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ABSTRACT

Recently, we proposed an i-vector approach to acoustic sniffing for

irrelevant variability normalization based acoustic model training in

large vocabulary continuous speech recognition (LVCSR). Its effec-

tiveness has been confirmed by experimental results on Switchboard-

1 conversational telephone speech transcription task. In this paper,

we study several discriminative feature extraction approaches in i-

vector space to improve both recognition accuracy and run-time effi-

ciency. New experimental results are reported on a much larger scale

LVCSR task with about 2000 hours training data.

Index Terms— i-vector, irrelevant variability normalization,

discriminative feature extraction

1. INTRODUCTION

Recently, a so-called i-vector approach [2] was proposed to extract a

low-dimensional feature vector from a speech segment to represent

speaker information, which has been successfully applied to speaker

verification and become popular in speaker recognition community.

In [8], an i-vector based approach was used for acoustic sniffing in ir-

relevant variability normalization (IVN) based acoustic model train-

ing for large vocabulary continuous speech recognition (LVCSR)

(e.g., [6, 11]). In [12], a new i-vector approach was proposed by

using a full factor analysis model with a residual term. Compared

with the traditional i-vector approach, unfortunately only minor im-

provement in recognition accuracy was achieved when it was applied

to acoustic sniffing for IVN-based acoustic model training. In [12],

we also studied the effectiveness of using LDA (linear discriminant

analysis) for i-vector transformation and dimension reduction, and

promising results were achieved on Switchboard-1 conversational

telephone speech transcription task. In this paper, we continue the

above study by investigating two new discriminative feature extrac-

tion approaches based on minimum classification error (MCE) train-

ing and comparing their effectiveness with the LDA approach for

i-vector transformation and dimension reduction. New experimental

results of IVN-based acoustic model training are also reported on a

much larger scale LVCSR task with about 2000 hours training data.

This work was done while Yu Zhang and Jian Xu were interns in Mi-
crosoft Research Asia, Beijing, China.

2. I-VECTOR APPROACH TO ACOUSTIC SNIFFING FOR

IVN-BASED TRAINING

2.1. Raw i-Vector Extraction

In [8, 12], two approaches were proposed to extract anF -dimensional

i-vector from a speech segment to represent acoustic information

irrelevant to phonetic classification. In this study, we use the tradi-

tional i-vector approach as described in [8] because it has a lower

computational complexity yet performs only slightly worse in recog-

nition accuracy than the new i-vector approach in [12]. Readers are

referred to [8] for technical details.

2.2. Discriminative Feature Extraction in i-Vector Space

If metadata (e.g., speaker ID in our experiments) for each speech

segment is available, this information can be used (e.g., each speaker

ID can be used as a class label in our experiments) to train an F1×F
linear transform matrix W , which can be used to transform each raw

i-vector into a lower dimensional (i.e., F1 ≤ F ) yet more discrimi-

native feature space.

2.2.1. LDA based Feature Extraction

There are many ways to estimate the linear transformation W for

discriminative feature extraction (DFE) and/or dimension reduction.

One traditional way is to use LDA. As we demonstrated in [12],

LDA-based i-vector transformation and dimension reduction indeed

brings recognition accuracy improvement. However, when a cosine

measure is used to measure the similarity between two transformed

i-vectors, it is inconsistent with the underlying Euclidean metric used

in LDA approach. Naturally, we want to know whether a more pow-

erful DFE method could further improve the final speech recognition

results. This is actually the main motivation of this study.

2.2.2. MCE based Discriminative Feature Extraction

In literature, many DFE methods based on MCE training have been

proposed and studied. One example is the discriminative metric de-

sign (DMD) approach proposed in [7], which we used to develop

our specific MCE-based DFE methods for nearest prototype classi-

fiers using Euclidean distance based dissimilarity measure and co-

sine similarity measure, respectively. To the best of our knowl-

edge, no study has been reported on the MCE-based DFE for the

prototype-based classifier with cosine similarity measure.

