
Balanced Dense Polynomial Multiplication on Multicores

Marc Moreno Maza† and Yuzhen Xie⋆

†Ontario Research Centre of Computer Algebra, University of Western Ontario, London, Canada
⋆Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Overview

In symbolic computation, polynomial multiplication is a funda-

mental operation akin to matrix multiplication in numerical com-

putation. We present efficient implementation strategies for FFT-

based dense polynomial multiplication targeting multi-cores. We

show that balanced input data can maximize parallel speed-up and

minimize cache complexity for bivariate multiplication. However,

unbalanced input data, which are common in symbolic computa-

tion, are challenging. We provide efficient techniques that we call

contraction and extension to reduce multivariate (and univariate)

multiplication to balanced bivariate multiplication. Our implemen-

tation in Cilk++ demonstrates good speed-up on multi-cores.

FFT-based Multivariate Multiplication

Let K be a field and f , g ∈ K[x1 < · · · < xn] be polynomials.

Define di = deg(f, xi) and d′i = deg(g, xi), for all i. Assume there

exists a primitive si-th root ωi ∈ K, for all i, where si is a power of

2 satisfying si ≥ di +d′i +1. Then fg can be computed as follows.

Step 1. Evaluate f and g at each point of the n-dimensional grid

((ωe1
1 , . . . , ωen

n), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by com-

puting f (P)g(P),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Complexity Estimates

•Let s = s1 · · · sn. The number of operations in K for computing

fg based on FFTs is

9

2

n∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9

2
s lg(s) + (n + 1)s.

•Under our serial 1-D FFT assumption, the span of Step 1 is
9

2
(s1 lg(s1) + · · · + sn lg(sn)), and the parallelism of Step 1 is lower bounded

by
s/max(s1, . . . , sn). (1)

•Let L be the size of a cache line. For some constant c > 0, the

number of cache misses of Step 1 is upper bounded by

n
cs

L
+ cs(

1

s1
+ · · · + 1

sn
). (2)

•Remark: For n ≥ 2, Expr. (2) is minimized at n = 2 and

s1 = s2 =
√

s. Moreover, when n = 2, under a fixed s = s1s2,

Expr. (1) is maximized at s1 = s2 =
√

s.

Contraction to Bivariate

•Example. Let f ∈ K[x, y, z] where K = Z/41Z, with deg(f, x) =

deg(f, y) = 1, deg(f, z) = 3 and recursive dense representation:
f

z0

y0

x0

8

x1

40

y1

x0

7

x1

24

z1

y0

x0

16

x1

0

y1

x0

5

x1

2

z2

y0

x0

21

x1

17

y1

x0

3

x1

37

z3

y0

x0

18

x1

4

y1

x0

29

x1

16

Contracting f (x, y, z) to f ′(u, v) by xe1ye2 7→ ue1+2e2, ze3 7→ ve3:
f ′

v0

u0

8

u1

40

u2

7

u3

24

v1

u0

16

u1

0

u2

5

u3

2

v2

u0

21

u1

17

u2

3

u3

37

v3

u0

18

u1

4

u2

29

u3

16

•Remark. The data is “essentially” unchanged by contraction,

which is a property of recursive dense representation.

•Below, the left figure displays the timing of 4-variate multipli-

cation via 4-D TFT, 1-D TFT by Kronecker substitution and

contraction to balanced 2-D TFT on 1 core; The right figure

shows the speedups of 4-variate multiplication using 4-D TFT

and contraction to balanced 2-D TFT on 8 and 16 cores.

 1024
 1280

 1536
 1792

 2048 1024
 1280

 1536
 1792

 2048

 20

 40

 60

 80

 100

 120

 140

 160

 180

Time

4-D TFT method on 1 core (43.5-179.9 s)
Kronecker substitution of 4-D to 1-D TFT on 1 core (35.8- s)

Contraction of 4-D to 2-D TFT on 1 core (19.8-86.2 s)

d1=d1’ d4=d4’ (d2=d2’=d3=d3’=1)

Time

 1024
 1280

 1536
 1792

 2048 1024
 1280

 1536
 1792

 2048

 2

 4

 6

 8

 10

 12

 14

 16

Speedup

Contraction of 4-D to 2-D TFT on 16 cores (8.2-13.2x speedup, 15.9-29.9x net gain)
Contraction of 4-D to 2-D TFT on 8 cores (6.5-7.7x speedup, 12.8-16.5x net gain)

4-D TFT method on 16 cores (2.7-3.4x speedup)

d1=d1’ d4=d4’ (d2=d2’=d3=d3’=1)

Speedup

Extension from Univariate to Bivariate

•Example: Consider f, g ∈ K[x] univariate, with deg(f) = 7

and deg(g) = 8; fg has “dense size” 16. We obtain an integer

b, such that fg can be performed via fbgb using “nearly square”

2-D FFTs, where fb := Φb(f), gb := Φb(g) and

Φb : xe 7−→ ue rem b ve quo b.

