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Abstract
We present a new approach to clustering training data for im-
proved speech recognition. Given a training corpus, a so-called
i-vector is extracted from each training utterance. A hierarchical
divisive clustering algorithm is then used to cluster the training
i-vectors into multiple clusters. For each cluster, an acoustic
model (AM) is trained accordingly. Such trained multiple AMs
can then be used in recognition stage to improve recognition
accuracy. The proposed approach is very efficient therefore can
deal with very large scale training corpus on current mainstream
computing platforms. We report experimental results on a voice
search task with 7,500 hours of speech training data.
Index Terms: factor analysis, data clustering, acoustic model

1. Introduction
Training multiple sets of acoustic model (AM) to improve
recognition accuracy by clustering training data was an old re-
search topic in the field of automatic speech recognition (ASR).
Recently it attracts renewed interest because increasingly more
training data collected from a very large population in diversi-
fied acoustic environments and transmission channels is becom-
ing available to build ASR systems. An interesting study on this
topic was reported in [1] for a voice search task. In this paper,
we present a similar study with a new data clustering approach
based on a so-called i-vector technique [2]. The proposed ap-
proach is very efficient therefore can deal with very large scale
training corpus on current mainstream computing platforms.

The rest of the paper is organized as follows. In Section 2,
we present i-vector extraction approach. In Section 3, we de-
scribe our i-vector based data clustering approach for improved
ASR. In Section 4, we report preliminary experimental results
on a voice search task with 7,500 hours of speech training data.
Finally, we conclude the paper in Section 5.

2. i-Vector Approach
In [2], an i-vector extraction approach was described, but impor-
tant information on how to estimate hyperparameters (a.k.a. to-
tal variability matrix) was missing. Readers were referred to [3]
for such technical details instead. However, because so-called
“Baum-Welch” statistics (instead of “Viterbi” ones) were used
to extract an i-vector from each utterance, the theoretical justi-
fication and derivation in [3] cannot be used to justify the prac-
tice in [2] any more. In the following subsections, we explain
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the theoretical justification of the i-vector extraction approach
borrowed from [2] and present our version of hyperparameter
estimation procedure.

2.1. Data Model

Suppose we are given a set of training data denoted as Y =

{Yi|i = 1, 2, . . . , I}, where Yi = (y
(i)
1 ,y

(i)
2 , . . . ,y

(i)
Ti

) is a se-
quence of D-dimensional feature vectors extracted from the i-th
training utterance. From Y , a Gaussian mixture model (GMM)
can be trained using a maximum likelihood (ML) approach to
serve as a so-called universal background model (UBM):

p(y) =
K∑

k=1

ckN (y;mk,Rk) (1)

where ck’s are mixture coefficients, N (·;mk,Rk) is a normal
distribution with a D-dimensional mean vector mk and a D×D
diagonal covariance matrix Rk. Let M0 denote the (D · K)-
dimensional supervector by concatenating the mk’s and R0 de-
note the (D ·K)× (D ·K) block-diagonal matrix with Rk as
its k-th block component. Let’s use Ω = {ck,mk,Rk|k =
1, . . . ,K} to denote the set of UBM-GMM parameters.

2.2. i-Vector Extraction

Given an utterance Yi, let’s use a (D ·K)-dimensional random
supervector M(i) to characterize its variability independent of
linguistic content, which relates to M0 as follows:

M(i) = M0 + Tw(i) (2)

where T is a fixed but unknown (D ·K)×F rectangular matrix
of low rank (i.e., F ≪ (D ·K)), and w(i) is an F -dimensional
random vector having a prior distribution of standard normal
distribution N (·;0, I). A graphical model representation is
shown in Fig. 1. In [2], T is called the total variability ma-
trix. Given Yi, Ω, and T , the so-called i-vector defined in [2] is
actually the solution of the following problem:

ŵ(i) = argmax
w(i)

Ti∏
t=1

K∏
k=1

N (y
(i)
t ;Mk(i),Rk)

P (k|y(i)
t ,Ω)p(w(i))

(3)
where Mk(i) is the k-th D-dimensional subvector of M(i),

and

P (k|y(i)
t ,Ω) =

ckN (y
(i)
t ;mk,Rk)∑K

l=1 clN (y
(i)
t ;ml,Rl)

.

