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ABSTRACT

This paper presents a discriminative training (DT) approach to irrele-
vant variability normalization (IVN) based training of feature trans-
forms and hidden Markov models for large vocabulary continuous
speech recognition. A speaker-clustering based method is used for
acoustic sniffing and maximum mutual information (MMI) is used
as a training criterion. Combined with unsupervised adaptation of
feature transforms, the IVN-based DT approach achieves a 14.5%
relative word error rate reduction over an MMI-trained baseline sys-
tem on a Switchboard-1 conversational telephone speech transcrip-
tion task.

Index Terms— irrelevant variability normalization, discrimina-
tive training, unsupervised adaptation, LVCSR, acoustic modeling

1. INTRODUCTION

In [7], a maximum likelihood (ML) version of a so-called irrelevant
variability normalization (IVN) based approach to large vocabulary
continuous speech recognition (LVCSR) was studied and promising
results were reported on a Switchboard-1 conversational telephone
speech transcription task [2]. In this paper, we present a follow-
up study of a discriminative training (DT) version of the IVN-based
approach to LVCSR, where maximum mutual information (MMI)
criterion (e.g. [6]) is used for DT. Fig. 1 illustrates how an IVN-
based framework works for acoustic modeling, training and adap-
tation. In off-line training stage (upper part of the figure), one can
train from a large amount of diversified training data, by using an
IVN-based training procedure (ML or DT), a set of generic hidden
Markov models (HMMs) good at discriminating different phonetic
classes and a set of auxiliary transforms used to “absorb” factors ir-
relevant to phonetic classification. In recognition stage (lower part of
the figure), given the sequence of feature vectors extracted from an
unknown speech segment, an “acoustic sniffing” module will decide
which transform to use for each feature vector to remove irrelevant
information. The sequence of transformed feature vectors is then
decoded by using a traditional LVCSR decoder with three knowl-
edge sources, namely generic HMMs, a pronunciation lexicon, and
a language model. After the first-pass recognition, the set of fea-
ture transforms is adapted under an ML criterion by using the pre-
vious recognition result and unknown speech segment itself, which
is recognized again to achieve better accuracy by using the adapted

This work was done while Yu Zhang and Jian Xu were interns in Mi-
crosoft Research Asia, Beijing, China.

Fig. 1. An illustration of IVN-based framework for acoustic model-
ing, training and adaptation.

feature transforms and the pre-trained generic HMMs. Additional
adaptation and recognition passes may be performed subsequently
until a predetermined criterion is met, such as a prescribed num-
ber of passes. While a so-called moving-window based frame label-
ing method was used for acoustic sniffing in [7], better results are
achieved by using a speaker-clustering based method as reported in
this paper.

The rest of the paper is organized as follows. In Section 2, we
present the IVN-based discriminative training approach used in our
experiments. In Section 3, we report experimental results. Finally,
we conclude the paper in Section 4.

2. APPROACH

2.1. Feature Transformation Function

As in [7], the following feature transformation (FT) function is used:

xt = F(yt;Θ) = A(et)yt + b(lt) (1)

where yt is the t-th D-dimensional feature vector of the input fea-
ture vector sequence extracted by the “Front-End” module; xt is
the transformed feature vector; et and lt are the labels (transform
indices) informed by the “Acoustic Sniffing” module for the D×D
nonsingular transformation matrix A(et) and D-dimensional bias
vector b(lt), respectively; and Θ = {A(e), b(l)|e = 1, 2, · · · , E; l =
1, 2, · · · , L} denotes the set of feature transformation parameters
with E and L being the total number of tied transformation matrices
and bias vectors, respectively. For the convenience of notation, we



also use hereinafter F(Y ;Θ) to denote the transformed version of
a speech segment Y by transforming individual feature vector yt of
Y as defined in Eq. (1).

