the details here.

For different valued of the form2* +¢; 25~ +. . .4+-¢;2¥~7 where eacla,, . . ., ¢ is
either0 or 1, we have compared the work of our bivariate multiplicatiaséd on either
FFT or TFT. The above table lists some of our findings. Theselt® suggest that for

Table 1. Work of TFT-based bivariate multiplication

d Work
2F 3(2FFT +1)%(7 + 3k)
28 42kt 81k 4% + 270 4 + 54 k 2% + 180 2% + 9k + 30
2k 4 oh=1 4 ok=2 4L gk 4+ T 4% 4+ 63 k 28 4210 28 4 9k + 30
2F 4okt 4ok 4 ok 3 2025 ;4% 4 3375 4% 4 135 2k 4 225 2% + 9k + 30

Table 2. Degree cut-off estimate

(c1,c2,c3,¢4,C5,Cq,Cr) ‘ Range for which this is a cut-off
(1,1,1,0,0,0,0) 3<k<5
(1,1,1,0,1,0,0) 5<k<7
(1,1,1,0,1,1,0) 6<k<9
(1,1,1,0,1,1,1) 7T<k<I11
(1,1,1,1,0,0,0) 11<k<13
(1,1,1,1,0,1,0) 14<k<18
(1,1,1,1,1,0,0) 19 <k <28

every rangd2”®, 2F*1) that occur in practice (see Section 4) a sharp (or minimajjeske
cut-off is arounc® 4 2F—1 + 282 4 2k=3_Our experimental results lead in fact to
2k 4+ 2k=1 4 9k=2 on 1 core, which seems to us coherent. Indeed our complexatysis
does not take several important factors such as memory raareag overhead and etc.

4 Efficient Implementation for Balanced Bivariate Multiplicati on

In this section we present our implementation techniqued-fer-based polynomial
multiplication on multi-cores. These techniques avoidegessary calculations and re-
duce memory movement, Although we focus on balanced bieanmltiplication, our
explanation covers to the general case, which we had todsnanyway. Indeed, op-
timizing our code in the general multivariate case was rssrgs<o make a fair perfor-
mance evaluation of our balanced bivariate multiplicatmd our reduction to it. We
evaluate the performance of our implementation using VTdhand Cilkscreen [3].
We further compare the performance and determine expetaibethe cut-off between
TFT- and FFT-based bivariate multiplication for a largegawnf polynomials.

4.1 Implementation Techniques

As in Section 2, leff € K[x1,--- ,z,] be a multivariate polynomial with degrek in
x;, forall 1 < ¢ < n. We represenf in a dense recursive manner w.r.t. the variable
orderzy, < ... < z,. This encoding, which is similar to an—dimensional matrix in
row-major layout, is defined as follows:

— The coefficients off are stored in a contiguous one-dimensional afay
— The coefficient of the termS* .. . z¢» isindexed by; - - - €,,_1e,+41 -+ - bp_2€p_1
+---+/lieg +e1in B,wherel; =d; +1foralll1 <i<n.

The parallelization of the multiplication algorithm in Siem 2.3 takes advantage
of the ease-of-use of the parallel construct€iih k++. For instance, when evaluating
a polynomial by means of a-dimensional FFT, the 1-D FFTs computed along ¢he
th dimension (for each < i < n) are parallelized by &i | k_f or loop. Similarly,
Sep 2 of the multiplication algorithm is performed bya | k_f or . A special care is
needed, however, for handling the large data sets and fnéquemory access that this
algorithm may involve. We described below the challengesam solutions.

Data transposition. A number ofn — 1 data transpositions is needed when performing
the row-columnr-dimensional algorithm. Data transposition is purely mgmmound
and can be a bottleneck. For thedimensional case, we use the cache-efficient code
provided by Matteo Frigo. It employs a divide-conquer aptopresented in [8] which
fits the base case into the cache of the targeted machinénd-ouiti-dimensional case,
we divide the problem into multipl2-dimensional transpositions where Matteo Frigo’s
cache-efficient code can be applied. Consider for instarideasiate polynomial rep-
resentation, with dimension sizes ©f, so, s3 and where the variable ordering has to
be changed from; < x5 < x3t0x3 < 25 < 1. First we exchange; andx, by
means ofs3 number of2-dimensional transpositions of sizes,. This gives the order

of zo < x1 < z3. To exchanges andxs, we view variables:; andxz; as one variable
and group their coefficients vector into one of size s3s;. Then, one-dimensional
transposition of sizés3z will suffice. The resulting variable order is now < x5 < 7.