The closed-form solution of the above problem gives the i-
vector extraction formula as follows:

ŵ(i) = l−1(i)T⊤R0
−1Γy(i) (4)
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Figure 1: A graphical model representation of i-vector ap-
proach.

where
l(i) = I + T⊤Γ(i)R−1

0 T ; (5)
Γ(i) is a (D · K) × (D · K) block-diagonal matrix with
γk(i)ID×D as its k-th block component; Γy(i) is a (D · K)-
dimensional supervector with Γy,k(i) as its k-th D-dimensional
subvector. The “Baum-Welch” statistics γk(i) and Γy,k(i) are
calculated as follows:

γk(i) =

Ti∑
t=1

P (k|y(i)
t ,Ω) (6)

Γy,k(i) =

Ti∑
t=1

P (k|y(i)
t ,Ω)(y

(i)
t −mk) . (7)

To facilitate i-vector clustering, we normalize each i-vector to
have a unit norm.

2.3. Hyperparameter Estimation

Given the training data Y and the pre-trained UBM-GMM Ω,
the hyperparameters (i.e., total variability matrix) T can be es-
timated by maximizing the following objective function:

F(T ) =

I∏
i=1

∫
p(Yi|M(i))p(M(i)|T )dM(i). (8)

Although it is possible to use variational Bayesian approach to
solve the above problem, for simplicity, we use the following
approximation to ease the problem:

p(Yi|M(i)) ≃
Ti∏
t=1

K∏
k=1

N (y
(i)
t ;Mk(i),Rk)

P (k|y(i)
t ,Ω).

Consequently, an EM-like algorithm can be used to solve the
above simplified problem. The procedure for estimating T is
described as follows:

Step 1: Initialization

Set the initial value of each element in T randomly from
[Th1, Th2], where Th1 and Th2 are two control parameters
(Th1 = 0, Th2 = 0.01 in our experiments). For each training
utterance, calculate the corresponding “Baum-Welch” statistics
as in Eq. (6) and Eq. (7).

Step 2: E-step

For each training utterance Yi, calculate the posterior ex-
pectation of w(i) using the sufficient statistics and the current
estimation of T as follows:

E[w(i)] = l−1(i)T⊤R0
−1Γy(i)

E[w(i)w⊤(i)] = E[w(i)]E[w⊤(i)] + l−1(i) (9)

where l(i) is defined in Eq. (5).

Step 3: M-step

Solve the following equation to update T :

I∑
i=1

Γ(i)TE[w(i)w⊤(i)] =

I∑
i=1

Γy(i)E[w⊤(i)]. (10)

Step 4: Repeat or stop

Repeat Step 2 to Step 3 for a fixed number of iterations or
until the objective function in Eq. (8) converges.

3. i-Vector based Data Clustering
3.1. Clustering of i-Vectors using LBG Algorithm

As described above, given the training corpus, a unit-norm i-
vector can be extracted from each training utterance. Given the
set of training i-vectors, we use a hierarchical divisive clustering
algorithm, namely LBG algorithm [4], to cluster them into mul-
tiple clusters. To measure the similarity between two i-vectors,
ŵ(i) and ŵ(j), the following cosine similarity measure is used:

sim(ŵ(i), ŵ(j)) = ŵ(i)⊤ŵ(j). (11)

Given the above similarity measure, it can be proven that the
centroid, cw, of a cluster consisting of n unit-norm vectors,
ŵ(1), ŵ(2), . . . , ŵ(n), can be calculated as follows:

cw = argmax
cw

n∑
i=1

sim(ŵ(i), cw)

=

{ ∑n
i=1 ŵ(i)

||
∑n

i=1 ŵ(i)|| if
∑n

i=1 ŵ(i) ̸= 0

0 otherwise
. (12)

After the convergence of the LBG clustering algorithm, we
obtain E clusters of i-vectors with their centroids denoted as
cw1, cw2, . . . , cwE , respectively. We use cw0 to denote the
centroid of all the training i-vectors.

3.2. Training Multiple Acoustic Models

Given the i-vector clustering result, each training utterance can
be classified into one of E clusters. For each cluster, a cluster-
dependent (CD) acoustic model (AM) can then be trained by
using a cluster-independent (CI) AM as a seed. Consequently,
we will have E CD AMs and one CI AM. Such trained multiple
AMs can then be used in recognition stage to improve recogni-
tion accuracy.