2.2. Speaker-Clustering based Approach to Acoustic Sniffing

In this study, a speaker-clustering based approach is used for acous-
tic sniffing. In training stage, given the feature vectors from each
training speaker, the following procedure is used for speaker cluster-
ing:

Step 1: Initialization

Two Gaussian mixture models (GMMs) are trained first by using
training data from male and female speakers, respectively. Each
GMM represents a speaker cluster and has 1,024 Gaussian compo-
nents in our experiments.

Step 2: Speaker classification and GMM re-estimation

Given the current set of GMMs, classify each speaker into the
speaker cluster, which gives the highest likelihood of the training
data from the speaker against the corresponding GMM. Given the
new speaker clustering result, re-estimate GMM for each speaker
cluster. Repeat the above two actions for several times.

Step 3: Splitting of speaker clusters

If a pre-determined number of speaker clusters is reached, stop; Oth-
erwise, split each speaker cluster into two new clusters by perturba-
tions of the mean vectors of the corresponding GMM, and go back
to Step 2.

Given the above speaker clustering result, a simple acoustic
sniffing scheme can work as follows:

• In IVN training, the labels for et and lt are assigned as the
speaker cluster label. By doing so, all the feature vectors from
the same speaker cluster will share a single feature transform.
The total number of feature transforms equals the number of
speaker clusters.

• In recognition stage, given the chunk of data from an un-
known speaker, speaker classification is performed first. The
pre-trained feature transform from the corresponding speaker
cluster is then used for feature transformation.

Although the above simple acoustic sniffing scheme was used in ex-
periments reported here, other more flexible schemes are apparently
possible. That explains why we give the most general formulations
in both feature transformation function and the IVN-based training
procedure to be described in the next subsection, where et and lt can
be assigned flexibly by an appropriate acoustic sniffing method.

2.3. IVN-based Discriminative Training

Let’s assume that each basic speech unit in our speech recog-
nizer is modeled by a Gaussian mixture continuous density HMM
(CDHMM), whose parameters are denoted as λ = {πs, ass′ , csm,
µsm,Σsm; s, s′ = 1, · · · , S;m = 1, · · · ,M}, where S is the
number of states, M is the number of Gaussian components
for each state, {πs} is the initial state distribution, ass′ ’s are
state transition probabilities, csm’s are Gaussian mixture weights,
µsm = [µsm1, · · · , µsmD]T is a D-dimensional mean vector, and
Σsm = diag{σ2

sm1, · · · , σ2
smD} is a D × D diagonal covari-

ance matrix. Let Λ = {λ} denote the set of CDHMM parameters
and Y = {Yi|i = 1, 2, · · · I} the set of training data, where
Yi = (y

(i)
1 ,y

(i)
2 , · · · ,y(i)

Ti
) is a sequence of D-dimensional fea-

ture vectors extracted from the i-th utterance. By using “acoustic

sniffing”, two sets of frame labels for transformation matrix and
bias vector, E and L, can be derived from Y , respectively. So IVN-
based training is to optimize, by adjusting feature transformation
parameters Θ and HMM parameters Λ, a given discriminative train-
ing criterion. When MMI criterion is used, it is to maximize the
following objective function:

FMMI(Θ,Λ) =

I∑
i=1

FMMI(Θ,Λ;Yi,Mi, E ,L)

=

I∑
i=1

log
p(Yi|Θ,Λ;M+

i , E ,L)
p(Yi|Θ,Λ;M−

i , E ,L)
(2)

where M+
i and M−

i stand for the reference model space and com-
peting model space of Yi, respectively. Similar to the ML version of
IVN-based training, the following method of alternating variables is
used to maximize MMI objective function:

Step 1: Initialization

Feature transform and HMM parameters are initialized as the
ones trained by using IVN-based ML approach in [7].