Avoiding unnecessary calculations and reducing memory movement. We first
discuss the implementation of the algorithm of Section 2t#mvthe 1-D FFTs are
performed by the (radix 2) Cooley-Tukey algorithm. We adltectwo workspaced and
B each with size = sy - - - s,, for the evaluation of andg respectively. To prepare for
the interpolation of the produgtg, the coefficient data of andg are scattered to the
appropriate positions oft and B. One can make these data movements first and then
evaluate the polynomials. We use a more cache-efficient mggad. On the evaluation
of the first variable off, we copy in parallel each of th@y + 1) - - - (d,, + 1) number of
coefficient vectors of sizé, + 1 from f to the corresponding vector of sizein A and
continue the evaluation of this vectorihby a 1-D FFT in place. This method improves
the data-locality. It also saves from not doing FFTSon - - s,) — (d2+1) - - - (dy, +1)
number of sizes; vectors of zeros. We proceed similarly wigh

For the TFT version of the algorithm of Section 2.3, we hawdized two imple-
mentations. One implementation is similar to the one abowkvee call it “in-place”.
Each data transposition has to be done for the sjzmit the number of 1-D FFTs in
an evaluation or interpolation are boundedisy= (d; + d} +1)---(d,, + d, + 1),
the size of the product. Our second implementation is “dtgtace”. We only allocate
one extra workspac€' of sizeps. C is used for the evaluation @f. We will use the
space of the product for the evaluation fofand the result will be in the right place.
Savings can be gained on the evaluation of the first variaktled same way as above.
The difference is as follows. To evaluate a veatpof sized; + d; + 1 in variablex;,

we allocate a temporary vectirof sizes; as a workspace and copy the datao s;
and then perform 1-D TFT ity; ¢; is freed after use.

Our benchmark shows that the “out-of-place” TFT-based ouokth more efficient
for balanced problems (that is when the partial degreesegbtbduct are equal); more-
over the performance of this approach becomes even bettar thie number of cores
increases. However, for problems with unequal partial eegin the product, the “in-
place” TFT-based method works better. We will study in a fetwork the causes of
this behavior.

4.2 Performance Evaluation

We use VTune [4] and Cilkscreen [3] to evaluate the perforceasf our implementa-
tion. We measure the instruction, cache and parallel effigien 8 processors for the
multiplication of bivariate polynomials with partial dezggs in the range ¢2047, 4096].

Table 3 lists a selection of events and ratios reported bynéTor FFT-based and
TFT-based methods respectively. Due to the availabilit)/®fine in our laboratory,
these measurements are done on a 8-core machine with 8 GBrin&taoh processor
is Intel Xeon X5460 @3.16GHz and has 6144 KB of L2 cache.

For all the tested problems by either FFT or TFT method, tbleitks per instruc-
tions retired (CPI) is aroun@ 8. Their L2 cache miss rates are bel6w008. The very
small modified data sharing ratios (less thaf0025) imply that, chances of threads
racing on using and modifying data laid in one cache line arg ilow. However, TFT-
based method use about three times less number of instracttired than FFT-based
for problems which are worst cases for FFT, such24sl8, 2048), (2048, 4096) and
(4096, 4096). These account for the better timing of TFT-based method foertain
range of degrees, shown in the figures of next section.

Table 3. Performance evaluation by VTune for TFT-based and FFT-bas#ubhe

Method di da INST. Clocks per L2 cache Modified data Time on
RETIRED instructions miss rate sharing ratio 8 cores
(x10?) retired (CPI) 10™?) (x107?) (s)

TFT-based 2047 2047 44 0.794 0.423 0.215 0.86
2048 2048 52 0.752 0.364 0.163 1.01

2047 4095 89 0.871 0.687 0.181 2.14

2048 4096 106 0.822 0.574 0.136 2.49

4095 4095 179 0.781 0.359 0.141 3.72

4096 4096 217 0.752 0.309 0.115 4.35

FFT-based 2047 2047 38 0.751 0.448 0.106 0.74
2048 2048 145 0.652 0.378 0.073 2.87

2047 4095 79 0.849 0.745 0.122 1.94

2048 4096 305 0.765 0.698 0.094 7.64

4095 4095 160 0.751 0.418 0.074 3.15

4096 4096 622 0.665 0.353 0.060 12.42

We use Cilkscreen to estimate the parallelism of these ngnimistances by mea-
suring theirwork andspan; recall that we rely on the multi-threaded parallelism mode
introduced in [2]. The data measured by Cilkscreen are suinethin Table 4 . The
parallel overhead appears very low and the burdened piégalles nearly equal to the
expected parallelism. The speedup factors that we obgorted in the next section,
are as good as the estimated ones.

