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Abstract

This paper presents a new approach to acoustic sniffing for ir-
relevant variability normalization (IVN) based acoustic model
training and speech recognition. Given a training corpus, a so-
called i-vector is extracted from each training speech segment.
A clustering algorithm is used to cluster the training i-vectors
into multiple clusters, each corresponding to an acoustic con-
dition. The acoustic sniffing can then be implemented as find-
ing the most similar cluster by comparing the i-vector extracted
from a speech segment with the centroid of each cluster. Ex-
perimental results on Switchboard-1 conversational telephone
speech transcription task suggest that the i-vector based acous-
tic sniffing outperforms our previous Gaussian mixture model
(GMM) based approach. The proposed approach is very effi-
cient therefore can deal with very large scale training corpus
on current mainstream computing platforms, yet has very low
run-time cost.
Index Terms: i-vector, acoustic modeling, irrelevant variability
normalization, unsupervised online adaption, LVCSR

1. Introduction
In a state-of-the-art Large Vocabulary Continuous Speech
Recognition (LVCSR) system, robust acoustic model is usually
trained using a large amount of diversified training utterances.
However, due to various kind of variabilities (e.g. speakers, en-
vironments, channels), conventional model training procedures
may lead to a set of diffused models fitting the variabilities ir-
relevant to phonetic classification. To address this problem, an
Irrelevant Variability Normalization (IVN) based approach can
be used (e.g., [7, 9]). Fig. 1 illustrates how it works for acous-
tic modeling, training and adaptation. In the off-line training
stage (upper part), a set of feature transforms along with the
generic Hidden Markov Models (HMMs) are trained using a
Maximum Likelihood (ML) or Discriminative Training (DT)
criterion. The feature transforms are used to normalize the ir-
relevant variabilities of different acoustic conditions. Given a
speech segment (e.g., several frames of speech, an utterance,or
several utterances), the “acoustic sniffing” module is respon-
sible for detecting the corresponding acoustic condition and
choosing the most appropriate transform(s) accordingly. In the
recognition stage (lower part), given an unknown speech seg-
ment, the “acoustic sniffing” module is used again for choos-
ing the pre-trained IVN transform(s). The transformed feature
vector sequence is then decoded using a conventional LVCSR
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Figure 1:An illustration of IVN-based framework for acoustic
modeling, training and adaptation.

decoder. After the first-pass recognition, unsupervised adapta-
tion can be performed to adapt the selected feature transform(s).
Therefore, an improved recognition accuracy can be achieved in
the second-pass decoding.

Apparently, in IVN-based framework, the “acoustic sniff-
ing” module is essential for both training and recognition. This
module should be able to detect different acoustic conditions
effectively and efficiently so that different feature transforms
can be learned from the training data of each condition, and the
most appropriate transforms can be chosen in recognition. Pre-
viously, we have studied two acoustic sniffing methods, namely
a moving-window based frame labeling method in [7], and a
Gaussian mixture model (GMM) based data-clustering and se-
lection method in [9]. Better results are achieved by using the
second approach on Switchboard-1 conversational telephone
speech transcription task. However, there are two major draw-
backs of the GMM-based approach: 1) The GMM-based like-
lihood score is not independent of the phonetic content of the
speech segment concerned. This could be even more serious
for a short utterance (e.g., in voice search scenario); 2) when
the number of acoustic conditions (therefore the number of fea-
ture transforms) increases, the GMM-based method does not
scale up well in both training and recognition due to its expen-
sive computational cost for likelihood evaluation. Therefore, an
improved “acoustic sniffing” module for IVN-based framework
is desirable.

Inspired by the recent success of a so-called i-vector based
approach for speaker recognition [1], we found that i-vector
methodology can be easily modified to come out new efficient
approaches for both training data clustering and acoustic sniff-
ing. In a companion paper [10], we present an i-vector based



approach to clustering training data for training multiple acous-
tic models to improve speech recognition accuracy. In this pa-
per, we present an i-vector based approach to acoustic sniffing
for IVN-based framework.

The rest of the paper is organized as follows. In Section
2, we present the i-vector based acoustic sniffing approach. In
Section 3, we report experimental results. Finally, we conclude
the paper in Section 4.

2. i-Vector based Approach to Acoustic
Sniffing

Although we borrowed the main idea of i-vector extraction from
[1], our hyperparameter estimation procedure is different from
the one in [3], which was used in [1]. In [10], we have ex-
plained in detail the theoretical justification of our version of
i-vector approach. In the following, we describe our i-vector
based approach to acoustic sniffing.