Let’s consider a speaker classification problem using an utterance-

based i-vector. Suppose there are in total S training speakers denoted



as a speaker set C = {1, . . . , S}, and for each training utterance

i, a speaker label ci ∈ C is available. An F -dimensional raw i-

vector wi can be extracted for i, and then transformed into a new

F1-dimensional feature vector by using an F1 × F linear transfor-

mation matrix W . A discriminant function can be defined for the

s-th speaker as gs(wi,W ), which enables the following speaker

classification rule for an unknown i-vector wi:

C(wi) = argmax
s

gs(wi,W ). (1)

A misclassification measure can be defined for each training i-vector

from the s-th speaker as

ds(wi,W ) = −gs(wi,W ) +Gs(wi,W ), (2)

where

Gs(wi,W ) = max
k,k 6=s

gk(wi,W ). (3)

The loss function is then defined as:

ls(wi,W ) =
1

1 + exp(−γds + θ)
, (4)

where γ and θ are two control parameters. An empirical average loss

can then be defined on the training set as

L0(W ) =
1

N

∑

s

∑

i,ci=s

ls(wi,W ), (5)

where N is the total number of training utterances.

In this study, two types of discriminant function are studied. The

first one is based on Euclidean distance and defined as follows [7]:

geucs (wi,W ) = −
1

2
(wi − µs)

⊤
WW

⊤(wi − µs), (6)

where µs is the prototype parameter for the s-th speaker. In this

study, we used a fixed µs, which is the mean of the training raw

i-vectors for the s-th speaker, i.e.,

µs =
1

Ns

∑

i,ci=s

wi, (7)

in which Ns is the total number of utterances of speaker s.

Another discriminant function is based on cosine similarity and

defined as follows:

gcoss (wi,W ) =
µ⊤

s

||µs||
·

W⊤wi
√

w⊤
i WW⊤wi

, (8)

where µs is the prototype parameter for the s-th speaker calculated

as follows:

µs =
1

Ns

∑

i,ci=s

W⊤wi
√

w⊤
i WW⊤wi

. (9)

Given the set of training i-vectors, the i-vector transform W can

be estimated by minimizing L0(W ) with the following optimization

procedure:

Step 1: Initialize W as LDA transform. Set t = 0.

Step 2: Update W by fixing µs’s as follows:

W
t+1 = W

t + α
∂L0(W )

∂W
, (10)

where α is a learning rate. The derivative
∂L0(W )

∂W
is calculated for

each type of discriminant function as follows:

• for Euclidean distance

∂L0(W )

∂W
=

1

N

∑

s

∑

i,ci=s

γls(wi,W )(1− ls(wi,W ))

{

− (wi − µs)(wi − µs)
⊤ + (wi − µk)(wi − µk)

⊤

}

W

• for cosine similarity

∂L0(W )

∂W
=

1

N

∑

s

∑

i,ci=s

γls(wi,W )(1− ls(wi,W ))

{

wi
√

w⊤
i WW⊤wi

· (
µ⊤

s

||µs||
−

µ⊤
k

||µk||
)

−
w⊤

i W
√

w⊤
i WW⊤wi

· (
µs

||µs||
−

µk

||µk||
)

wiw
⊤
i

w⊤
i WW⊤wi

W

}

where

k = argmax
k,k 6=c

gk(wi,W
t) .

Step 3: When cosine similarity is used, update the prototype for

each speaker class by using Eq. (9).

Step 4: Repeat Step 2 and Step 3 until the decrease of L0(W ) is

smaller than a pre-specified threshold.

2.3. Acoustic Condition Clustering using i-Vectors

Given the set of raw or transformed (via LDA or MCE-DFE) training

i-vectors, we use a hierarchical divisive clustering algorithm, namely

LBG algorithm [4], to cluster them into multiple clusters. Either a

Euclidean distance is used to measure the dissimilarity between two

i-vectors, wi and wj , or a cosine measure is used to measure the

similarity between two i-vectors. In the latter case, we normalize

each i-vector to have a unit norm so that the cosine similarity can be

calculated simply as w⊤
i wj .

After the convergence of the LBG clustering algorithm, we

obtain E clusters of i-vectors with their centroids denoted as

c
(w)
1 , c

(w)
2 , . . . , c

(w)
E , respectively. Then the speech segments in

training set can be distributed to different clusters according to the

one-to-one relationship with the corresponding i-vectors. By doing

so, all the feature vectors from the same cluster will share a single

linear feature transform in IVN-based acoustic model training (to

be explained in the next subsection) and the total number of feature

transforms equals the number of acoustic conditions.