Table 4. Performance evaluation by Cilkscreen for TFT-based and FFTdbasthod

Method di1 d2 Work Span/ Parallelism/ Speedup
Burdened Burdened estimates
(x10°) span &10°) parallelism 4P 8P 16P
TFT-based 2047 2047 45 0.613/0.614 74.18/74.02 3.69-4 6.77-8 11.63-16
2048 2048 53 0.615/0.616 86.35/86.17 3.74-4 6.96-8 12.22-16
2047 4095 109 0.118/0.118 92.69/92.58 3.79-4 7.09-8 12.54-16
2048 4096 125 1.184/1.185 105.41/105.27 3.80-4 7.19-8 11688-
4095 4095 193 2.431/2.433 79.29/79.24 3.71-4 6.86-8 11.89-16
4096 4096 223 2.436/2.437 91.68/91.63 3.76-4 7.03-8 12.43-16
FFT-based 2047 2047 40 0.612/0.613 65.05/64.92 3.64-4 6.59-8 11.08-16
2048 2048 155 0.619/0.620 250.91/250.39 3.80-4 7.50-8 14655-
2047 4095 98 1.179/1.180 82.82/82.72 3.77-4 6.99-8 12.23-16
2048 4096 383 1.190/1.191 321.75/321.34 3.80-4 7.60-8 114682-
4095 4095 169 2.429/2.431 69.39/69.35 3.66-4 6.68-8 11.35-16
4096 4096 392 2 .355/2.356 166.30/166.19 3.80-4 7.47-8 11%87-

4.3 Cut-off between TFT- and FFT-based Methods

We compare the performances of the FFT- and TFT-based &iganultiplication.
More precisely and as discussed in Section 3, we considérathpartial degrees
dqi,do,d'1,d > are between two consecutive powers of 2 and we would like terde
mine for which degree patterns the TFT approach outperfonm$&FT one. We study
the following three degree rang€g56,512), [1024,2048) and [4096, 8192). In gen-
eral, we use the “in-place” implementations of FFT- and TH&ed methods. When the
partial degrees of the product are equal, the “out-of-glaéd-based method is used.

Table 5. Sizes and cut-offs of three sets of problems

No.|Input degree Product size Size cut-off on
range range 1 core 8cores 12cores 16 cores
1 256-511 263169-1046529 786596 814012 861569
2| 1023-2047 4198401-1676902512545728 13127496 14499265 16433645
3| 4095-8191 67125249-2684026882660762 207958209 227873850 257370624

FT method on 1 core (

.85-6.
FT method on 1 core (2.27

NN
lwiw}
=47
N
o

8
+
FEFA A, x g ¥
r st FFTREFRITEEE L LT
e Y
P gl i
6 +¢ir¢$¢$rir$+§g§§ ¥ TEiirs.
X‘%%%;;i(*(?xx
r P RX g X
Time(s) 5 X%Xxff%x;gx
4+ FELXX Sx x X
X FFEX %
X X X x X
X XX X
3 r x XX g xX
XXXX
2 b
1k

&
B

4096 dy+dy+1

Fig. 1. Timing of bivariate multiplication for input degree range[©024, 2048) on 1 core.

Table 6. Cut-off details between TFT-based and FFT-based bivariate multiplication

No.|#cores TFT-based Method FFT-based Method
Time Speedup Faster Timeratio Time Speedup Faster Time ratio
(s) factor portion TFT/FFT (s) factor portion FFT/TFT
1 1(0.120-0.419 75% 2.55-10.305-0.338 25% 1.0-1.20