3.3. Using Multiple Acoustic Models in Recognition

Apparently, there are many possible ways to use multiple AMs.
In this study, we compare the following five methods:

• Method 1: Given an unknown utterance Y , a unit-norm
i-vector ŵ is extracted first. Y is then classified to a
cluster, e, as follows:

e = argmax
l=1,2,...,E

sim(ŵ, cwl).

The CD AM of the e-th cluster will then be used to rec-
ognize Y . This is the most efficient way to use multiple
CD AMs.



Table 1: Comparison of five methods of using multiple acoustic models to improve recognition accuracy. The word error rate (WER) of
the baseline system using cluster-independent model is 42.2%. Each cell shows the WER (relative WER reduction against the baseline)
of the corresponding system, both in %.

# of Clusters Method 1 Method 2 Method 3 Method 4 Method 5
2 41.6 (1.4) 41.2 (2.4) 41.2 (2.4) 41.3 (2.1) 41.1 (2.6)
4 41.4 (1.9) 40.7 (3.6) 40.6 (3.8) 40.3 (4.5) 40.1 (5.0)
8 41.2 (2.4) 40.5 (4.0) 40.4 (4.3) 40.0 (5.2) 39.7 (5.9)
16 40.9 (3.1) 40.3 (4.5) 39.9 (5.5) 39.4 (6.6) 39.4 (6.6)

• Method 2: Given an unknown utterance Y , do i-vector
based cluster selection as in Method 1. Y will be recog-
nized by using both the selected CD AM and the CI AM
via “parallel decoding”. The final recognition result will
be the one with a higher likelihood score. This method
is computationally more expensive than Method 1.

• Method 3: Given an unknown utterance Y , do i-vector
based cluster selection by comparing ŵ with E + 1
centroids, namely cw0, cw1, . . . , cwE , to identify top 2
most similar clusters. Y will then be recognized by us-
ing the two selected (CD and/or CI) AMs via “parallel
decoding”. This method has a similar run-time cost as
Method 2.

• Method 4: Given an unknown utterance Y , do “paral-
lel decoding” by using E CD AMs and select the final
recognition result with the highest likelihood score. This
method has a much higher run-time cost than the previ-
ous three methods.

• Method 5: Given an unknown utterance Y , do “paral-
lel decoding” by using E CD AMs and one CI AM, and
select the final recognition result with the highest likeli-
hood score. This method has a similar run-time cost as
Method 4.

4. Experiments and Results
4.1. Experimental Setup

As in [1], we also choose a Voice Search task to evaluate the ef-
fectiveness of our proposed approach. Our training data set con-
sists of about 7,500 hours of narrow-band (8 KHz sampling rate)
speech data (about 9M training utterances). About half of the
training corpus was manually transcribed, including connected
digits, read sentences, broadcast news, conversational telephony
speech, etc., which are typically used by ASR research com-
munity to build different large vocabulary continuous speech
recognition (LVCSR) systems. Another half was collected from
Windows Live voice search service, and the word-level tran-
scription accuracy was about 85%. As for testing data, we use
4,726 real-world voice search queries.

For feature extraction in front-end, we used 36 HLDA trans-
formed features from 52 MFCC and its derivative features (i.e.,
D = 36). For acoustic modeling, we used phonetic decision-
tree based tied-state triphone GMM-HMMs with 9,000 states
and 48 Gaussian components per state. Our recognition vocabu-
lary contains about 100K unique words and about 130K unique
pronunciations. All of the recognition experiments were per-
formed using the HDecode engine of HTK3.4 toolkit [5] with
a trigram language model. Recognition performance was mea-
sured by the metric of word error rate (WER).

As for HMM training, only ML training was performed.
The cluster-independent (CI) model was trained using the full
training set. The cluster-dependent (CD) model was initialized

Table 2: Distribution of word error rate (WER in %) (relative
WER reduction in % against the baseline) of the Method 1
across different subsets of testing sentences selected by differ-
ent acoustic models (AMs). The number of CD AMs is 16.

