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ABSTRACT

In HMM-based speech synthesis, we usually use complexegbnt

dependent models to characterize prosodically and litigalky rich

speech units. It is therefore difficult to prepare trainirgedwhich
can cover all combinatorial possibilities of contexts. Arzoon ap-
proach to cope with this insufficient training data problentoi build

a clustered tree via the MDL criterion. However, an MDL-lthtee
still tends to be inadequate in its power to predict unseémn diathis
paper, we adopt the cross-validation principle to buildhsaaeci-
sion tree to minimize the generation error of unseen costefn

efficient training algorithm is implemented by exploitinget suffi-

cient statistics. Experimental results show that the ppegdanethod
can achieve better speech synthesis results, both olglctind sub-
jectively, than the baseline results of the MDL-based decisee.

or outlier data [4]. Affected by a small variation in the trig set,
the algorithm may choose a split which may not be the best ?ne;
likelihood threshold is set empirically and it may be departdipon
different tasks or data sets. To alleviate this problem ntirdmum
description length (MDL) criterion [5] which consists of aodel
complexity penalty term, is introduced to balance the monictally
growing likelihood. However, the MDL criterion is based @ymp-
totic assumption and itis not very effective when the amaoditrain-
ing data is not asymptotically large.

In this paper, cross-validation (CV) is adopted for buitdia
decision tree for HMM-based TTS. Cross-validation is a ulsef
technique for many tasks encountered in machine learnirg, e
accuracy estimation, model selection or parameter turetg, In
previous studies, cross-validation method has been ssfotlgs
applied to speech processing, including: Gaussian mixbpte

Index Terms— HMM-based speech synthesis, cross validation,mization [6], automatic speech recognition [7], and tunprgrs

context clustering, MDL

1. INTRODUCTION

HMM-based approach has been successfully developed atiddpp

to speech synthesis in the past two decades [1]. In this apbro
the spectrum, excitation, and duration features are mddeld gen-

erated in a unified HMM framework. In building such an HMM, a

large number of contextual factors are used to represesetjmen-
tal and supra-segmental information of speech (e.g., pliemity,
accent, stress, break) as separate models [2]. Howeversethe
large number of combinatorial possibilities of all contedtfactors,
itis impossible to obtain enough training data to estimelially all
full context models. Therefore, a decision tree based mcddster-
ing [2, 3] is usually adopted to deal with the data sparsepesis-

[8]. In this study, K-fold cross-validation is applied to digion
tree based model clustering on Multi-space Probabilitytribigtion
(MSD) HMMs [9]. First, A cross-validation based splittingite-
rion is proposed to avoid the conventional greedy splittiriterion
and we calculate the likelihood with different validatioat svith
corresponding sufficient statistics. Then, because weailzaéethe
likelihood of the unseen data with the current model pararset
tree-growing can be stopped automatically. Using the mego
splitting and stopping criteria, we are able to build a betecision
tree and improve its generalization capability to syntreesinseen
contexts.

The cross-validation based decision tree clustering dhgor
was evaluated in our HMM-based TTS system. We compared sev-
eral objective and subjective measures of the synthesipedch
using conventional method and the cross-validation bassttiad.

lem and to predict unseen context in synthesis. This metiaod ¢ The experimental results show that the CV decision treedgiel

successfully produce more robust parameter estimategigurve
their generalization capabilities.

Conventional decision tree based clustering is a top-dolatg
driven training process, based on a greedy tree growingitign
The tree growth is based upon two factors, i.e., splittiritedon
and stopping criterion. In HMM-based TTS, the splittingterion
is based on Maximum Likelihood (ML) principle. Since thedik
lihoods increase monotonically with increasing number exision
tree leaf nodes, a stopping criterion, e.g. likelihood shrdding or
Minimum Description Length (MDL), needs to be used. Althbug
the conventional method provides an effective and efficreay to
build the decision tree for continuous density HMMs, it hagesal
disadvantages: 1) the greedy search-based decision tre@gris
sensitive to the training set due to interfering, irrelévattributes

The work was done during the first author’s internship in Mgoft Re-
search Asia.

better Log Spectral Distance (LSD), root mean square eifré® o
and duration model objectively than the conventional decisree.
The speech quality improvement is also confirmed by the stibge
preference test results.

The rest of this paper is organized as follows: In Sectiomé, t
splitting and stopping criteria in conventional MDL-bas#etision
tree are presented. In Section 3, the cross-validatiordbdeesion
tree in TTS is introduced. In Section 4, we present the erpental
results. In Section 5, we draw our conclusion.

