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ABSTRACT
We present an evidence Bayesian framework, which can learn both
the prior distributions and posterior distributions from data, for
continuous-density hidden Markov models (CDHMM). The goal of
this study is to build the regularized CDHMMs to improve model
generalization, and achieve desirable recognition performance for
unknown test speech. Under this framework, we develop an EM
iterative procedure to estimate the marginal distribution or the ev-
idence function for exponential family distributions. By adopting
the variational Bayesian inference, we derive an empirical Bayesian
solution to CDHMM parameters and their hyperparameters. Such
a regularized CDHMM compensates the model uncertainty and the
ill-posed conditions. Compared with maximum likelihood (ML)
or other Bayesian approaches with heuristic hyperparameters, the
proposed approach can utilize available data more effectively. The
experiments on noisy speech recognition using Aurora2 show that
the proposed Bayesian approach performs better than the baseline
ML CDHMMs especially with mismatched test data or limited
training data.

Index Terms— hidden Markov model, evidence framework,
variational Bayesian

1. INTRODUCTION

Robust acoustic modeling plays an important role for speech recog-
nition when the collected training data are sparse and noisy. The
ill-posed conditions severely hampers in the trained hidden Markov
models (HMMs) to recognize test data robustly and model uncer-
tainty deteriorates the recognition performance. Accordingly, we are
motivated to present an evidence framework of continuous-density
HMMs (CDHMMs). This framework assures the model generaliza-
tion by fulfilling Bayesian regularization theory. Under this frame-
work, the marginalization of likelihood function over the uncertainty
of HMM parameters is calculated, and acts as the objective func-
tion to be optimized to build the regularized CDHMMs. Compared
with the point estimate of CDHMMs in maximum likelihood (ML)
training, the regularized CDHMMs are known as the distribution es-
timate, which is inherently robust to the variations of model distribu-
tions. This idea fulfills Mackay’s evidence framework [1, 2]. There-
fore, the regularized CDHMMs can achieve better classification per-
formance by using insufficient or noisy training data.

In implementing model regularization, the selection of suitable
prior distribution or its hyperparameters is critical. In general, there
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are two approaches, subjective Bayesian and objective Bayesian,
which are useful to select priors. In former approach, the priors are
built based on some background knowledge while in the latter ap-
proach, also referred as the empirical Bayes, the priors are automati-
cally learned from training data. In speech recognition systems using
Bayesian learning, it is popular to estimate hyperparameters based
on some intuitive data statistics and optimization metrics [3, 4]. The
collection of validation data is usually required. However, under the
evidence framework, the hyperparameters are selected from train-
ing data, and the resulting evidence is maximized to assure model
generalization.

In previous studies, the evidence framework [1, 2] has been ap-
plied to linear regression model, support vector regression model
[5], and neural networks. This study applies the evidence frame-
works to exponential family distributions and CDHMMs, and shows
their effectiveness in characterizing the model uncertainty from data.
Different from [1, 5, 2], a marginal likelihood using CDHMMs is
calculated without a Laplace approximation. Owing to the miss-
ing labels of state and mixture component, we present a variational
expectation-maximization (EM) algorithm [6, 7] to estimate the hy-
perparameters of Gaussian mean vector, covariance matrix, and mix-
ture weights. These hyperparameters are iteratively updated by EM
procedure according to the variational inference with decomposi-
tion of CDHMMs and missing labels. We also illustrate this evi-
dence framework by using graphical models [8] of the regularized
CDHMMs and their variational models. In the experiments of noisy
speech recognition, the proposed method outperforms baseline ML
method, and the improvement is significant in presence of insuffi-
cient training data.

2. EVIDENCE FRAMEWORK FOR EXPONENTIAL
FAMILY DISTRIBUTIONS

We begin by discussing the evidence framework for the basic com-
ponent distributions used in CDHMMs. Most of them, such as the
Gaussian distribution, multinomial distribution for mixture weights
and transition probabilities, can be grouped into the exponential fam-
ily. Hence, we study the generic solution for the exponential family.
Supposing that K distributions, which take the same form but re-
spectively governed by parameters λ1, λ2, · · · , λK , share an identi-
cal prior distribution governed by the hyperparameter η. (Obviously,
setting individual priors for them is a special case.) Based upon to
the evidence framework, we can obtain the best η̂ in the sense of
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Fig. 1. A graphical model of the evidence framework

maximum type II likelihood:

η̂ = arg max
η

KY
i=1

Z
p(Di|λi)p(λi|η)dλi (1)

where Di = {xi,1, xi,2, · · · , xi,γi} represents the observed data
set of the ith distribution.