810.020-0.065 5.5-6.7 78% 2.50-]00050-0.055 6.0-6.3 22% 1.0-1.17
12]0.015-0.048 5.5-9.0 82% 2.73-100038-0.044 7.4-8.2 18% 1.0-1.15
2 1| 2.27-8.13 2.58-1.0 75% 5.85-6.60 25% 1.0-1.20
8| 0.309-1.08 6.8-7.6 78% 2.61-100806-0.902 7.2-7.3 22% 1.0-1.16
12)0.224-0.779 8.2-11.0 86% 2.77-100613-0.707 9.3-9.8 14% 1.0-1.09
16|0.183-0.668 7.8-14.1 98% 3.18-100688-0.661 9.6-10.8 2% 1.0-1.02
3 1| 42.2-154.3 76% 2.63-11010.9-123.2 24% 1.0-1.20
8| 5.52-20.07 6.8-7.8 77% 2.69-118.82-16.57 7.4-7.6 23% 1.0-1.17
12| 3.75-14.10 9.0-11.4 85% 2.92-110.96-12.72 9.9-10.3 15% 1.0-1.03
16| 3.09-11.36 9.5-14.9 96% 3.12-1.0.55-11.02 11.0-12.0 4% 1.0-1.04

The sizes and the cut-offs on 1, 8, 12 and 16 cores for the sietseof problems are
summarized in Table 5. Table 6 lists the timings, the speddctors, the percentages
of the size range and the ratio by which TFT or FFT is supewgottiie three sets of
problems on 1, 8, 12 and 16 cores. To provide an insight vieth@benchmarks, we
display the complete timing results and their cut-off regien w.r.t. the size of the
product for the range dfi024,2048) on 1, 8 and 16 cores in Figures 1 to 6.

Figures 1 to 6 reveal clearly the different performances 6T-Fand TFT-based
methods for the problems in stwith partial degrees in the range {f024, 2048),
which is[210,211). Here, the timing of FFT-based method is about the same fftel

10 T T
2-D
2-D

FﬁT melthod o‘n 1 co‘re (1.dO—1.26x fastler for éS% o% the rénge) T
TFT method on 1 core (2.58-1.00x faster for 75% of the range) ~ x

x
x X

)‘X
H*

*
ww&@wﬁ@ﬁ@ﬁﬁﬁﬁﬁ%ﬁ%%ﬂﬁw R
+)eé)oé(x R,

Time(s)

o
T T T T T T T T T T T T T T T T T T

X
x
X
x

T T T ST T Y T T S S S N

Size of the Product (xlOs)

Fig. 2. Size cut-off for input degree range [d024, 2048) on 1 core.

problems, but the timing of TFT-based method is correlatethé size of the partial
degrees. This result agrees with our complexity analygisrted in Expressions (1)
and (2) in Section 2.3. Expression (1) indicates that thekvi@mr multiplying any pair
of n-variate polynomials with partial degreds andd’; in a range of[2¥, 2k+1) by
FFT-based method is constant, and determined by the vakjewbiich is2”(*+2) . This
reflects the well-knowrstaircase phenomenon of FFT. Meanwhile, the work of TFT-
based method grows linearly wifff;"_, (d; + d’; + 1), as indicated by Expression (2).
Therefore, in a certain lower range[af’, 2**1), TFT-based method performs better.
Overall, both FFT- and TFT-based methods show good speeatgpré on 8 to 16
cores, with peak performance for the latter. The cut-ofecia are similar for all degree
ranges, independent of the magnitude of the degrees. Imealemnge of2*, 2¢+1), the
percentage of problems for which the TFT-based method dietpes FFT’s increases
with the number of cores. On one core, the TFT-based methuettisr for the first5%
of the sizes by at most a factor ®%6. This is coherent to the theoretical analysis result
in Section 3, taking into account the memory managemenheaer in our implemen-
tation. On 16 cores, the TFT-based method is superior fooWs% of the problem
range by a maximum factor ¢f2. The mechanism that favors the TFT-based method
on multi-cores will be studied further.

5 Parallelism Estimates for Normal Form Computations

The recursive structure of the procediemalForm,, in Section 2.5 offers opportuni-
ties for concurrent execution. Moreover, this procedulieseon multivariate multipli-
cation and we can hope to increase parallelism by relyinguoparallel multiplication.
Estimating this extra parallel speedup factor is a funddalgmoblem, as discussed in
the introduction. This section offers a first answer basedamplexity analysis mean-
while Section 6 will provide experimental results.

2-D FFT method on 8 cores (0.806-0.902 s, 7.2-7.3x speedup) ~ +
2-D TFT method on 8 cores (0.309-1.08 s, 6.8-7.6x speedup) X

11 YT
+F T F A N

1r PO el SR o« x

09 e TR R

) b3 Frsis Py w

08 | +##{FIEFIIEREEG gfﬁgﬁxx*f Fi FEFET
% ¥ %

o5 | xEREEFE L um

Time(s)g g |- NET Sdols x X
« FFFEXX X K x
05 | xR EEERE N
XXX xx

04 x KR X

03 x x X X

0.2 |

01 r

4096 dy+dy+1

Fig. 3. Timing of bivariate multiplication for input degree range[©24, 2048) on 8 cores.