2.1. Extracting i-Vectors from Training Data

Let Y = {Yi|i = 1, 2, . . . , I} denote the training data set,
where Yi = (y

(i)
1 ,y

(i)
2 , . . . ,y

(i)
Ti

) is a sequence ofTi D-
dimensional feature vectors extracted from thei-th speech seg-
ment. FromY, a Gaussian mixture model (GMM) can be
trained using a maximum likelihood (ML) approach to serve
as a so-called universal background model (UBM):

p(y) =
K
∑

k=1

ckN (y;mk,Rk) (1)

whereck ’s are mixture coefficients,N (·;mk,Rk) is a normal
distribution with aD-dimensional mean vectormk and aD×D

diagonal covariance matrixRk. Let M0 denote the(D · K)-
dimensional supervector by concatenating themk ’s andR0 de-
note the(D ·K)× (D ·K) block-diagonal matrix withRk as
its k-th block component. Let’s useΩ = {ck,mk,Rk|k =
1, . . . ,K} to denote the set of GMM-UBM parameters.

Given a speech segmentYi, let’s use a(D ·K)-dimensional
random supervectorM(i) to characterize its variability inde-
pendent of linguistic content, which relates toM0 as follows:

M(i) = M0 + Tw(i) (2)

whereT is a fixed but unknown(D ·K)×F rectangular matrix
of low rank (i.e.,F � (D ·K)), andw(i) is anF -dimensional
random vector having a prior distribution of standard normal
distributionN (·;0, I). In [1], T is called the total variability
matrix.

Given Ω andT , an i-vector can be extracted fromYi as
follows:

ŵ(i) = l
−1(i)T>

R0
−1

Γy(i) (3)

where
l(i) = I + T

>
Γ(i)R−1

0 T ; (4)

Γ(i) is a (D · K) × (D · K) block-diagonal matrix with
γk(i)ID×D as itsk-th block component;Γy(i) is a (D · K)-
dimensional supervector withΓy,k(i) as itsk-thD-dimensional
subvector. The “Baum-Welch” statisticsγk(i) andΓy,k(i) are
calculated as follows:

γk(i) =

Ti
∑

t=1

P (k|y(i)
t ,Ω) (5)

Γy,k(i) =

Ti
∑

t=1

P (k|y(i)
t ,Ω)(y

(i)
t −mk) (6)

where

P (k|y(i)
t ,Ω) =

ckN (y
(i)
t ;mk,Rk)

∑K

l=1 clN (y
(i)
t ;ml,Rl)

.

To facilitate i-vector clustering, we normalize each i-vector to
have a unit norm.

Given the training dataY and the pre-trained GMM-UBM
Ω, the hyperparameters (i.e., total variability matrix)T can be
estimated by using the following procedure:

Step 1: Initialization

Set the initial value of each element inT randomly from
[Th1, Th2], whereTh1 andTh2 are two control parameters
(Th1 = 0, Th2 = 0.1 in our experiments). For each training
speech segment, calculate the corresponding “Baum-Welch”
statistics as in Eq. (5) and Eq. (6).

Step 2: E-step

For each training speech segmentYi, calculate the posterior
expectation ofw(i) using the sufficient statistics and the current
estimation ofT as follows:

E[w(i)] = l
−1(i)T>

R0
−1

Γy(i)

E[w(i)w>(i)] = E[w(i)]E[w>(i)] + l
−1(i) (7)

wherel(i) is defined in Eq. (4).

Step 3: M-step

Solve the following equation to updateT :

I
∑

i=1

Γ(i)TE[w(i)w>(i)] =
I

∑

i=1

Γy(i)E[w>(i)]. (8)

Step 4: Repeat or stop

RepeatStep 2to Step 3for a fixed number of iterations or
until the algorithm converges [10].

2.2. Acoustic Condition Clustering using i-Vectors

After extracting the unit-norm i-vectors from all the training
speech segments, the Linde-Buzo-Gray (LBG) clustering algo-
rithm [5] can be used to cluster them into several clusters, each
corresponding to a homogeneous acoustic condition. Following
cosine similarity is used to measure the similarity of two speech
segments in the i-vector space:

sim(ŵ(i), ŵ(j)) = ŵ(i)>ŵ(j). (9)

Given the above similarity measure, it can be proven that
the centroid,cw, of a cluster consisting ofn unit-norm vectors,
ŵ(1), ŵ(2), . . . , ŵ(n), can be calculated as follows:

cw = argmax
cw

n
∑

i=1

sim(ŵ(i), cw)

=
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∑
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||
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if
n
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ŵ(i) 6= 0

0 otherwise

. (10)



After the LBG clustering converges, we obtainE clusters of
i-vectors with their centroids denoted ascw1, cw2, . . . , cwE ,
respectively. Then the speech segments in training set can be
distributed to different clusters according to the one-to-one re-
lationship with the corresponding i-vectors. By doing so, all the
feature vectors from the same cluster will share a single feature
transform in IVN-based acoustic model training and the total
number of feature transforms equals the number of clusters.

