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Overview

In symbolic computation, polynomial multiplication is a funda-

mental operation akin to matrix multiplication in numerical com-

putation. We present efficient implementation strategies for FFT-

based dense polynomial multiplication targeting multi-cores. We

show that balanced input data can maximize parallel speed-up and

minimize cache complexity for bivariate multiplication. However,

unbalanced input data, which are common in symbolic computa-

tion, are challenging. We provide efficient techniques that we call

contraction and extension to reduce multivariate (and univariate)

multiplication to balanced bivariate multiplication. Our implemen-

tation in Cilk++ demonstrates good speed-up on multi-cores.

FFT-based Multivariate Multiplication

Let K be a field and f , g ∈ K[x1 < · · · < xn] be polynomials.

Define di = deg(f, xi) and d′i = deg(g, xi), for all i. Assume there

exists a primitive si-th root ωi ∈ K, for all i, where si is a power of

2 satisfying si ≥ di +d′i +1. Then fg can be computed as follows.

Step 1. Evaluate f and g at each point of the n-dimensional grid

((ωe1
1 , . . . , ωen

n ), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by com-

puting f (P )g(P ),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Complexity Estimates

•Let s = s1 · · · sn. The number of operations in K for computing

fg based on FFTs is

9
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n∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9

2
s lg(s) + (n + 1)s.

•Under our serial 1-D FFT assumption, the span of Step 1 is
9

2
(s1 lg(s1) + · · · + sn lg(sn)), and the parallelism of Step 1 is lower bounded

by
s/max(s1, . . . , sn). (1)

•Let L be the size of a cache line. For some constant c > 0, the

number of cache misses of Step 1 is upper bounded by

n
cs

L
+ cs(

1

s1
+ · · · + 1

sn
). (2)

•Remark: For n ≥ 2, Expr. (2) is minimized at n = 2 and

s1 = s2 =
√

s. Moreover, when n = 2, under a fixed s = s1s2,

Expr. (1) is maximized at s1 = s2 =
√

s.

Contraction to Bivariate

•Example. Let f ∈ K[x, y, z] where K = Z/41Z, with deg(f, x) =

deg(f, y) = 1, deg(f, z) = 3 and recursive dense representation:
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Contracting f (x, y, z) to f ′(u, v) by xe1ye2 7→ ue1+2e2, ze3 7→ ve3:
f ′
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•Remark. The data is “essentially” unchanged by contraction,

which is a property of recursive dense representation.

•Below, the left figure displays the timing of 4-variate multipli-

cation via 4-D TFT, 1-D TFT by Kronecker substitution and

contraction to balanced 2-D TFT on 1 core; The right figure

shows the speedups of 4-variate multiplication using 4-D TFT

and contraction to balanced 2-D TFT on 8 and 16 cores.
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Extension from Univariate to Bivariate

•Example: Consider f, g ∈ K[x] univariate, with deg(f ) = 7

and deg(g) = 8; fg has “dense size” 16. We obtain an integer

b, such that fg can be performed via fbgb using “nearly square”

2-D FFTs, where fb := Φb(f ), gb := Φb(g) and

Φb : xe 7−→ ue rem b ve quo b.

Here b = 3 works since deg(fbgb, u) = deg(fbgb, v) = 4; moreover
the dense size of fbgb is 25. Extending f (x) to fb(u, v) gives
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•Proposition: For any non-constant f, g ∈ K[x], one can always

compute b such that |deg(fbgb, u) − deg(fbgb, v)| ≤ 2 and the

dense size of fbgb is at most twice that of fg.

•Example (ctnd): Computing the bivariate product fbgb:
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Converting back to fg from fbgb requires only to traverse the
coefficient array once and perform at most deg(fg, x) additions.
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Balanced Multiplication

•Definition. A pair of bivariate polynomials p, q ∈ K[u, v] is

balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

•Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can

assume d1 >> di and d1
′ >> di for 2 ≤ i ≤ n (up to variable

re-ordering and contraction). We obtain fg by

Step 1. Extending x1 to {u, v}.
Step 2. Contracting {v, x2, . . . , xn} to v.

Determine the above extension Φb such that fb, gb is (nearly) a

balanced pair and fbgb has dense size at most twice that of fg.

•The left figure shows the timing of univariate multiplication via

1-D TFT and extension to balanced 2-D TFT on 1, 2, 16 cores;

The right one shows the timing of our balanced multiplication

for an unbalanced 4-variate case on 1, 2, 16 cores vs the method

based on 1-D TFT via Kronecker substitution.
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