We first consider the span (or parallel running time) of trgodathms in Section 2
by means of the multi-threaded programming model of [9]sThodel, however, does
not explicitly cover parallel for-loops, which are needed both multiplication and
normal form computations.

Following the way ai | k_f or loop is implemented in thei | k++ language [3],
we assume that the span of a for-loop of the form

for i froml to n do BODY(i); end for;

is bounded by (lg(n)S) whereS is the maximum span @&ODY(i) fori intherange
1. . n. Consequently the span of a nested for-loop

for j in 1..mdo
for i from1l to n do BODY(i); end for;
end for;

is bounded byD(lg(n)lg(m)S).
Definings = s - -+ s, and? = [];_, lg(s;), it is easy to check that the span of the
multiplication algorithm of Section 2.3 is

3> (IT1e(si))sile(s:) + 3] [1e(s:) = 3¢ <Z i+ 1) (3)
i=1 i=1

i=1 j#i
operations irK, when the Cooley-Tukey algorithm is used for 1-D FFTs. Tktineates
becomes

n

SN

32@(di+d’i+ D(g(si) +1) + 3[[le(di+d'i+1), ()
i=1 ¢ i=1

which is the same order of magnitude as

n

33 (di + i +1) + 3[[laldi +d's +1), (5)

=1 =1

13 T

F‘T metﬁod on‘8 corés (1.dO—1.1éx fastler for '22% o% the rénge) T

T
2-DF
2-D TFT method on 8 cores (2.61-1.00x faster for 78% of the range) ~ x g

D
12 | D

11t < A

%
1t %" 1

%
09 - ++m3‘§4#§+++~
08 | H*###MW@%%Mﬁ%g:%&;x
0.7 | ; d
06 | g

Time(s)

05

04 x %
03} X Bl
0.2 B
0.1 Bl

Size of the Product (xlOs)

Fig. 4. Size cut-off for input degree range [d024, 2048) on 8 cores.

when all thes; become large.

We turn now to the span estimates for the procedluenalForm; when applied to
fand{g,...,q:} whereg,...,g; is a reduced monic triangular setifz, . .., z;]
(see Section 2) andl is a polynomial ofK[z1, ..., z;]. In practice, the partial degree
of f w.rtx; is at most2d; — 2, for all 1 < ¢ < n. Indeed, the polynomiaf is often
the product of two polynomials andb which are reduced w.r.t. the reduced monic
triangular set{g1, ..., g;}, thatis, which satisfyleg(a, z;) < d§,; anddeg(b, z;) < J;
foralll1 <j <.

Defined, = (41, ...,d;). Letus denote bWy (d,) andSu(9,) the work and span of
a multiplication algorithm applied th andg; whereh satisfiesleg(h, z;) < d, for 1 <
Jj <ianddeg(h,z;) < 2§; — 2. Let alsoSnr(d;) be the span oflormalForm; applied
to f and{g1,...,g;}. If the procedurdormalForm; is run with a serial multiplication,
then we have:

Snr(9;) = 34i Snr(d;—1) +2Wwm(d;) + & (6)

where/; = Hj.:l lg(d;). Similarly, if the procedur&ormalForm, is run with a parallel
multiplication, we obtain:

Snr(d;) = 34 Snr(d;—1) +25m(9;) + Li (7)

Neglecting logarithmic factors and denoting &yhe maximum ob; for all 1 < i < n,
the sparSyr(d;) € O(3"d™) if a serial multiplication is used, otherwisar(9,) €
O(3™d) if a parallel multiplication is used. Since the wofkyr(J;) € O(4™d™) (again
neglecting logarithmic factors) this implies that workagpand parallelism (i.e. the
ratio of work divided by span) are all exponential in the nembf variables. This
suggests that obtaining efficient parallel implementatitthe procedurélormalForm;
is interesting but also challenging.