Step 2: Estimate feature transformation parameters Θ by fixing
HMM parameters Λ

Given the fixed HMM parameters Λ, the MMI objective func-
tion FMMI(Θ,Λ) can be optimized by increasing an auxiliary func-
tion iteratively as described in [3]. In IVN-based discriminative
training, such an auxiliary function is as follows:

Q(Θ,Θ) = A(Θ,Θ) +Asm(Θ,Θ) (3)

where

A(Θ,Θ) =
∑

s,m,l,e
yt∈Ll∩Ee

(
γ+
sm(t)− γ−

sm(t)
)
log psm(yt|Θ,Λ)

psm(yt|Θ,Λ) = N (F(yt;Θ);µsm,Σsm)|det(A(et))| , (4)

Ee,Ll is the set of training feature vectors with a transformation la-
bel e and a bias label l respectively, γ+

sm(t) and γ−
sm(t) denote occu-

pancy statistics of Gaussian component m in state s of the observed
feature vector yt, and

Asm(Θ,Θ) =
∑

s,m,l,e

De,l
sm

∫
y

psm(y|Θ,Λ) log psm(y|Θ,Λ)dy

is a smoothing function to ensure that the Q-function is concave. It
is easy to verify that the Q-function in Eq. (3) is a “week-sense”
auxiliary function [6] for the MMI objective function, which can be
maximized again using the method of alternating variables. The
overall training procedure in Step 2 is outlined as follows:

Step 2.1: Calculate γ
(+/−)
sm (t) and accumulate relevant sufficient

statistics.

Step 2.2: Increase Q-function by the method of alternating vari-
ables:

Step 2.2.1: Estimate {A(e)} by fixing {b(l)}

The derivation of the updating formula for A(e) is similar to that in
CMLLR [1]. By differentiating Q-function w.r.t. the d-th row of
A(e) (hereinafter denoted as A(e)

d ) and equating to zero, the follow-
ing updating formula can be derived:

A
(e)
d = α

(e)
d c

(e)
d F

(e)−1
d + j

(e)
d F

(e)−1
d (5)



where c
(e)
d is the cofactor row vector [c

(e)
d1 . . . c

(e)
dD] with c

(e)
dj =

cof(A
(e)
dj ), and

F
(e)−1
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∑
s,m=1

1

σ2
smd

[
Gsme +

∑
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De,l
smCsml

]
j
(e)
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∑
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[ ∑
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σ2
smd
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t
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∑
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sm
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(l)
d )(µsm − b
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σ2
smd
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sm(t))yty
⊤
t
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(e)−1
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(l)
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(l)
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1 β(e)
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(e)
1 = c

(e)
d F

(e)−1⊤
d c
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d

ϵ
(e)
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(e)
d F

(e)−1⊤
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(e)⊤
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β(e) =
∑
s,m

∑
yt∈Ee

(γ+
sm(t)− γ−

sm(t)) +
∑
s,m

∑
l

De,l
sm . (6)

The value of α(e)
d is selected as what maximizes

Qe = β(e) log |α(e)
d ϵ

(e)
1 + ϵ

(e)
2 | − 1

2
α
(e)2
d ϵ

(e)
1 . (7)

It is easy to verify that Q(Θ,Θ) is concave when β(e) > 0 and
F

(e)
d is positive definite. However, the lower bound of De,l

sm from
[6] could not be borrowed directly because F

(e)
d is a full matrix un-

like the diagonal case in extended Baum-Welch (EBW) algorithm
for updating HMM parameters. In our case, it can be proven that the
Q-function is concave when De,l

sm satisfies the following constraint:

De,l
sm = EConst ∗max{De

min,
∑

yt∈Ee∩Ll

|γ+
sm(t)− γ−

sm(t)|+ 1

β
}

where EConst > 1,
1

β
> 0, and

De
min = max

i

∣∣∣∣∣ det(G
(ii)
sme)

det([
∑

l Csml](ii))

∣∣∣∣∣ , (8)

G
(ii)
sme, [

∑
l Csml]

(ii) is the ith leading principal minors of Gsme

and
∑

l Csml. In our experiments, we set EConst = 2 and β = 0.2.
As in [1], A(e) can be updated by using the above row-by-row

updating formula. Let’s use Na to denote the number of iterations
performed.