Cluster ID # of sentences Baseline Method 1
1 9 23.3% 26.7% (-14.3%)
2 145 57.8% 53.4% (7.66%)
3 27 30.7% 28.7% (6.5%)
4 189 64.1% 54.9% (14.4%)
5 141 38.1% 37.9% (0.6%)
6 6 46.2% 46.2% (0.0%)
7 339 41.7% 39.2% (5.9%)
8 268 41.2% 40.2% (2.6%)
9 558 37.4% 36.5% (2.4%)

10 1861 42.8% 41.9% (2.1%)
11 304 40.9% 39.8% (2.6%)
12 218 31.6% 31.1% (1.6%)
13 161 38.4% 37.6% (2.0%)
14 253 37.2% 36.4% (2.3%)
15 211 50.3% 52.1% (-3.6%)
16 36 52.1% 54.8% (-5.3%)

Total 4726 42.2% 40.9% (3.1%)

using the CI model. Four ML iterations were performed to re-
estimate the HMM model parameters (including means, vari-
ances, mixture component weights and state transition probabil-
ities) using the cluster-specific training data. All the CD models
shared the same model topology and the phonetic decision tree
with the CI model.

In i-vector extraction, the number of Gaussian components
in UBM-GMM is K = 1024, and the dimension of i-vector is
F = 400.

To handle the large-scale training data, the i-vector extrac-
tion and model training tools were implemented based upon
MSR Asia’s HPC-based speech training platform. This train-
ing platform was developed on top of Microsoft Windows HPC
Server, and optimized for various speech training and other ma-
chine learning algorithms. With this high-performance parallel
computing platform, we can run experiments very efficiently for
such a large-scale task.

4.2. Experimental Results

Table 1 summarizes a comparison of five methods of using mul-
tiple acoustic models to improve recognition accuracy. The
WER of the baseline system using cluster-independent model is
42.2%. Each cell in Table 1 shows the WER (relative WER re-
duction against the baseline) of the corresponding system, both
in %. It is observed that although Method 1 is most efficient at
run-time, unfortunately it is less effective than Method 4, where
expensive parallel decoding using multiple AMs is performed.
By comparing Method 2 and Method 3 with Method 1, and
comparing Method 5 with Method 4, it is observed that incor-
porating CI AM is helpful. Overall, Method 3 offers the best



Table 3: Distribution of word error rate (WER in %) (relative
WER reduction in % against the baseline) of the Method 4
across different subsets of testing sentences selected by differ-
ent acoustic models (AMs). The number of CD AMs is 16.

Cluster ID # of sentences Baseline Method 4
1 34 32.9% 25.0% (24.0%)
2 140 52.3% 43.8% (16.3%)
3 48 28.1% 26.1% (7.0%)
4 196 62.8% 52.5% (16.4%)
5 52 58.2% 51.6% (11.3%)
6 8 88.2% 82.4% (6.7%)
7 281 35.8% 33.9% (5.4%)
8 324 38.6% 34.6% (10.5%)
9 682 38.8% 37.0% (4.5%)
10 1628 41.6% 39.5% (5.1%)
11 182 46.1% 42.5% (7.6%)
12 224 31.8% 29.6% (6.9%)
13 136 46.9% 43.8% (6.6%)
14 417 35.6% 34.8% (2.1%)
15 366 60.2% 59.1% (1.9%)
16 8 68.8% 39.4% (22.3%)

Total 4726 42.2% 39.4% (6.6%)

tradeoff between efficiency and effectiveness.
Table 2 to Table 5 give detailed distributions of WER in

% (relative WER reduction in % against the baseline) of the
Method 1, Method 4, Method 3, Method 5, respectively,
across different subsets of testing sentences selected by differ-
ent acoustic models (AMs). The number of CD AMs is 16. In
Table 4 and Table 5, Cluster ID number 0 corresponds to CI
AM. It is quite clear that the relative WER reduction varies in
a wide range for different subsets of testing data. This clearly
shows the potential for further improvement. One known issue
is the negative effect of non-speech portions on the result of i-
vector extraction. Using an efficient VAD to remove non-speech
portions before i-vector extraction will definitely be helpful.
This is especially true for voice search data where long non-
speech portions indeed exist at the beginning and end of the
utterance, and between spoken keywords.

5. Conclusion and Discussion
We have presented an i-vector based approach to clustering
training data for training multiple acoustic models to improve
speech recognition accuracy. The proposed data clustering ap-
proach is very efficient therefore can deal with very large scale
corpus. As future work, we will use a much larger and more
representative testing set to study the effectiveness of the pro-
posed approach. A more in-depth analysis of the results on such
testing data will help us gain more insights so that a better strat-
egy may be identified. Although our i-vector based data clus-
tering approach is more efficient than the one reported in [1], it
would be interesting to compare the effectiveness of these two
approaches as another possible future work.
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