2. MDL-BASED DECISION TREE CLUSTERING

Traditionally, the ML criterion is used as node splittingterion for
tree growing. The ML criterion for splitting tree nodes iss@stent
with that used in training HMMs parameters. L&tS) denote the
log likelihood of generating observation frames at natle Fig.1



shows the tree growing procedure. Suppose that hges split

Fig. 1. Node splitting of MDL-based decision tree

into two successor nodes;,.q, andS,.q. by a binary (yes or no)

questiong. The increase of log likelihood by splitting,, through a

question q is [2]:
6(Dm)éML _

L(Smay) + L£(Smgn) — L(Sm)

Log likelihood increases monotonically with increasingnher of
terminal leafs. As a result, a threshold of likelihood immment
(change) is therefore necessary to terminate the noddirggplitOn
the other hand, the MDL criterion evaluates the splittingfqre
mance according to the description length, which consfstdikeli-
hood term and a penalty term associated with the model cotityle
We can calculate the splitting cost by the following equadi¢b]:

6(Dm)éMDL (1)

whered is the total number of data sampldsthe increase of model
parameters when splitting one nodethe scaling factor which is
used to balance the likelihood and model complexity, rethyedy.

= §(D™))* —aLlogG

The physical meaning of MDL aims at building a tree model

which can balance data likelihood and model complexity. tBate
are two drawbacks of this method: 3plitting criterion which may
be sensitive to the training set due to some irrelevantbates or
outlier data. 2)Stopping criterion of MDL is based on asymptotic
assumption and it is equivalent to a likelihood threshold.nlost
applications, we often need to tune the penalty factor terdgahe
an appropriate tree.

3. CROSS-VALIDATION BASED DECISION TREE
CLUSTERING

In order to overcome the above mentioned problems in the-trad

tional MDL-based decision tree, it is desirable to build @isien
tree that can explicitly minimize the generalization eraod select
the model topology (complexity) automatically. In thisdyuve use
cross validation for node splitting and tree growing stoggiriteria.

3.1. Decision Tree based on Cross Validation

In cross validation, we divide the training dafd" into K subsets
D", i = 1,...,K at nodeS,,. Among theK subsets, a single

subsetD;" is reserved as validation data, i.e., to test the model, an

the remainingK’ — 1 subsetsf, = D™ \ D;”l are used as train-
ing data. The cross-validation process is then repeateth&stithe

1B\ Ais the set of all elements which are member&Sgbut not members
of A.

-]

Fig. 2. Node splitting of cross validation based decision tree

folds), with each of the K subsets used exactly once as tldatain
data.

Based on this procedure, we can select the question whiek giv
the highest scores on all validation data. Itis not limidiut in this
study we use the log likelihood improvement as the scoretimmc

3.1.1. Node Splitting Criteria

Fig.2 shows the node splitting procedure. By assuming tigm-al
ments are fixed during the optimization process, we can atathe
log likelihood on each validation data as follows

LV (D) = Y P@lAT)

zeDy

)

whereA,, are the model parameter estimate fr@in The increase
of log likelihood by splittingS,, through the yes and no question g
is given as

V(DI = LYV (DY) + LYYV (D) — LYV (D) (3)

whereD;"" = {z|z € Dy, Question(z) = yes} andD;" " =
{z|x € D}, Question(z) = no}.

In this definition we select the best question for node $pdjtt
according to its likelihood increase on all the validatiaial

gm = argmax| |57V (D), 4
k

Note that we can givg| different definitions, e.g. voting, maximiz-
ing or bagging. According to the given definitions, the bastsy
tion has different physical interpretations. In this studhe define
L] = >_. For this definition, the node splitting criterion is to regu
the bias.

8.1.2. Sopping Criteria

Because we calculate eadlf’" (D) on the validation data sets,
the tree splitting can stop automatically when

| ]8“Y (Di)an <0
k

(®)



It's similar to the splitting criterion. We can also combiitevith
MDL as

| |69V (Di")g, + @Llog G <0
k

(6)

Eq.(6) can be used to generate different size decision tree.

To be consistent with the node splitting criterion, we defihe-
>". In our experiments, we found that this natural stoppinggiv
good results.

4. EXPERIMENT AND RESULTS

wheref(t) is the fundamental frequency of frame
3) Root mean square error between force aligned referemteyem
thesis state durations

Daur = |5 D2 (dret(5) = daen(s))? ©)
s=1

whered(s) is the duration in frames of state

4.2.2. Determining the number of cross-validation folds

In K-fold cross validation, we first need to determine thelfolim-
ber K. We evaluate severdl values, from 3 to 15, by using the

A Chinese speech corpus of 1,000 recorded by a female spisakergeyelopment set. The results of log-spectral distortioasgaven in

used in our experiments. The recorded sentences were shatflé

Table.1. We found that LSD is not sensitiveAovalues. Because of

kHz. 40'"-order LSP coefficients plus gain, as well as their first andnjg result, we fixt = 10 for the rest of our experiments.