A graphical representation of such a problem is shown in Fig.
1. We can observe that Eq.(1) can be regarded as a maximization
of the data likelihood with respect to η, by marginalizing out the
model parameters λi. Hence, we solve it with the EM algorithm
by treating λi as latent variables. In the E-step, we evaluate the
following auxiliary function:

Q(η, ηold) =

KX
i=1

Z
p(λi|Di, η

old) ln p(Di, λi|η)dλi (2)

As shown in the graphic model, Di and η are independent given
λi, i.e., Di ⊥ η|λi. Based on this property, we can simplify the
logarithm term in the integrand:

ln p(Di, λi|η) = ln p(Di|λi) + ln p(λi|η) (3)

With an adopted conjugate prior, the posterior p(Di|λi, η) takes
the same form as its prior. Hence, we can represent it by p(λi|η̃old

i ),
where η̃old

i is the posterior parameter of λi after observing the data
set Di. In this context, by substituting Eq.(3) into Eq.(2), we have:

Q(η, ηold) =

KX
i=1

Z
p(λi|η̃old

i ) ln p(λi|η)dλi + C (4)

where C is a constant independent of η.
In the M-step, we maximize Q to find ηnew based upon the con-

crete form of p(xi|λi). In this study, aiming at a more general so-
lution, we focus on distributions in the exponentially family, which
can be represented in a general form[1]:

p(xi|λi) = h(xi)g(λi) exp[λ�
i u(xi)] (5)

where h(x) is some function of x, g(λ) is a normalization term and
u(x) is sufficient statistics. To facilitate the mathematical derivation,
we choose the conjugate prior in Bayesian learning:

p(λi|χi, νi) = f(χi, νi)g(λi)
νi exp(νiλ

�
i χi) (6)

For convenience, here we decompose the hyperparameter η into
(χ, ν) which are hyperparameters of exponential distribution fam-
ily and f(χ, ν) is a normalization term to ensure a valid pdf.

In the E-step, we can calculate the posterior distribution λi with
sufficient statistics and the hyperparameter:

ν̃i = ν + γi, χ̃i =

Pγi
n=1 u(xi,n) + νχi

ν̃i
(7)

By substituting Eqs.(5), (6) and (7) into Eq.(4) and maximizing it,
we obtain ηnew in the M-step:

〈λ, ln[g(λ)]〉ηnew =
1

K

KX
i=1

〈λ, ln[g(λ)]〉η̃old
i

(8)

In general, this implicit equation can be solved by the Newton
method. As shown below, for most of the parameters used in
CDHMMs, we have closed-form solutions.

3. EVIDENCE FRAMEWORK FOR CDHMMS

Now we study the evidence framework for CDHMMs. Because the
most popular output distributions used in CDHMMs are Gaussian
mixture models (GMMs), we consider this specific case in this paper.
However, with the general solution proposed in the above section, we
can easily extend the results to other kinds of output distributions.

In the training phase, when applying the evidence framework
to CDHMMs, we cannot derive a concise EM algorithm to jointly
deal with the latent variables of the model parameters as well as the
hidden Gaussian component sequence. As we know, in Bayesian
training, various approximated approaches such as variational Bayes
[9] and quasi-Bayes [10] has been studied to approximate the joint
posterior. Here we follow the variational Bayesian approach.

3.1. Variational Bayesian Training for CDHMMs

In CDHMM with GMM output distributions, given the sequential
observation xT

1 , we calculate p(λ, qT
1 |xT

1 ) in the E-step. Here λ
denotes the CDHMM parameters set, and qT

1 denotes the underly-
ing Gaussian component sequence. Because exact evaluation of the
posterior is intractible, in variational Bayesian, we assume the pos-
terior can be decomposed into:

p(λ, qT
1 |xT

1 , ηold) ≈ p(λ|xT
1 , ηold)p(qT

1 |xT
1 , ηold) (9)

It leads to a minor revision of the conventional Baum-Welch algo-
rithm for estimating CDHMM, and the difference is to use the fol-
lowing quantity instead of the corresponding component distribution
probability:

p′(xt|qt = i) = exp

jZ
ln p(xt|λi)p(λi|η)dλi

ff
(10)

We shall give the concrete form of it when discussing the CDHMM
parameters in the following section. Based upon it, occupancies of
all the Gaussian components can be obtained in the Baum-Welch
procedure to collect statistics. Given the statistics, it is straightfor-
ward to apply the proposed evidence based Bayesian training for the
assumed exponential family.