Step 2.2.2: Estimate {b(l)} by fixing {A(e)}
By differentiating the Q-function w.r.t. b(l) and equating to zero,
each b(l) can be updated as follows:

b
(l)
d =

[ ∑
yt∈Ll
s,m

γ+
sm(t)−γ−

sm(t)

σ2
smd

(µsm −A
(et)
d yt) +

∑
s,m,e

De,l
m

σ2
smd

b
(l)
d

]
[∑

s,m

∑
e D

e,l
sm+

∑
yt∈Ll

(γ+
sm(t)−γ−

sm(t))

σ2
smd

]
where b

(l)
d is the d-th element of the bias vector b(l), A(et)

d is the
d-th row of the updated matrix A(et) obtained in Step 2.2.1.

Step 2.2.3: Repeat Step 2.2.1 to Step 2.2.2 Nab times, and update
Θ.

Step 2.3: Repeat Step 2.1 to Step 2.2 NT times.

Step 3: Estimate HMM parameters Λ by fixing feature transforma-
tion parameters Θ

Given the updated transform parameters Θ obtained in Step 2,
we first transform each training feature vector yt by using the feature
transformation F(yt;Θ). Then, Nh EBW iterations (e.g., [6]) are
performed to re-estimate HMM parameters Λ, which optimizes the
MMI objective function FMMI(Θ,Λ).

Step 4: Repeat Step 2 and Step 3 Nc times

This concludes the description of our IVN-based DT procedure.

2.4. Unsupervised Adaptation

To improve recognition accuracy, for each unknown speech segment,
unsupervised adaptation can be performed as follows:

Step 1: Given an unknown speech segment Y , do acoustic sniff-
ing to identify the labels of feature transform for each feature
vector. Transform Y as F(Y ;Θ) with pre-trained transform
parameters Θ. Do first-pass recognition by using generic
HMMs.

Step 2: Given the recognized transcription, the transform parame-
ters Θ are re-estimated by using the IVN-based ML training
procedure described in [7].

Step 3: Transform Y with the updated parameters Θ. Do recogni-
tion by using generic HMMs.

Step 4: Repeat Step 2 and Step 3 until a pre-specified criterion is
satisfied (e.g., a fixed number of cycles).

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Switchboard-1 corpus [2] was used for our experiments. We used
4,870 sides of conversations (about 300 hours speech) from 520
speakers as training data, and 40 sides of Switchboard-1 conver-
sations (about 2 hours speech) from the 2000 Hub5 evaluation as
testing data. The minimum, maximum and average lengths of con-
versation sides are 4.84s, 547.16s, and 229.61s in the training set,
and 73.12s, 279.77s, and 184.47s in the testing set, respectively.

For feature extraction in front-end, we used 39 PLP E D A (in
HTK’s terminology [8]) features. Conversation-side based mean
and variance normalization was applied in both training and recog-
nition stages. For acoustic modeling, we used phonetic decision-
tree based tied-state triphone CDHMMs with 9,302 states and 40
Gaussian components per state. Our recognition vocabulary contains
22,641 unique words. The pronunciation lexicon contains multiple
pronunciations per word with a total of 28,649 unique pronuncia-
tions. A trigram language model trained on the transcription data
of the Switchboard-1 acoustic training data and broadcast news data
was used for recognition. All of the recognition experiments were
performed with a Microsoft in-house decoder instead of using the
HDecode engine of HTK3.4 toolkit [8] as in [7] because the former
achieves a slightly better recognition accuracy. All the recognition
results were calculated by using a NIST Scoring Toolkit SCTK [5].

For IVN-based MMI training, the feature transforms were esti-
mated as described in Section 2, while the HMM parameters were



optimized by using the conventional EBW algorithm (e.g., [6]).
The relevant control parameters were set to the typical values as
suggested by HTK [8], e.g., the learning constant EConst = 2,
τ = 100 for i-smoothing, acoustic scaling factor κ = 1/11.25. In
speaker-clustering based “acoustic sniffing”, 8 speaker clusters were
trained, therefore E = L = 8. In all IVN-based discriminative
training and adaptation experiments, the relevant control parameters
are set as follows: Na = 10, Nab = NT = Nh = 1.