2.3. i-Vector based Acoustic Sniffing

Given a speech segmentY , i-vector based acoustic sniffing can
be done as follows:

Step 1: Calculate Baum-Welch sufficient statistics defined by
Eq. (5) and Eq. (6) using GMM-UBM.

Step 2: Extract an i-vectorŵ fromY using the calculated suf-
ficient statistics and the pre-trained total variability ma-
trix T . Normalize the extracted i-vector to have a unit
norm.

Step 3: Classify the unit-norm i-vector̂w into a cluster,e, as
follows:

e = argmax
l=1,2,...,E

sim(ŵ, cwl) (11)

The pre-trained feature transform from the correspond-
ing clustere will be used for feature transformation.

The same acoustic sniffing procedure is used in both training
and recognition stages.

3. Experiments and Results
3.1. Experimental Setup

Switchboard-1 conversational telephone speech transcription
task [2] was used in our experiments. We used 4,870 sides of
conversations (about 300 hours of speech) from 520 speakers in
training, and 40 sides of conversations (about 2 hours of speech)
from the 2000 Hub5 evaluation for testing. The minimum, max-
imum and average lengths of the conversation sides are 4.84s,
547.16s, and 229.61s in the training set and 73.12s, 279.77s,
and 184.47s in the testing set, respectively.

For front-end feature extraction, we used 39 PLPE D A
(in HTK’s terminology [8]) features. Conversation-side based
mean and variance normalization was applied for both training
and testing utterances. For acoustic modeling, we used phonetic
decision tree based tied-state triphone GMM-HMMs with 9,302
states and 40 Gaussian components per state. Our recognition
vocabulary contained 22,641 unique words. The pronunciation
lexicon contained multiple pronunciations per word with a to-
tal of 28,649 unique pronunciations. A trigram language model
trained on the transcription of the Switchboard-1 training data
and broadcast news data was used in decoding. All of the recog-
nition experiments were performed with a Microsoft in-house
decoder as in [9] and the results were evaluated by using the
NIST Scoring Toolkit SCTK [6].

For i-vector based acoustic sniffing, both utterance based
(denoted as “U” hereafter) and conversation-side based (de-
noted as “CS” hereafter) i-vectors were extracted in training
and recognition stages. The settings of relevant control pa-
rameters were as follows: The number of GMM components
K = 1, 024, the dimension of i-vectorF = 400, the num-
ber of iterations for updatingT was 15. Furthermore,T was
initialized by random values ranging from 0 to 0.1, where the
thresholds are determined under the guidance of the dynamic
range of the variance values in GMM-UBM. It is noted that too

Table 1:Comparison of different approaches when using 8 IVN
transforms (AS: acoustic sniffing approach; GMM: GMM based
approach; IVEC: i-vector based approach; UA: unsupervised
adaptation).

Method w/o UA UA
HMM AS WER(%) Rel.(%) WER(%) Rel.(%)

ML
- 30.0 N/A 28.4 N/A

GMM 27.6 8.0 25.0 12.0
IVEC 27.1 9.7 24.7 13.0

DT
- 26.2 N/A 24.8 N/A

GMM 24.9 5.0 22.9 7.7
IVEC 24.1 8.0 22.3 10.1

Table 2: Comparison of different approaches when using 128
IVN transforms.

Method w/o UA UA
HMM AS WER(%) Rel.(%) WER(%) Rel.(%)

ML
- 30.0 N/A 28.4 N/A

GMM 26.9 10.3 24.5 13.7
IVEC 26.3 12.3 24.3 14.4

DT
- 26.2 N/A 24.8 N/A

GMM 24.3 7.2 22.3 10.1
IVEC 23.5 10.3 22.0 11.3

large initial values may lead to numerical problems in training
T .

Our ML- and DT-trained baseline systems achieved Word
Error Rates (WERs) of 30.0% and 26.2% respectively. For all
the IVN-based training experiments (ML and DT), we followed
the settings used in [9].