Accordingly, the resultant occupancy γit = p(qt = i|xT
1 , λ, ηold)

for each Gaussian components i at time t, derived by the Baum-
Welch algorithm, can be used to collect the following statistics:

γi =

TX
t=1

γit, γi(x) =

TX
t=1

γitxt

γi(xx�) =

TX
t=1

γitxtx
�
t (11)
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3.2. CDHMM Parameter Update

With the statistics collected in the E-step of variational Bayesian pro-
cedure, we can apply the EM based maximum evidence algorithm
proposed in section 2 to CDHMMs parameters, and the concrete up-
date algorithm is shown below.

To give a clear view of the algorithm, we first give a concep-
tual pseudo code of the algorithm. The whole training procedure is
shown in Table 1. Without setting any knowledge-based prior, the
process can automatically train Bayesian models on a given data set
by iteratively updating priors and corresponding posteriors. The up-
date formulas for concrete CDHMM parameters is provided in the
following sections.

Table 1. The pseudo code of evidence framework based Bayesian
training for CDHMMs

iteration loop:
variational E-step:

conduct Baum-Welch on the training set, by using
Eq.(10) instead of Gaussian probabilities, and

collect statistics γi, γi(x), γi(xx�)
variational M-step:

maximum evidence E-step:
calculate η̃old

i for all the CDHMM parameters
maximum evidence M-step:

solve ηnew with Eq.(15) and

while the evidence gap is larger than a threshold

3.2.1. Gaussian parameters

For Gaussian distribution N (x; μi, R
−1
i ), we have λi = {μi, R

−1
i },

and the corresponding conjugate prior takes a Gaussian-Wishart
form as:

p(μi, Ri|η) = N (μi; μ0, β
−1
0 R−1

i )W(Ri; R0, ν0) (12)

where the hyperparameter η is collectively defined by {μ0, R0, β0, ν0}.
Accordingly, in VB training, the revised probability of Eq.(10) can
be calculated as:

ln p′(xt|qt = i) = −1

2
{D(ln π +

1

β̃i

− Ψ(
ν̃i

2
) + ln ν̃i)

− ln |R̃i| + (xt − μ̃i)
�R̃i(xt − μ̃i)} (13)

where Ψ(ν) ≡ ∂
∂ν

ln Γ(ν) is a digamma function, and D is the
dimension of x.

By aligning Gaussian distribution with the general exponential
form of Eq. (5), and substituting the concrete form into Eqs. (7) and
(8), we obtain the maximum evidence EM formulas for Gaussian
parameters:

1. Maximum evidence E-step:

β̃old
i = βold

0 + γi, ν̃old
i = νold

0 + γi

μ̃old
i =

βold
0 μold

0 + γi(x)

β̃old
i

R̃
old

i = ν̃i

j
νold
0 (Rold

0 )−1 + γi(xx�) − γi(x)γ�
i (x)

γi
+

βold
0

γiβ̃old
i

ˆ
γi(x) − γiμ0

˜ˆ
γi(x) − γiμ0

˜�ff−1

(14)

2. Maximum evidence M-step:

Rnew
0 =

1

K

KX
i=1

R̃
old

i , μnew
0 =

(Rnew
0 )−1

K

KX
i=1

R̃
old

i μ̃old
i

1

βnew
0

=
1

K

"
KX

i=1

(
1

β̃old
i

+
(μnew

0 − μ̃old
i )�R̃

new

i (μnew
0 − μ̃old

i )

D
)

#

νnew
0 = Φ−1

"
1

K

KX
i=1

(Φ(ν̃old
i ) +

1

D
ln

|R̃old

i |
|Rnew

0 | )
#

(15)

where Φ(ν) ≡ Ψ(ν/2) − ln(ν/2).