2.4. i-Vector Approach to Acoustic Sniffing for IVN-based

Training

As described in e.g., [6, 11, 8, 12], in IVN-based training, a set of

linear feature transforms along with a set of generic hidden Markov

models (HMMs) are trained using a maximum likelihood (ML) (e.g.,

[6]) and/or discriminative training (DT) (e.g., [11]) criterion. The

feature transforms are used to normalize the irrelevant variabilities

of different acoustic conditions. As Fig. 1 shows, given a speech

segment (e.g., several frames of speech, an utterance, or several

utterances), a so-called “acoustic sniffing” module is responsible

for detecting the corresponding acoustic condition and choosing the

most appropriate transform(s) accordingly. In the recognition stage,

given an unknown speech segment, the “acoustic sniffing” module is
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Fig. 1. An illustration of IVN-based framework for acoustic model-

ing, training and adaptation.

used again for choosing the pre-trained IVN transform(s). The trans-

formed feature vector sequence is then decoded using a conventional

LVCSR decoder. After the first-pass recognition, unsupervised adap-

tation can be performed to adapt the selected feature transform(s).

Therefore, an improved recognition accuracy can be achieved in the

second-pass decoding.

In this study, the following feature transformation (FT) function

is used:

xt = F(yt;Θ) = A
(e)

yt + b
(e)

(11)

where yt is the t-thD-dimensional feature vector of the input feature

vector sequence Y ; xt is the transformed feature vector; e is a label

(transform index) informed by the “acoustic sniffing” module for the

D×D nonsingular transformation matrix A(e) and D-dimensional

bias vector b(e); and Θ = {A(e), b(e)|e = 1, 2, · · · , E} denotes

the set of feature transformation parameters with E being the total

number of acoustic conditions as described in the previous subsec-

tion.

In IVN-based framework, the acoustic sniffing module is essen-

tial for both training and recognition. As mentioned previously, in

[8, 12], the i-vector based approach was used for acoustic sniffing

and promising results were achieved. In this study, we compare the

effectiveness of the newly proposed MCE-based DFE methods with

the traditional LDA transformation in this context. Given a speech

segment Y , i-vector based acoustic sniffing can be done as follows:

Step 1: Extract an i-vector wi from Y as described in [8].

Step 2: Apply W for feature transformation (via LDA or MCE-

DFE) if applicable. Further normalize the i-vector to have a

unit norm if cosine similarity measure is used. Let’s use ŵ to

denote the final transformed i-vector.

Step 3: Classify the i-vector ŵ into an acoustic condition, e, as fol-

lows:

• If Euclidean distance is used as a dissimilarity measure,

e = argmin
l=1,2,...,E

||ŵ − c
(w)
l ||;

• If cosine similarity measure is used,

e = argmax
l=1,2,...,E

ŵ
⊤
c
(w)
l .

The pre-trained linear feature transform for IVN based train-

ing from the corresponding acoustic condition e will be used

for feature transformation.

The same acoustic sniffing procedure is used in both training and

recognition stages. It is noted that in the second case of Step 3 of

the above procedure, if i-vector ŵ and centroids c
(w)
l ’s have been

normalized to unit norm, it can be proven that the above two deci-

sion rules will give the same result. Therefore the first decision rule

can always be used in run-time for more efficient acoustic sniffing

because a partial-distance based technique can be used to eliminate

unnecessary computations.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Two sets of experiments were performed in this study. The first one

was done on a Switchboard-1 conversational telephone speech tran-

scription task [3] with about 300 hours training data to study care-

fully the algorithmic issues of the proposed approach. The experi-

mental setup is the same as in [11, 8].

The second experiment was performed on a “Jumbo” task with

a training set consisting of about 300 hours training speech from

Switchboard-1 corpus and about 1,700 hours training speech from

Fisher English corpus (part 1 and 2) [1]. The Spring 2003 NIST

rich transcription set (RT03S) with about 6.3 hours conversational

telephone speech was used as the testing test. For front-end fea-

ture extraction, we used 52-dimensional PLP E D A T (in HTK’s

terminology [10]) features with mean and variance normalization.

HLDA transformation was then applied to reduce the feature vector

dimension to 39. For acoustic modeling, we used phonetic decision

tree based tied-state triphone GMM-HMMs with 18,000 states and

72 Gaussian components per state. Our recognition vocabulary con-

tained 47,633 unique words. The pronunciation lexicon contained

multiple pronunciations per word with a total of 58,393 unique pro-

nunciations. A trigram language model, which was trained on the

2000-hour Jumbo-corpus transcripts and interpolated with a written-

text trigram, was used in decoding. All of the recognition experi-

ments were performed with a Microsoft in-house decoder as in [11,

8] and the results were evaluated by using the NIST Scoring Toolkit

SCTK [5].