In Tables 7 and 8, the span NbrmalForm, is computed for = 1,2,3 andj; =
<o = 6; = dwith d € {2F 2% + 2*=1} Fori = 1, the spans oNormalForm; with

-D FFT method on 16 cores (0.588-0.661 s, 9.6-10.8x speedup) +
-D TFT method on 16 cores (0.183-0.668 s, 7.8-14.1x speedup) X

NN

0.8
0.7
0.6

0.5 X
Time(s) X IRERE XL

0.4

0.3

0.2
0.1

4096 dytdy'+1
Fig. 5. Timing of bivariate multiplication for input degree range[©624, 2048) on 16 cores.

Table 7.Span of TFT-based normal form féy = (2, ...,2").

i | With serial multiplication ‘ With parallel multiplication

1 [18k 2F + 44 2F + 10k + 22 12k2F +242F + 11k +20

2| 72k4F 4168 4F 4 o(4F) 60 k2 2F 4 168 k2 2% 4 96 28 4 o(2%)

3| 216 k8" +496 8% + o(8%) | 216 k3 2% + 720 k? 2% + 720 k 2% + 288 2% + o(2)

or without parallel multiplication are essentially the sarmmdeed we assume that 1-D
FFTs are run serially. The slight gain is explained by th¢ ifaStep 1of the algorithm
of Section 2.5. One can evaluate the two input polynomiateaoently.

Fori = 2, the gain obtained from the use of a parallel multiplicaizrasymp-
totically in the order of© (2% /k). Fori = 3, this become® (4% /k?). This suggests
that a parallel multiplication code (even under the 1-D Fllck box assumption) can
speedup substantially a parallel code KarmalForm; with ¢ > 2.

In Table 9, we provide the span NbrmalForm; for another degree pattern, namely
for §; = 2¥ andg;_; = --- = ¢; = 1. This configuration is actually the general one for

Table 8.Span of TFT-based normal form féy = (2% 4+ 2F=1 ... 2% 4 2F~1),

i With serial multiplication ‘ With parallel multiplication

1] 27k 2F +932F 410k + 32 18k 2F 4+ 5428 1 11k + 27

2| 162 k4" 4 540 4% + o(4%) 90 k2 2% 4 396 k2 2F 4 378 2% + o(2F)

3| 729 k 8% 42403 8% + o(8%) | 324 k® 2% + 1836 k* 2% 4 3186 k 2F + 1782 2% + o(2F)

0.8

T

2- D FFT method on 16 cores 1 E) 0‘2>< fas‘ter for'2% of‘the rénge) Ty

0.75 - 2-D TFT method on 16 cores (3.18-1.00x faster for 98% of the range) x 7

0.7 Bl
4

0.65 | b4 LS I I
%;ﬁ h: S *

06 **L;&Mﬁﬁﬁ%‘i@% Ja2 SN B S

0.55 S B X]

X %

% X)gx
05 | "ixxx L BX

045 | WXMX X]
0.4 x ’xx § X x :

035 | x% 1
03 |
0.25 - x % 1
02 %

0.15 - 1
01} 1
0.05 - 1

Time(s)
%
Yo
%

Size of the Product (xlOs)

Fig. 6. Size cut-off for input degree range [d024, 2048) on 16 cores.

the polynomials describing the symbolic solutions of polyral systems with finitely
many solutions. We call fthape Lemma after the landmark paper [1] where this degree
pattern was formally studied and from which the terminolaggerived.

In Table 10, we provide the limit of the parallelismMérmalForm; whenk goes to
+o00 (that is the ratio between work and span) for the same degitéerps as in Table 9.

Table 9. Span of TFT-based normal form féy = (2%,1,...,1).

7 With serial multiplication ‘ With parallel multiplication

2 144 k 2F + 642 2F + 76 k + 321 72k 2F + 144 2F + 160 k + 312

4 | 4896 k 2F 4 45028 2% + 2488 k + 22514 | 1296 k 2F 4 2592 2% 4- 6304 k 4 12528
8 | 3456576 k 2F 4 71229768 2F + o(2") 209952 k 2% 4 419904 2% 4 o(2")

Table 9 suggests that f@hape Lemma degree patterns and for a fixed number of
variables, the extra speedup factor provided by a paralldfiplication (w.r.t. a serial
one) is upper bounded by a constant. This does not imply giagyparallel multipli-
cation in a parallel normal form fdshape Lemma degree patterns would be of limited
practical interest. Table 10 suggests that a parallel pligiéition can indeed increase
the parallelism oNormalForm,, in particular when the number of variables is large.