3.2.2. Mixture weights

The mixture weights used in GMMs follow a multinomial distribu-
tion, which is also a member of exponential family. By adopting
the corresponding conjugate prior, i.e., Dirichlet distribution, we can
also use the general solution of Eqs. (7) and (8) to solve it. Because
of space limitation, the detailed solution is omitted here.

3.3. Bayesian predictive classification

In testing, given a Bayesian version of CDHMMs, we should make
use of the posterior distribution of model parameters instead of their
point estimates. The method is usually referred to as Bayesian pre-
dictive classification (BPC) [4]. Strictly apply BPC in decoding is
cumbersome, and in this study we follow the approximation used
in [7], which marginalizes the model parameter on each individual
frame and calculates the probability of the resultant Student-t distri-
bution instead of the original Gaussian distribution [3, 7].

4. EXPERIMENTS

The evidence framework of CDHMMs was tested on Aurora2, a con-
nected digit recognition task [11]. Meanwhile, whole-word HMMs
were built for each of the eleven digits ranging from ‘zero’ to ‘nine’,
and ‘oh’, and 3-component GMMs were adopted as the output dis-
tributions for all the states, with all the covariance matrices set to be
diagonal. In Bayesian training, all the Gaussian components belong-
ing to the same GMM share an identical prior distribution. Because
we mainly focus on the Gaussian components in this study, we didn’t
apply evidence framework to mixture weights and transition proba-
bilities and only set fixed prior for them, following [7].

In Table 2, we compare the word recognition accuracies of ML
trained models and evidence trained models. It can be observed
when the mismatch between training and testing set is small, i.e., at
a low signal-to-noise (SNR) ratio, the ML training achieves slightly
better performance. But as the mismatch becomes large, the maxi-
mum evidence Bayesian approach yields better results.

Because with the full training set, data is sufficient for the
relatively small number of whole word models, the gap between
ML and Bayesian training is not distinctively different. Hence,
we also studied the difference between ML and proposed training
in case of insufficient training data. First, we compared the av-
erage word accuracy on the testing set of three systems, in both
clean training and multi training cases, and plotted the results in
Fig. 2 and Fig. 3, respectively. The three systems are: 1. Ev-
idence framework based training Beyesian training; 2. Conven-
tional Bayesian training with manually set prior using the pro-
posed method in [7]. In this method, μ0, R0 are derived with data
statistics [7], and β0, ν0 are experimentally determined. We tried
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Fig. 2. Performance comparison with a variable size of clean training
data

β0 = ν0 = 0, 0.001, 0.05, 0.1, 0.5, 1, 2, 10 but only plotted the
best result in solid line, as well as other two representative results
in dashed line. We can observe that the evidence framework outper-
forms not only the ML training, but also the state-of-the-art Bayesian
approach with manually set priors. Note that in clean training and
multi training, the best β0, ν0 differs significantly, and inappropriate
setting of them can sometimes lead to even worse performance than
the ML system. Obviously, it is hard to make a good suggestion
on how to manually set the hyperparameters. However, the evi-
dence framework is always shown the best performance without any
heuristic setting of hyperparameter.

Table 2. Word accuracy (%) comparison on Aurora2

clean train multi train

SNR ML evidence ML evidence

clean 99.15 98.98 98.46 98.42
20db 97.23 97.16 97.66 97.79
15db 92.31 92.70 97.05 97.24
10db 75.05 77.15 95.31 95.64

5db 42.21 44.73 89.14 89.68
0db 22.49 22.59 64.75 65.62

average 65.86 66.87 90.86 91.20

5. CONCLUSIONS AND FUTURE WORK

Based upon the evidence framework, we propose a training algo-
rithm for CDHMMs, which automatically learns the priors as well as
their posteriors from data. We first derive an EM solution for the ex-
ponential family distributions, and extend the algorithm to deal with
CDHMMs by using an variational Bayesian procedure. Experimen-
tal results show that in comparison with ML training, the evidence
framework leads to better regularization of the models, hence better
robustness in case of mismatched or limited training data.

Note that the evidence framework is promising for insufficient
training data. In our future research, we shall investigate the pro-
posed algorithm in more complex tri-phone HMMs to find a bet-
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Fig. 3. Performance comparison with a variable size of multi-
conditional training data

ter trade-off between number of model parameters and reliable esti-
mates.
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