second order dynamic features are extracted. They are odedrt
the ML-based, decision tree-tied baseline model. HMMs sfdies,
left-to-right, no-skip topology with diagonal covariano®trix are
used to build all phone models. There are 25,761 differehtcon-
text phone models seen in the training corpus.
Separated development and test sets, each consisting eh50 s

tences, respectively, are selected for our experimentsanitdric
speech trajectories are synthesized by the conventionaide tree-

K
LSD (dB)

2
5.32

6
5.33

8
5.32

10
5.32

14
5.31

Table 1. The log spectral distortion for differedt on the develop-
ment set

tied models, and our new CV decision tree. Two synthesis sys-

tems based on LSP features are built for compariS€amventional
MDL-based decision treeand Cross-Validation based decision
tree. We first train the model parameter by tuning the MDL pa-
rameter on the development set. Then we compare the twarsyste
both objectively and subjectively.

4.1. Implementation Issues

In cross validation method, we need to access all data in eadé.
To reduce effort of revisiting the data and correspondinmmae-
tations, we can access all the training data once in a pregsec
ing stage to collect all necessary sufficient statistics.e Thoss-
validation likelihood can then be computed efficiently gsihe pre-
computed sufficient statistics [6]. Because of space lioita detail
description of the procedure is omitted here.

4.2. Objective Test Results
4.2.1. Objective measures

In this paper, we use the following objective measures tonesé
the distortion between the generated (gen) and refereefep@-
rameters of spectrum, fO, duration, respectively. Here s the
extracted spectrum and manually checked fO as the reference

1) Log Spectral Distance

Tyoiced NppT

3 (et (t, ) = lgen(t, )2 (7)

i=1

1
NrpT

Drsp =
Tvoiced

t=1
where theliceq IS the number of voiced framedlyrr is the num-
ber of frequency points of each franids the value of log magnitude
spectrum (in dB).

2) Root mean square error of FO

T,

voiced

D7 (Free(t) = faen(t))?

t=1

1

Tvoiced

Dy, = (8

4.2.3. Results

Using the MDL-based decision tree splitting, and with diffet
penalty scaling factory, we can plot the distortion curves of all
objective measures on the test set, shown as the diamondscurv
in Figs.3-5. In practice, we also need to determine an “dpera
point” along these curves, which is usually done by tuningn

a development set, or simply setto be1.0. In our experiments,
the optimal operating points determined on the developrseintor
spectrum, fO and duration models are;, = 0.5, agp = 0.5 and
aaur = 0.8, respectively.

Then, the distortion curves of all objective measures origbe
set are plotted, as the diamond curves in Figs.3-5. We alsk ma
these “operating points” in their corresponding figuresonfrithe
results, we can see thevalues tuned on the development set also
yield reasonably good but still not the best performancehentést
set.
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Fig. 3. Performance comparison of MDL criterion (MDL) vs. cross-
validation (CV) on log spectral distance
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Fig. 5. Performance comparison of MDL criterion (MDL) vs. cross-

validation (CV) on state duration

The distortion curve using the cross-validation-basegigan is
plotted as the triangle line in Figs.3-5. To get similar maiee, i.e.,
number of model parameters, a threshold is imposed as (EqN®
we can see from the figures, 1) The cross-validation methedyasl
give better performance when the two systems have similabeu

of model parameters. 2) The CV decision tree stops autoatigtic

3) Compared with spectrum and duration, the cross-vatidadie-
cision tree for fO has significantly larger number of ternhieaves

than an MDL-based decision tree. This is due to the fact thidt s
ting of the unvoiced space in MSD-HMM can always get a matgina

likelihood increase. However, since this splitting doeseftect the
voiced/unvoiced decision in synthesis, it has no signifieffiects on
the final result.

4.3. Subjective Test Results

In the subjective test we compare standard MDL based witi@he

fold cross-validation based decision trees. A separatstdsts of

50 sentences is selected in our experiments for an AB cosgari

preference test. Eight subjects are invited to listen ta@oamzed

pairs of sentences synthesized by the two methods, and vapro

their preference. The results of the preference test aemgivFig.6
where shows our method achieves a better performance.

Preference Test Results

20% [80%

Il voL [ ] Nopreference [] cV

Fig. 6. The result of preference test for two system

5. CONCLUSIONS AND FEATURE WORK

We propose a training algorithm for building a decision trehich
can maximize its prediction capability via cross validatend stop
the tree growing automatically for the given data. Experitakre-
sults show that in comparison with MDL training, a crossidation
based decision tree yields a better synthesis performaitic@\sim-
ilar model size. It also can find an appropriate model sizeftioe
development set. The cross-validation based new decisercbn-
struction facilitates a better (more robust) node splitémd an au-
tomatic stopping criterion for its growth. In the future wdlwse
larger speech databases to verify that the concept of cadisition
is also extendable to different sized databases and otihguaaes.
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