3.2. i-Vector vs. GMM based Approach to Acoustic Sniffing

We compared i-vector based acoustic sniffing with our previous
GMM-based approach [9]. The results are shown in Table 1. In
this set of experiments, each conversation-side had been chosen
as the speech segment in extracting i-vector and 8 acoustic con-
ditions (therefore 8 IVN feature transforms) were used. After 40
main cycles of IVN-based ML training [7], the i-vector based
acoustic sniffing method achieves a WER of 27.1%, which is
slightly better than the previously reported WER of 27.6% using
GMM-based acoustic sniffing. The performance gain is main-
tained after unsupervised ML adaptation of feature transforms.
The IVN-based DT training (only for HMMs) and the corre-
sponding unsupervised ML adaptation [9] have also shown sim-
ilar performance gains. After adaptation, the DT-IVN method
using i-vector based acoustic sniffing achieved a WER of 22.3%
(10.1% relative WER reduction from the “DT baseline + UA”),
while the GMM-based approach achieved a higher WER of
22.9% (7.7% relative WER reduction from the “DT baseline
+ UA”). This set of experiments demonstrated clearly the effec-
tiveness of the i-vector based acoustic sniffing approach.

For comparison, starting from the ML- and DT-trained
baseline systems, we performed conversation-side based unsu-
pervised HMM adaptation using MLLR approach [4]. Eight re-
gression classes are used and 3 EM iterations are performed to
estimate the linear transforms. After two cycles of recognition
and adaptation, the WERs are reduced to 28.4% and 24.8% re-
spectively, which are worse than their IVN-based counterparts.



Table 3:Comparison of choosing different types of speech seg-
ment for i-vector extraction (CS: conversation-side; U: utter-
ance).

Training Recognition WER (%)

CS CS 27.1
CS U 27.2
U U 27.9

3.3. Effect of Using More IVN Transforms

Compared with the previous GMM-based acoustic sniffing ap-
proach, it is much easier for the i-vector based approach to scale
up and handle more IVN transforms in run-time decoding. This
is because in the i-vector based approach, the computation only
involves extracting the i-vector for a given input speech seg-
ment, and calculating the cosine similarity with all the centroids
of the clustered acoustic conditions. This is much more efficient
than the required likelihood evaluations in the GMM-based ap-
proach.

In this set of experiments, we increased the number of IVN
feature transforms to 128, and compared the results of different
approaches in Table 2. Again, the i-vector based acoustic sniff-
ing achieved slightly better performance than the GMM-based
approach. Compared with the results in Table 1, using more
transforms is helpful.

3.4. Effect of Speech Segment Length

In this set of experiments, different granularities for i-vector
extraction were compared. For Switchboard-1 task, utterance
and conversation-side based speech segments are two natural
choices: in training, it is quite flexible to choose either utter-
ance or conversation-side as the speech segment unit for extract-
ing i-vectors; in recognition, depending on the decoding scenar-
ios, utterance based i-vector can be extracted for utterance-by-
utterance recognition scenario, while conversation-side based
i-vector is extracted for speech transcription scenario.

Table 3 shows the performance comparison of using differ-
ent granularities of the speech segments in training and recogni-
tion for i-vector extraction. 8 IVN transforms were used and 40
main cycles of IVN-based ML training were performed. Best
performance (27.1% WER) was obtained in the most favorable
scenario, where CS-based i-vector extraction can be performed
in both training and recognition. When we can only extract i-
vectors utterance-by-utterance for testing sentences, the recog-
nition performance varies with different training granularities:
When the i-vectors of the training set were extracted on CS ba-
sis, the WER was 27.2%, which is close to the “CS-CS” sce-
nario; However, if the training i-vectors were extracted on ut-
terance basis, a slight performance degradation was observed
(27.9% WER). These results suggest that using the metadata
(conversation-side information in this case) in training may lead
to more stable and reliable estimate of the i-vectors as well
as the resultant acoustic condition clustering result. In recog-
nition scenarios where utterance-by-utterance decoding is re-
quired, the i-vector approach can also give a reasonable recog-
nition performance (e.g. the “CS-U” case).

4. Conclusion and Discussion
In this paper, we have proposed and investigated an i-vector
based acoustic sniffing method in IVN-based framework. Com-

pared with the previous GMM-based approach, the i-vector
based approach is confirmed to perform better. At the same
time, the proposed approach is very efficient therefore can deal
with very large scale training corpus on current mainstream
computing platforms, yet has very low run-time cost, therefore
a large number of transforms can be used to exploit the full po-
tential offered by IVN-based framework. Actually, to handle
the large-scale training data, the i-vector extraction and model
training tools have been implemented based upon MSR Asia’s
HPC-based speech training platform. This training platform
was developed on top of Microsoft Windows HPC Server, and
optimized for various speech training and other machine learn-
ing algorithms. With this high-performance parallel computing
platform, we can run experiments very efficiently for large-scale
tasks.

Ongoing and future works on this topic include:

• to verify the effectiveness of the IVN-based framework
for a large-scale voice search task with 7,500 hours of
speech training data;

• to improve the i-vector based acoustic sniffing approach
for different LVCSR application scenarios and deploy-
ment requirements.

We will report those results elsewhere once they become avail-
able.
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