These complexity estimates do not take into account phoa#ehead. In the case of
NormalForm;, those are potentially large. Indeed, after Steps 1, 4 afiéi6ronalForm;,
there is a synchronization point f@d; + 1) threads, namely théj; + 1) recursive
calls to NormalForm;_;. Observe also that the number of synchronization points of

Table 10.Parallelism estimates of TFT-based normal formfoe= (2%,1,...,1).

i With serial multiplication With parallel multiplication
2 13/8 ~ 2 13/4 ~3

4 1157/272 ~ 4 1157/72 ~ 16

8 5462197/192032 ~ 29 5462197/11664 ~ 469

NormalForm; is 3°!. This puts a lot of “burden” on the parallelism of this proaesl
Section 6 will tell how much can really be achieved in prastic

6 Efficient Parallel Computation of Normal Forms

We present now our experimental results for efficient paliatition of normal forms.
Our key techniques include reducing multivariate multiation to bivariate and com-
posing the parallelism of bivariate multiplications witiat at the level of the normal
form algorithm, as discussed in Section 5. We study threeayplegree patterns, il-
lustrated in Figures 7, 8 and 9. All the benchmarks show thgoimtant role of parallel
bivariate multiplication in improving the performance afrmal form computations.

16.00 1
Main degs of triset: 8191, 8191
14.00 Partial degs of poly: 16380, 16380
—a—with parallel bivariate multiplication
12.00 - =@-with serial bivariate multiplication
10.00

6.00

4.00

2.00 -
2.04

0.00

0 2 4 6 8 10 12 14 16
Number of Cores

Fig. 7. Normal form computation of a large bivariate problem.

Figure 7 displays the speedup factors for computing the abfonm of a bivariate
problem with serial bivariate multiplication and with pleabivariate multiplication.
The main degrees of the polynomials of a triangular se8&9& and8191, and the par-
tial degrees of the polynomial under simplification 46880 and16380. The speedup

Main degs of triset: 64, 64, 64, 64
Partial degs of poly: 126, 126, 126, 126

=—&—with parallel bivariate multiplication 13.32
=&-with serial bivariate multiplication

0 2 4 6 8 10 12 14 16
Number of Cores

Fig. 8. Normal form computation of a medium-sized 4-variate problem.

of normal form computation without parallel multiplicatias very poor, abou?.0 on
16 cores. The parallelization of the bivariate multiplicasohelps improving the per-
formance significantly, by a factor 6f

Figure 8 demonstrates thie0 times of improvement contributed by the parallel
bivariate multiplications involved in the normal form coutgtion of a medium-sized
4-variate problem, where all the main degrees of the trikmget are equal t64, and
all the partial degrees of the polynomial to be reducedlaée The 8-variate problem,
described in Figure 9 with main degree pattern o924, 2, 2, 2, 2, 2, 2, 2", shows a
speedup 010.75 on 16 cores without parallel bivariate multiplication. Compdseith
parallel bivariate multiplication it can achieve a moresattory speedup off3.4.

These results show that, when the number of variables id,sagl2, the parallelism
of our normal form routine can be small. However, if the inpatynomial degrees are
large enough, parallel multiplication can increase theal/parallelism substantially.
In the Shape Lemma case, when the number of variables is tag®8, our normal form
routine already possesses a high parallelism. Hence, boagh parallel multiplication
cannot help as much as in the previous case, the combindtitbe two parallel code
brings again high performance.

7 Concluding Remarks

We have reported implementation strategies for FFT-basedalpolynomial arithmetic
targeting multi-cores. We have extended our preliminaungs{19] dedicated to multi-
plication leading to a complete set of efficient routinesdolynomial arithmetic oper-
ations, including normal form computations.

Since balanced bivariate multiplication is the kernel tockimost of these routines
reduce, we have conducted an in-depth study on the implati@mtechniques for this

Main degs of triset: 1024,2,2,2,2,2,2,2

Partial degs of poly: 2046, 2,2,2,2,2,2,2
—a&—with parallel bivariate multiplication
=&-with serial bivariate multiplication

10.57

10.75

0 2 4 6 8 10 12 14 16
Number of Cores

Fig. 9. Normal form computation of an irregular 8-variate problem.

operation. Our performance analysis by VTune and Cilkscs®w that our imple-
mentations have good instruction and cache efficiency, aod garallelism as well.
In particular we have determined cut-off criteria betwesa variants of this balanced
bivariate multiplication based respectively on Cooleykdy FFT and the Truncated
Fourier Transform on multi-cores. The cut-off criteria amilar for all degree ranges
that we have tested. However, for a fixed degree range of the[®¥, 2*+1), the per-
centage of problems for which TFT-based method outperfdffE's increases with
the number of cores.