Here b = 3 works since deg(fbgb, u) = deg(fbgb, v) = 4; moreover
the dense size of fbgb is 25. Extending f (x) to fb(u, v) gives

f

x0

32

x1

13

x2

5

x3

7

x4

8

x5

11

x6

40

x7

35

=⇒

fb

v0

u0

32

u1

13

u2

5

v1

u0

7

u1

8

u2

11

v2

u0

40

u1

35

u2

0

•Proposition: For any non-constant f, g ∈ K[x], one can always

compute b such that |deg(fbgb, u) − deg(fbgb, v)| ≤ 2 and the

dense size of fbgb is at most twice that of fg.

•Example (ctnd): Computing the bivariate product fbgb:

fbgb

v0

u0

c00

u1

c01

u2

c02

u3

c03

u4

c04

v1

u0

c10

u1

c11

u2

c12

u3

c13

u4

c14

v2

u0

c20

u1

c21

u2

c22

u3

c23

u4

c24

v···

u···

· · ·

Converting back to fg from fbgb requires only to traverse the
coefficient array once and perform at most deg(fg, x) additions.

fg

x0

c00

x1

c01

x2

c02

x3

c03 + c10

x4

c04 + c11

x5

c12

x6

c13 + c20

x7

c14 + c21

x8

c22

x9,··· ,15

· · ·

Balanced Multiplication

•Definition. A pair of bivariate polynomials p, q ∈ K[u, v] is

balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

•Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can

assume d1 >> di and d1
′ >> di for 2 ≤ i ≤ n (up to variable

re-ordering and contraction). We obtain fg by

Step 1. Extending x1 to {u, v}.
Step 2. Contracting {v, x2, . . . , xn} to v.

Determine the above extension Φb such that fb, gb is (nearly) a

balanced pair and fbgb has dense size at most twice that of fg.

•The left figure shows the timing of univariate multiplication via

1-D TFT and extension to balanced 2-D TFT on 1, 2, 16 cores;

The right one shows the timing of our balanced multiplication

for an unbalanced 4-variate case on 1, 2, 16 cores vs the method

based on 1-D TFT via Kronecker substitution.

 8.12646
 16.2529

 24.3794
 32.5059

 8.12646
 16.2529

 24.3794
 32.5059

 0

 10

 20

 30

 40

 50

 60

 70

 80

Time

Extension of 1-D to 2-D TFT on 1 core (2.2-80.1 s)
1-D TFT method on 1 core (1.8-59.7 s)

Extension of 1-D to 2-D TFT on 2 cores (1.96-2.0x speedup, 1.5-1.7x net gain)
Extension of 1-D to 2-D TFT on 16 cores (8.0-13.9x speedup, 6.5-11.5x net gain)

d1 x 106
d1’ x 106

Time

 32768
 40960

 49152
 57344

 65536 32768
 40960

 49152
 57344

 65536
 0

 2

 4

 6

 8

 10

 12

 14

 16

Time

Ext.+Contr. of 4-D to 2-D TFT on 1 core (7.6-15.7 s)
Kronecker substitution of 4-D to 1-D TFT on 1 core (6.8-14.1 s)

Ext.+Contr. of 4-D to 2-D TFT on 2 cores (1.96x speedup, 1.75x net gain)
Ext.+Contr. of 4-D to 2-D TFT on 16 cores (7.0-11.3x speedup, 6.2-10.3x net gain)

d1 (d2=d3=d4=2) d1’ (d2’=d3’=d4’=2)

Time

Acknowledgements. This work was supported by NSERC and MITACS
NCE of Canada, and NSF Grants 0540248, 0615215, 0541209, and 0621511. We
are very grateful for the help of Professor Charles E. Leiserson, Dr. Matteo Frigo
and all other members of SuperTech Group at CSAIL MIT and Cilk Arts.