The settings of relevant control parameters are as follows:

The number of UBM-GMM components for i-vector extraction

K = 1, 024 [8]; The dimension of the raw i-vectors F = 600 for

Switchboard-1 and F = 400 for Jumbo task; The i-vector dimension

after LDA or MCE-DFE F1 = 100; For IVN-based MMI training

[11], the learning constant EConst = 2, i-smoothing τ = 100,

and acoustic scaling factor κ = 1/12; For acoustic sniffing, 128
acoustic conditions were clustered, therefore E = 128; For MCE

training, the control parameters of the sigmoid function are γ = 32
and θ = 0.

To handle large-scale training data, the tools for hyperparameter

estimation in i-vector extraction, LBG clustering and GMM train-

ing have been implemented based upon MSR Asia’s MPI-based ma-

chine learning platform [9]. This platform was developed on top

of Microsoft Windows HPC Server, and optimized for various ma-

chine learning algorithms including speech training. With this high-

performance parallel computing platform, experiments can be run

very efficiently for large-scale tasks.

3.2. Experimental Results

Table 1 gives a comparison of speaker classification errors by using

different DFE methods on Switchboard-I training set. It is quite clear

that using cosine similarity based discriminant function for speaker

classification and the corresponding MCE-DFE method (labeled as

“DFE (COS)”) achieves much lower error rate than that of using



Table 1. Comparison of speaker classification errors by using differ-

ent DFE methods on Switchboard-I training set.

Measure LDA DFE (EUC) DFE (COS)

Euclidean 13.9% 12.7% N/A

Cosine 12.3% N/A 6.0%

Table 2. Comparison of different acoustic sniffing approaches for

IVN-based ML training by using recognition word error rate (WER

in %) on Switchboard-I task as performance metric. Our ML-trained

baseline system achieves a WER of 30.0%.

eval2000

Measure w/o trans. LDA DFE (EUC) DFE (COS)

Euclidean 27.3 26.5 26.7 N/A

Cosine 27.2 26.3 N/A 26.5

Euclidean distance based discriminant function and the correspond-

ing MCE-DFE method (labeled as “DFE (EUC)”). Both MCE-DFE

methods perform better than the LDA based DFE when the Eu-

clidean distance based discriminant function is used. Interestingly,

LDA based DFE with cosine similarity based discriminant function

performs slightly better than the “DFE (EUC)” case with the Eu-

clidean distance based discriminant function.

Table 2 gives a comparison of different acoustic sniffing ap-

proaches with different DFE methods for IVN-based ML training by

using recognition word error rate (WER in %) on Switchboard-I task

as performance metric. Unfortunately, MCE-DFE methods failed to

outperform the LDA method, yet all the DFE methods for i-vector

transformation and dimension reduction achieves better WER than

the cases without i-vector transformation (labeled as “w/o trans.”).

It is noted that reducing the dimension of i-vector from 600 to 100

via LDA or MCE-DFE methods does not degrade recognition accu-

racy.

Since using LDA transformation with cosine similarity mea-

sure in acoustic sniffing gives us the best recognition accuracy, we

used this setup for the set of experiments on “Jumbo” task. The

experimental results are summarized in Table 3. Our ML- and

MMI-trained baseline systems without IVN training achieved a

WER of 30.2% and 26.6% respectively. After ML- and MMI-based

IVN training but without using LDA for i-vector transformation, the

WERs are reduced to 28.8% and 25.8% respectively. This demon-

strates clearly the power of IVN training. After using LDA for

i-vector transformation and dimension reduction (from 400 to 100),

the WERs of IVN-based ML training and MMI training are further

reduced to 28.2% and 25.4% respectively.

4. SUMMARY

In this paper, we have studied several discriminative feature extrac-

tion approaches in i-vector space and compared their effectiveness

for acoustic sniffing in IVN-based acoustic model training. New

experimental results are reported on “Jumbo” task with about 2000

hours training data. LDA-based i-vector transformation and dimen-

sion reduction plus using cosine similarity measure in acoustic sniff-

ing has improved both recognition accuracy and run-time efficiency,

therefore is the solution we recommended for others to use in prac-

tice.

Table 3. The effectiveness of using LDA for i-vector transformation

and dimension reduction (from 400 to 100) on “Jumbo” task, and

the relative error rate reduction against the ML baseline (FT: feature

transform in IVN training).

rt03

Method w/o LDA LDA

FT HMM WER(%) Rel.(%) WER(%) Rel.(%)

- ML 30.2 N/A N/A N/A

- MMI 26.6 11.9 N/A N/A

ML ML 28.8 4.6 28.2 6.6

ML MMI 25.8 14.6 25.4 15.9
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