We have explained why the parallelization of normal form paiation is challeng-
ing and also of great importance in symbolic computation. A&fee shown that, not
only efficient parallel multiplication can improve the pemhance of parallel normal
form computation, but also that this composition is neagsfa parallel normal form
computation to reach peak performance on all input pattiatsve have tested.

For both problems of optimizing balanced bivariate muitiglion and performing
efficient parallel computation of normal forms, we have coreld theoretical and em-
pirical analyses. The former could not provide a precisevanslue to simplification
hypotheses but helped narrowing the pattern ranges foattez hnalysis.

Nevertheless, we would like to obtain more “realistic” iésthrough complexity
analysis. In the context of this study, this means being @bbetter take parallel over-
head into account: A subject of future research.

Another future work is the development of higher-level aitjons on top of the
basic polynomial algebra subroutines (BPAS) presentelisnpaper. Our driving ap-
plication is the solving of polynomial systems symboligalDur next step toward this
goal is the parallelization of polynomial GCDs modulo reguthains, following the
work of [15].

Acknowledgements.This work was supported by NSERC and the MITACS NCE of
Canada, and NSF under Grants 0540248, 0615215, 054120962h811. We are also
very grateful for the help of Professor Charles E. LeiserfamMatteo Frigo and all
other members of SuperTech Group at CSAIL MIT and Cilk Arts.

References

1. E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shafpthe shape lemma. In

Proc. of ISSAC' 1994, pages 129-133, NY, USA, 1994. ACM Press.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded coriquoseby work steal-

ing. InIEEE FOCS94, 1994.

Cilk Arts. Cilk++. http://www.cilk.com/.

Intel Company. Intel VTune Performance Analyzer 9.1 for Lindnttp://www.intel.com/.

S. Cook.On the minimum computation time of function. PhD thesis, Harvard Univ., 1966.

J. Cooley and J. Tukey. An algorithm for the machine calculation ofpbexrFourier series.

Math. Comp., 19:297-301, 1965.

7. D. Cox, J. Little, and D. O’She&Jsing Algebraic Geometry. Graduate Text in Mathematics,
185. Springer-Verlag, New York, 1998.

8. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandrachezablivious algorithms.
In 40th Annual Symposium on Foundations of Computer Science, pages 285—-297, 1999.

9. M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation ofitked multithreaded
language. IPMCM SIGPLAN, 1998.

10. J.von zur Gathen and J. Gerhavtbdern Computer Algebra. Cambridge Univ. Press, 1999.

11. J. van der Hoeven. Truncated Fourier transfornPrbot. | SSAC' 04. ACM Press, 2004.

12. S.Huss-Lederman, E. M. Jacobson, A. Tsao, T. TurnbullJaRdJohnson. Implementation
of strassen’s algorithm for matrix multiplication. 8upercomputing’96: Proceedings of the
1996 ACM/I EEE conference on Supercomputing (CDROM), page 32, Washington, DC, USA,
1996. IEEE Computer Society.

13. H. T. Kung. On computing reciprocals of power seribsimerische Mathematik, 22:341—
348, 1974.

14. X. Liand M. Moreno Maza. Multithreaded parallel implementation @haretic operations
modulo a triangular set. IRroc. PASCO' 07, pages 53-59, NY, USA, 2006. ACM Press.

15. X. Li, M. Moreno Maza, and W. Pan. Computations modulo regulainsh InProc. of
ISSAC’ 09, pages 239-246. ACM Press, 2009.

16. X. Li, M. Moreno Maza, R. Rasheed, afd Schost. The modpn library: Bringing fast
polynomial arithmetic into maple. IMICA 08, 2008.

17. X. Li, M. Moreno Maza, andE Schost. Fast arithmetic for triangular sets: From theory to
practice. InProc. ISSAC' 07, pages 269-276, NY, USA, 2007. ACM Press.

18. P. L. Montgomery. Modular multiplication without trial divisioMathematics of Computa-
tion, 44(170):519-521, 1985.

19. M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplicatiomalticores. In
Proc. PDCAT’ 09, Hiroshima, Japan, 2009.

20. M. Sieveking. An algorithm for division of powerseriggomputing, 10:153-156, 1972.

N

S