Without IVN-based training, our ML-trained and MMI-trained
baseline systems achieve a word error rate (WER) of 30.0% and
26.2% respectively.

3.2. Effects of IVN-based Discriminative Training

Starting from the ML-trained baseline system, we perform IVN-
based ML training using speaker-clustering based acoustic sniffing.
The WER is reduced from 30.0% for baseline system to 27.8% after
20 main cyles of IVN-based training, which is better than the WER,
28.5%, of the IVN-based ML-trained system if the moving-window
based acoustic sniffing method as described in [7] is used. There-
fore, the speaker-clustering based acoustic sniffing method is used
in the remaining IVN experiments.

Starting from the above IVN-based ML-trained system, the fol-
lowing three sets of experiments are performed:

• perform 10 cycles of MMI training for feature transforms
only;

• perform 5 EBW iterations of MMI training for HMMs only;

• perform 5 main cycles of MMI training for both feature trans-
forms and HMMs.

The WERs of the above three systems are 27.0%, 25.0%, and 24.6%
respectively. Compared with the respective baseline systems, the
power of IVN-based discriminative training is clearly demonstrated.

3.3. Effects of Unsupervised Adaptation

Starting from the above four IVN-trained systems, we conduct
conversation-side based unsupervised adaption as described in Sec-
tion 2.4. After two cycles of recognition and adaptation, the WERs
are reduced to 25.5%, 25.1%, 22.7%, and 22.4%, respectively.

For comparison, starting from the ML- and MMI-trained base-
line systems, we perform conversation-side based unsupervised
HMM adaptation using MLLR approach [4]. Eight regression
classes are used and 3 EM iterations are performed to estimate the
linear transforms. After two cycles of recognition and adaptation,
the WERs are reduced to 28.4% and 24.8% respectively.

All the above results are summarized in Table 1 for easy com-
parison. Apparently IVN-based DT approach achieves the best
performance. Compared with the “HMM-MMI” baseline system,
the “FT-MMI+HMM-MMI” approach achieves relative WER re-
ductions of 6.1% and 14.5% for without and with unsupervised
adaptation respectively. Compared with the “HMM-MMI+MLLR
adaptation” system, the “FT-MMI+HMM-MMI” approach with un-
supervised adaptation achieves a relative WER reduction of 9.7%.
Given the simplicity of the “FT-ML+HMM-MMI” approach and its
promising results, it can be a good choice in practice.

4. CONCLUSION AND DISCUSSIONS

In this paper, we have investigated and confirmed the effectiveness of
an IVN-based framework for acoustic modeling by using discrimina-
tive training to estimate feature transforms and/or generic HMMs for

Table 1. Comparison of different approaches (FT: feature transform,
UA: unsupervised adaptation)

Method w/o UA UA
# FT HMM WER(%) Rel.(%) WER(%) Rel.(%)
1 - ML 30.0 N/A 28.4 N/A
2 - MMI 26.2 12.7 24.8 12.7
3 ML ML 27.8 7.3 25.5 10.2
4 MMI ML 27.0 10.0 25.1 11.6
5 ML MMI 25.0 16.7 22.7 20.1
6 MMI MMI 24.6 18.0 22.4 21.1

LVCSR. A new acoustic sniffing technique based on speaker clus-
tering is studied and confirmed to perform better than a previous ap-
proach. Promising results are achieved on the difficult Switchboard-
1 conversational telephone speech transcription task. Ongoing and
future works for IVN-based framework include:

• to explore different acoustic sniffing techniques and identify
the most effective ways for different LVCSR application sce-
narios and deployment requirements;

• to investigate other DT criteria and more effective optimiza-
tion methods for IVN-based discriminative training;

• to investigate appropriate adaptation methods for application
scenarios where only a short speech utterance is available for
adaptation;

• to verify the effectiveness of the IVN-based framework for
even larger scale LVCSR applications.

We will report those results elsewhere once they become available.
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